中国产后花生黄曲霉毒素污染与风险评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是中国主要油料作物和纯出口优势农产品,总产居中国油料作物首位,是食油兼用型经济作物,在中国具有重要地位。然而近年来黄曲霉毒素污染严重威胁花生安全消费和国际贸易,已成为制约中国花生消费安全和产业发展的重大风险隐患。因此,开展花生黄曲霉毒素污染状况研究,建立花生黄曲霉毒素风险评估技术,对花生等主要农产品质量安全监管、保障安全消费,以及标准制修订和国际贸易等都具有重要意义。
     本论文首次对中国产后花生黄曲霉毒素污染分布状况进行了系统研究,在全国13个花生主产省抽取2571份代表性产后花生样品采用国际先进的免疫亲和层析液相色谱法进行了检测分析,样品覆盖中国花生生产面积的90%。探明了中国产后花生黄曲霉毒素污染分量、总量、地域分布与污染特征。并基于中国产后花生黄曲霉毒素污染状况和中国人群花生消费情况,建立了以花生黄曲霉毒素污染痕量数据取值方法、非参数定量概率评估技术为核心的既符合国际通行规则,又适于中国花生黄曲霉毒素污染状况的风险评估技术,对中国产后花生黄曲霉毒素膳食摄入风险进行了评估,为我国花生等农产品质量安全监管、标准制修订、国际贸易等提供关键技术支撑。
     主要研究方法与研究结果如下。
     1.首次探明了我国产后花生黄曲霉毒素污染分布,构建了花生黄曲霉毒素污染数据库。采用分层随机抽样方法连续2年从全国花生主产区抽取代表性产后花生样品2571份,采用国际先进的免疫亲和层析-液相色谱方法检测分析了黄曲霉毒素含量,获得黄曲霉毒素污染检测数据12855个,建立了基于微软.net framework 2.0框架和SQLite的中国产后花生黄曲霉毒素污染数据库,具有信息录入、修改、浏览、查询、数据导入导出、密码安全等9大功能和占用资源低,维护难度小的特点,可简单快速的实现与@risk等风险评估软件对接,用于花生黄曲霉毒素污染分布分析和黄曲霉毒素风险评估。探明了AFB_1是中国产后花生黄曲霉毒素污染的主要成分,占黄曲霉毒素总量的百分比平均值为86.2%,与黄曲霉毒素总量相关系数达0.99。安徽省产后花生AFB1污染最重,辽宁省最轻;长江流域主产区产后花生黄曲霉毒素污染最重,东北主产区产后花生污染最轻;中国产后花生黄曲霉毒素污染呈现明显的地域特征;污染严重地区有向北方蔓延的趋势。
     2.研究建立了以0与LOD点值替代的痕量数据取值方法、非参数概率评估技术为核心的中国花生黄曲霉毒素膳食暴露评估技术。探明了黄曲霉毒素检测方法及其检出限是黄曲霉毒素污染痕量数据取值关键限制因子,对0,1/2LOD,LOD等点值替代法和皮尔逊分布、对数正态分布等37种分布替代法优化筛选基础上,建立了以免疫亲和层析-高效液相色谱检测方法为基础,“0”与“LOD”点值替代的黄曲霉毒素污染痕量数据取值方法。基于0和LOD点值替代痕量数据取值方法,建立了配套的非参数概率评估技术,优化确定非参数概率评估迭代模拟次数为30000次,抽样次数为1000次。采用建立的非参数概率评估方法评估了中国人群产后花生黄曲霉毒素膳食暴露量,儿童属于产后花生黄曲霉毒素高暴露人群,其黄曲霉毒素膳食暴露量平均值是标准人群2.06倍;安徽省属于花生黄曲霉毒素高暴露地区,该地区标准人群产后花生黄曲霉毒素膳食暴露量平均值是按欧盟和中国标准计算的理论暴露量值的48.3倍和4.83倍,在风险管理中应予以重点关注。
     3.基于中国产后花生黄曲霉毒素污染分布和污染数据库,采用建立的花生黄曲霉毒素风险评估方法,评估了中国产后花生黄曲霉毒素膳食摄入风险。在中国不同年龄人群中,45岁以上中老年人群产后花生膳食摄入风险最大,乙肝表面抗原阳性中老年人群膳食摄入风险平均值和97.5百分位值分别为0.1356例癌症/100000人·年和0.2169例癌症/100000人·年,占中国年肝癌发病率的0.6%和0.96%。不同花生主产省中,安徽省人群产后花生摄入风险最大,安徽省18岁~45岁人群产后花生膳食摄入风险平均值和97.5百分位值分别为0.1693例癌症/100000人·年和1.932例癌症/100000人·年,占中国年肝癌发病率的0.75%和8.59%。四大花生主产区中,长江流域主产区花生膳食摄入风险最大,该区域18岁~45岁人群膳食摄入风险平均值和97.5百分位值分别为0.00641例癌症/100000人·年和0.05977例癌症/100000人·年,占中国年肝癌发病率的0.03%和0.27%。除个别地区的高风险人群外,中国产后花生黄曲霉毒素膳食摄入对肝癌的贡献率不足1%,说明花生生产和收获过程中产生的黄曲霉毒素污染对人群花生膳食摄入风险小,需进一步开展花生流通、储藏过程中黄曲霉毒素污染风险评估,摸清花生黄曲霉毒素的主要污染环节,保障花生消费安全和出口贸易。
Peanut is the major oil crop and predominant agro-product for export and no import in China, whose production ranks the first among all kinds of oilseeds in the country. As the main cash crop used as both food and vegetable oil, peanut plays an important role in China. However, aflatoxin contamination has been threatening consumption safety and international trade during the recent years, and become the grave potential risks to prevent consumption safety and industry development of peanut. Therefore, for aflatoxin contamination in peanut in China, it’s important to discover the current contamination and develop risk assessment technology for quality & safety supervision, standards setting & revision and exporting trade of agro-products such as peanuts.
     In the thesis, the distribution of aflatoxin contamination in post-harvest peanut in China was firstly, systematically researched. Collected from 13 main provinces of peanut production covering 90% of peanut production area in the country, 2571 peanut samples were analyzed with an international advanced method of immuno-affinity-liquid-chromatography. And, of aflatoxin contamination in post-harvest peanut in China, the single and total contaminants, contaminated area distribution and contamination features were discovered. Based on the data of aflatoxins contamination in post-harvest peanut and peanut consumption levels in China, the protocol of risk assessment was developed, comprised of ultra-trace data processing method of aflatoxin contamination in peanut and non-parametric quantitative probabilistic assessment as the nuclear techniques. The developed protocol not only accorded with generic international rules, but also was applicable for aflatoxins contamination in peanut in China. With this protocol, dietary intake risk of aflatoxin in post-harvest peanut in China was assessed. So here provided a key technical support for quality & safety supervision, setting & revising standards, and exporting trade and negotiations of Chinese agro-products such as peanuts.
     The main research methods and results were summarized as the below.
     1. For the first time, the distribution of aflatoxin contamination in post-harvest peanut in China was discovered and the database of aflatoxin contamination in peanut was constructed. With a stratified random sampling method, 2571 peanut samples were collected in 2009 and 2010 from the country’s main production areas. The samples were detected by the international advanced immunoaffinity-liquid chromatographic method, from which 12855 data of aflatoxin contamination were acquired. The database of aflatoxin contamination in post-harvest peanut in China was developed based on Microsoft.net framework 2.0 and SQLite, which could be written, revised, browsed and searched, input and output data, with the features of few resources occupation and easy maintenance. The database could be conveniently called by @risk to analyze the distribution of aflatoxin contamination in peanut and assess risk assessment of aflatoxin. It was shown that aflatoxin B_1 (AFB_1) is the dominating contaminant in Chinese post-harvest peanuts, averaged 86.2% of the total aflatoixns with a correlation coefficient of 0.99. For aflatoxins contamination levels of post-harvest peanuts, the highest was in Anhui province and the lowest in Liaoning province; the highest in Yangtze River ecological region and the lowest in North-East ecological area, and the results indicated that the aflatoxins contamination levels of post-harvest peanuts in China exhibited apparently regional characteristics, and inferred a tendency that the heavy contamination region has been spreading to north.
     2. A dietary exposure assessment technique of aflatoxin in peanut in China was developed with the core of ultra-trace data processing method of alternative point value of“0”and“LOD”and non-parametric probability assessment technique. It was proven that the key limit factor on ultra-trace data processing of aflatoxin contamination were aflatoxin analysis method and its limit of detection. After optimization and screening of point value substitute methods such as 0, 1/2 LOD and LOD and of 37 kinds of distribution substitute methods such as Pearson and Lognormal distribution and so on, a constant value method of aflatoxins contamination of 0 and LOD alterative was developed based on the detection method of immunoaffinity-HPLC. And based on the constant value method of 0 and LOD alterative, a non-parametric probability technique was developed. An iterative simulation with 30000 times and sampling with 1000 times were selected after optimization for the non-parametric probability assessment. With the developed non-parametric probability assessment method, the dietary exposure of Chinese post-harvest peanuts was assessed. The result indicated that children belonged to the group with high exposure of aflatoxin in post-harvest peanut, averagely, with 2.06 times of the standard population’s dietary exposure of aflatoxin, and that Anhui province belonged to the area with high exposure of aflatoxin in peanut, in which the standard population’s dietary exposure dose of aflatoxin in post-harvest peanut was 48.3 and 4.83 times of that of European Union and that of Chinese standards respectively. So it needs more attention during governmental risk management.
     3. The dietary intake risk of aflatoxin post-harvest peanut in China was assessed with the developed method of risk assessment for aflatoxin in peanut based on the distribution and the database of aflatoxin contamination in post-harvest peanut in China. Among the groups classified by ages, it was the highest of the post-harvest peanut dietary intake risk for the group of persons in middle and old age, over 45 years old. For the persons in middle and old age with positive hepatitis B surface antigen, the average risk value and P97.5 value were 0.1356 cases per 100,000 persons per year and 0.2169 cases per 100,000 persons per year, which were 0.6% and 0.96% of the yearly liver cancer incidence in China. Among the main peanut production provinces, it was the highest of the post-harvest peanut dietary risk for Anhui Province people. For the group of 18~45 years old people in Anhui, the average risk value and P97.5 value were 0.1693 cases per 100,000 population per year and 1.932 cases per 100,000 population per year, which were 0.75% and 8.59% of the yearly liver cancer incidence in China. Among the four biggest peanut economic areas, it was the highest of the peanut dietary intake risk in the Yangtze River area. The average risk value and P97.5 value for the group of 18~45 years old people in this area were 0.00641 cases per 100,000 persons per year and 0.05977 cases per 100,000 persons per year, which were 0.03% and 0.27% of yearly liver cancer incidence in China.
     In addition to high-risk groups in individual districts, the dietary intake of aflatoxin in post-harvest peanut in China contributed to liver cancer less than 1% except for the persons with high risk in few districts. The results indicated that the post-harvest peanut dietary risk were low, which caused by peanut production and harvesting process, and that further studies need to be focused on the process of peanut circulation and storage for aflatoxin contamination risk assessment, to clarify main process caused aflatoxin contamination in peanut and to protect peanut consumption safety and export trade.
引文
1.陈君石.遗传毒性致癌物危险性评价的新动向.毒理学杂志.2005,19(3):171-172.
    2.陈君石.食品中遗传毒性致癌物的危险性评价.中华预防医学杂志.2006,40(5):368-369.
    3.陈天金,魏益民,潘家荣.食品中铅对人体危害的风险评估.中国食物与营养,2007,(2):15-18.
    4.段淑芬,胡文广,戴良香.花生黄曲霉毒素国家标准与绿色贸易壁垒.中国农学通报,22(6): 95-98.
    5.郭波莉,魏益民,潘家荣.食品中丙烯酰胺风险评估及其形成机理研究进展,2006,(3):247-251.
    6.韩晓梅,闵捷,刘沛,吴永宁,陈启光,王灿楠,陈虹.中国膳食暴露评估模型桥梁数据库构建初探.卫生研究.2008,37(6):725-727.
    7.韩泽广.肝癌基因组学研究进展.中国科学.2008,38(10):907-912.
    8.何建忠,郭秀蓉,吴胜.459份花生油中黄曲霉毒素B1检测结果分析.应用预防医学.2007,13(2):127.
    9.刘沛,刘元宝,王灿楠.膳食暴露评估模型及其构建方法.中华预防医学杂志,2007,41(6): 502-504.
    10.刘沛,李靖欣,孙金芳,Jianping Xue,陈炳为,张宏,余小金,王灿楠,袁宝君,马永建,田子华.中国膳食暴露评估模型软件开发及验证.中华预防医学杂志,2010,44(3):204-208.
    11.刘元宝,王灿楠,吴永宁,刘沛.膳食暴露定量评估模型及其变异性和不确定性研究.中国卫生统计.2008,25(1):7-9.
    12.梁炫强,潘瑞炽,宾金华.花生收获前黄曲霉侵染因素研究.中国油料作物学报,2000,22(4):67-70.
    13.龙再浩,陈小青,马中春.危险度评价中的毒理学关注阈值原则.癌变,畸变,突变.2008,20(1):79-81.
    14.戚亚梅.韩嘉媛.美国食品安全风险分析体系的运作.农业质量标准2007,增刊.123-126.
    15.孙金芳,刘沛,陈炳为,陈启光,余小金,王灿楠,李靖欣.中国膳食暴露评估非参数概率模型构建.中华预防医学杂志.2010,44(3):195-199.
    16.王君,刘秀梅.中国人群黄曲霉毒素膳食暴露量评估.中国食品卫生杂志,2007,19(3):238-240.
    17.万书波,单世华,李春娟,胡文广.我国花生安全生产现状与策略.花生学报, 2005, 34(1):1-4.
    18.吴永宁,陈君石.开展食品污染检测强化暴露评估研究.中华预防医学杂志.2007,41(6):435-437.
    19.王芳,陈松,钱永忠.国外食品安全风险分析制度建立及特点分析.世界农业.2008,353(9):44-47.
    20.王君,吴永宁.遗传毒性致癌物风险评估的新技术.国外医学卫生学分册,2009,36(6):369-371.
    21.王君,刘秀梅.食品中真菌毒素危险性分析的方法及现状.中华预防医学杂志,2005,39(6):430-433.
    22.王君,刘秀梅.部分市售食品中总黄曲霉毒素污染的监测结果.中华预防医学杂志.2006,40(1):33-37.
    23.王陇德,主编.中国居民营养与健康状况调查报告之一—综合报告[M].北京:人民卫生出版社,2002.
    24.王绪卿,吴永宁,陈君石.食品污染监测低水平数据处理问题.中华预防医学杂志,2002,36:278-279.
    25.魏帅,魏益民,郭波莉.三聚氰胺风险评估结果简介.食品科技,2009,34(9):252-255.
    26.徐华珠,孙桂菊,王少康,陈国威,盛军利,王加生.市售花生、玉米中黄曲霉毒素和伏马菌素污染水平调查.环境与职业医学.2006,23(3):217-219.
    27.徐钟济.蒙特卡罗方法.上海:上海科学技术出版社,1985.
    28.余小金,刘沛,闵捷,张宏,陈炳为,陈启光,魏永越,陈峰.暴露评估中处理未检出值的多检出限回归方法及其应用.卫生研究.2008,37,(6):745-747.
    29.杨静.中国花生生产及贸易现状与展望.花生学报,2009,38(1):27-31.
    30.张复宏,郭蕊,张吉国,万书波.中国花生出口贸易发展态势评析.农业科技管理.27(2):9-12.
    31.曾运红,谭卫仙.原发性肝癌发病主要危险因素的Meta分析.现代预防医学.2004,31(2):172-174.
    32.郑明岚,周少英,刘学军,周志俊.毒理学关注阈值(TTC)在化学物质风险评估中的应用.卫生研究.2010,39(5):639-642.
    33.中国农业科学院质量标准与检测技术研究所.农产品质量安全风险评估-原理、方法和应用.北京:中国标准出版社,2007:8.
    34.中华人民共和国商务部. 2009年出口花生质量安全预警分析报告.
    35.中华人民共和国卫生部.GB 5009.24-2010.食品安全国家标准食品中黄曲霉毒素M1和B1的测定.北京:中国标准出版社,2010.05.
    36.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 3212-2008牛奶和奶粉中黄曲霉毒素B1、B2、G1、G2、M1、M2的测定液相色谱-荧光检测法.北京:中国标准出版社,2009.04
    37.中华人名共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 17480-2008饲料中黄曲霉毒素B1的测定酶联免疫吸附法.北京:中国标准出版社,2009.01.
    38.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 8381-2008/ISO 6651:2001饲料中黄曲霉毒素B1的测定半定量薄层色谱法.北京:中国标准出版社,2009.01.
    39.中华人民共和国共和国农业部.NY/T 1286-2007花生黄曲霉毒素B1的测定高效液相色谱法.北京:中国农业出版社,2007.06.
    40.中华人民共和国卫生部,中国国家标准化管理委员会.GB/T 5009.23-2006食品中黄曲霉毒素B1、B2、G1、G2的测定.北京:中国标准出版社,2007.02.
    41.中华人民共和国国家质量监督检验检疫总局.GB/T 18979-2003食品中黄曲霉毒素的测定免疫亲和层析净化高效液相色谱法和荧光光度法.北京:中国标准出版社,2003.02.
    42.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 1532-2008花生.北京:中国标准出版社,2009.01.
    43.中华人民共和国农业部.NY/T 1067-2006食用花生.北京:中国农业出版社,2006.09.
    44.中华人民共和国农业部.NY/T 1068-2006油用花生.北京:中国农业出版社,2009.09.
    45.中华人民共和国农业部.NY/T 420-2009绿色食品花生及制品.北京:中国农业出版社,2009.04.
    46.A. Hacking and N.R. Biggs.Aflatoxin B1 in barley in the UK. Nature.1979, 282 :128.
    47.A.L. Al-Hilli and J.E. Smith.Influence of propionic acid on growth and aflatoxin production by Aspergillus flavus. FEMS Microbiology Letters 1979, 6: 367-370.
    48.Ali N, Hashim NH, Yoshizawa T. Evaluation and application of a simple and rapid method for the analysis of aflatoxins in commercial foods from Malaysia and the Philippines. Food Addit Contam Part A .1999.16(7):273-280.
    49.Ali N, Sardjono, Yamashita A, Yoshizawa T. Natural co-occurrence of aflatoxins and Fusaviummycotoxins (fumonisins, deoxynivalenol, nivalenol and zearalenone) in corn from Indonesia. Food Addit Contam Part A. 1998.15(4):377-384.
    50.Anon.Alarm about aflatoxin.Nature.1966,212:1512.
    51.Anon.Commission Regulation (EC) No.1525/98. Official Journal of the European Communities 201 (1998):43-46.
    52.A.Pittet.Natural occurrence of mycotoxins in foods and feeds-an updated review.Revue de Medecine Veterinaire.1998,149:479-492.
    53.Ayalew A, Fehrmann H, Lepschy J, Beck R, Abate D. Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia.2006. 162(1):57-63.
    54.Bandyopadhyay R, Kumar M, Leslie JF. 2007. Relative severity of aflatoxin contamination of cereal crops in West Africa. Food Addit Contam: Part A 24(10):1109-1114.
    55.Bankole SA, Mabekoje OO. Occurrence of aflatoxins and fumonisins in preharvest maize from south-western Nigeria. Food Addit Contam: Part A. 2004. 21(3):251-255.
    56.Barlow, S., Renwick, A.G., Kleiner, J., Bridges, J., Busk, L., Dybing, E., Edler, L., Eisenbrand, G., Fink-Gremmels, J., Knaap, A., Kroes, R., Liem, D., Muller, D.J.G., Page, S., Rolland, V., Schlatter, J., Tritscher, A., Tueting, W., Wurtzen, G.. Risk assessment of substances that are both genotoxic and carcinogenic. Report of an international conference. Food Chem. Toxicol. 2006.44, 1636-1650.
    57.Barlow, S., Dybing, E., Edler, L., Eisenbrand, G., Kroes, R., van den Brandt, P., 2002a.Food safety in Europe (FOSIE): risk assessment of chemicals in food and diet.Food Chem. Toxicol. 2/3, 141-427.
    58.Barlow, S.M., Grieg, J.B., Bridges, J.W., Carere, A., Carpy, A.J.M., Galli, C.L., Kleiner, J., Knudsen, I., Koeter, H.B.W.M., Levy, L.S., Madsen, C., Mayer, S., Narbonne, J.-F., Pfannbuch, F., Prodanchuk, M.G., Smith, M.R., Steinberg, P., Hazard identification by methods of animal-based toxicology. Food Chem. Toxicol. 2002b. 40, 145–191.
    59.Battilani P, Barbano C, Piva G. Aflatoxin B1 contamination in maize related to the aridity index in North Italy. World Mycotox J. 2008. 1(4):449-456.
    60.Benford, D., Leblanc, J. C., & Setzer, R. W. Application of the margin of exposure (MOE) approach to substances in food that are genotoxic and carcinogenic Example: Aflatoxin B1(AFB1). Food and Chemical Toxicology. 2010.48: 534-541.
    61.Berg, T. Development of the codex standard for contaminants and toxins in food. In N. Rees & D. Watson (Eds.), International standards for food safety. Gaithersburg, MD: Aspen Publishers. 2000.
    62.Bressac B, Kew M, Wands J, et al. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature, 1991,350(6317): 429-431.
    63.Chung-Min Liao, Szu-Chieh Chen. A probabilistic modeling approach to assess human inhalation exposure risks to airborne aflatoxin B1(AFB1). Atmospheric Environment, 2005, 39: 6481-6490.
    64.Ciegler A, Lillehoj E B, Peterson R E, Hall H H. Microbial detoxification of aflatoxin. Appl. Microbiol, 1966, 14: 934- 938.
    65.Commission Regulation (EC) No 1881/2006.Setting maximum levels for certain contaminants infoodstuffs. Official Journal of the European Union, 2006, 364: 5-24.
    66.Commission Regulation (EC) No 165/2010.Setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, 2010, 50: 8-12.
    67.Chen, C., Li, Y., Chen, M. X., Chen, Z. J., & Qian, Y. Z.. Organophophorus pesticide residues in milled rice on the Chinese market and dietary risk assessment. Food Additives & Contaminants, 2009, 26(3): 340-347.
    68.Codex stan 193. General Standard for Contaminants and Toxins in Foods [S].
    69.Cotty P J, Bhatnagar D. Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Appl. Environ. Microbiol, 1994, 60: 2248-2251.
    70.Cotty, P. J., Jaime-Garcia, R. Influence of climate on aflatoxin producing fungi and aflatoxin contamination. International Journal of Food Microbiology.2007,119: 109-115.
    71.Cullen AC,Frey HC.Probabilitic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs.New York:Plenum Publishing Corporation,1999.
    72.Davidson J I,Hill R A,Cole R J. Field performance of two peanut cultivars relative to aflatoxin contamination. Peanut Science, 1983, 10(1): 43-47.
    73.Dearfield, K.L., Moore, M.M., Use of genetic toxicology information for risk assessment. Environ. Mol. Mutagen. 2005. 46, 236-245.
    74.de Boer W J, voet H.MCRA, Release 5, a web-based program for Monte Carlo Risk Assessment.Biometris and RIKILT, Wageningen University and Research centre. RIVM, Centre for Substances and Interrated Risk Assessment, National Institute for Public Health and the Environment. 2006.
    75.Deiner U L, Cole R J, Sanders T H, Payne G A, Lee L S, Klich M A. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol, 1987, 25: 240-270.
    76.Dybing, E., Sanner, T., Roelfzema, H., Kroese, D., Tennant, R.W., T25: a simplified carcinogenic potency index: description of the system and study of correlations between carcinogenic potency and species/site specificity and mutagenicity. Pharmacol. Toxicol. 1997. 80, 272-279.
    77.Dybing, E., Doe, J., Groten, J., Kleiner, J., O’Brien, J., Renwick, A.G., Schlatter, J., Steinberg,P., Tritscher, A., Walker, R., Younes, M., 2002. Hazard characterization of chemicals in food and diet: dose-esponse, mechanisms and extrapolation issues. Food Chem. Toxicol. 40, 237-82.
    78.E.Dybing, J.O’Brien, A.G.Renwick, T.Sanner. Risk assessment of dietary exposures to compounds that are genotoxic and carcinogenic-An overview.Toxicology Letters.2008,180:110-117.
    79.EFSA (European Food Safety Authority), 2005. Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. Request No EFSA-Q-2004-020. Adopted on 18 October 2005 (http://www.efsa.eu.int/sc committee/sc opinions/1201 en.html).
    80.EFSA (European Food Safety Authority). Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission related to the potential increase of consumer healthrisk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. The EFSA Journal, 2007, 446:1-127.
    81.Efron B.Better bootstrap confidence intervals. J Am Stat Assoc,1987,82:171-185.
    82.Egal, S., Hounsa, A., Gong, Y. Y., Turner, P. C., Wild, C. P., Hall, A. J., et al. Dietary exposure to aflatoxin from maize and groundnut in young children from Benin and Togo, West Africa. International Journal of Food microbiology.2005,104: 215-234.
    83.E. Lebreton, C. Frayssinet and J. Boy.Sur l'apparition d'hepatomes“spontanés”chez le Rat Wistar. Role de la Toxine de l’Aspergillus flavus.Interet en Pathologie Humaine et Cancerologie Experimentale. Comptes rendue Academie Scientifique (Paris). 1962, 225:784–786.
    84.Environmental Health Criteria 240. Principles and methods for the risk assessment of chemicals in food(中文版,中国疾病预防控制中心营养与食品安全所(北京)翻译并出版).
    85.Felicia Wu.Mycotoxin risk assessment for the purpose of setting international regulatory standards.Environmental Science and Technology.2004,38(15):4049-4055.
    86.Feng-Qin LI, Takumi Yoshizawa, Osamu Kawamura, et al. Aflatoxins and Fumonisins in Corn from the High-Incidence Area for Human Hepatocellular Carcinoma in Guangxi, China. J Agric Food Chem.2001.49, 4122-4126.
    87.Ferlay J, Bray F, Pisani P, Parkin DM. 2004. GLOBOCAN 2002: Cancer Incidence. Mortality and Prevalence Worldwide. IARC CancerBase No. 5, version 2.0. Available: http://www-dep.iarc.fr. Available: http://www-dep.iarc.fr/globocan/downloads.htm [accessed 27 April 2010].
    88.Food and Agriculture Organization of the United Nations(FAO). Worldwide regulation for mycotoxins in food and feed in 2003, FAO Food and Nutrition Paper 81.
    89.García S, Heredia N. Mycotoxins in Mexico: epidemiology, management, and control strategies. Mycopathologia. 2006. 162(3):255–264.
    90.Giray B, Girgin G, Engin AB, AydIn S, Sahin G. 2007. Aflatoxin levels in wheat samples consumed in some regions of Turkey. Food Control 18(1):23-29; doi:10.1016/j.foodcont.2005.08.002 [Online 29 September 2005].
    91.Global Environment Monitoring System-Food Contamination Monitoring and Assessment Programme ((GEMS/Food)-EUROS). Reliable evaluation of low level contamination of food. Second Workshop. GEM/Food-EUROS; 1995, 26-27 May; Kulmbach, Germany.
    92.Gnonlonfin GJ, Hell K, Fandohan P, Siame AB. Mycoflora and natural occurrence of aflatoxins and fumonisin B1 in cassava and yam chips from Benin, West Africa. Int J Food Microbiol.2008. 122(1-2):140-147.
    93.Goncalez E, Nogueira J H C, Fonseca H, Felicio J D, Pino F A, Corrêa B. Mycobiota and mycotoxins in Brazilian peanut kernels from sowing to harvest. International Journal of Food Microbiology, 2008, 123(3):184-190.
    94.Gorelich 1990. N.J. Gorelich.Risk assessment for aflatoxin: I. Metabolism of aflatoxin B1 by different species. Risk Analysis.1990,10: 539-559.
    95.Groopman JD, Johnson D, Kensler TW. Aflatoxin and hepatitis B virus biomarkers: a paradigm forcomplex environmental exposures and cancer risk. Cancer Biomark. 2005.1(1):5-14.
    96.Groopman JD, Kensler TW, Wild CP. 2008. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu Rev Public Health 29:187-203.
    97.Hadiani M, Yazdanpanah H, Amirahmadi M, Soleimani H, Shoeibi S, Khosrokhavar R. Evaluation of aflatoxin contamination in maize from Mazandaran province in Iran. J Med Plants.2009. 8(suppl 5):109-114.
    98.Hall, A. J., & Wild, C. P. Epidemiology of aflatoxin-related disease. In: Eaton D.L., Groopman, J. D., eds. The toxicology of aflatoxins: human health, veterinary and agricultural significance. London: Academic Press, 1993.233-258.
    99.Hao Y Y, Brackett R E. Removal of Aflatoxin B1 from peanut milk inoculated with Flavobacterium aurantiacum. J. Food Sci. , 1988, 53: 1384-1386.
    100. H.F. Kraybill and M.B. Shimkin.Carcinogens related to foods contaminated by processing and fungal metabolites.Advances in Cancer Research.1964,8:191-248.
    101. Henry S H,Bosch F X,Bowers J C.Aflatoxin,hepatitis and worldwide liver cancer risks.//TRUCKESS.Mycotoxins and food safety,Kluwer Academic/Plenum Publishers,2002,229-233.
    102. HELSEL D R.More than obvious: better methods for interpreting nondetect data. Environ Sci Technol, 2005,39(20):419-423.
    103. HELSEL D R.Nondetects and data analysis: statistics for censored environmental data. New York:Wiley.2005.
    104. Hsu 1991. I.C. Hsu, A. Metcalf, T. Sun, J.A. Welsh, N.J. Wang and C.C. Harris , Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350 (1991):427-428.
    105. H. Pettersson, B. Goransson, K.-H. Kiesling, K. Tideman and T. Johansson.Aflatoxin in a Swedish grain sample. Nordic Veterinaermedicin.1978, 30:482-484.
    106. Hudson, G J, Wild C P, Zarbra A, Groopman J D. Aflatoxins isolated by immunoaffinity chromatography from foods consumed in Gambia, West Africa. Nat. Toxins, 1992, 1: 100-105.
    107. IPCS WORLD HEALTH ORGANIZATION. Food additives series 40, safety evaluation of certain food additives and contaminants.IPCS, WHO. Aflatoxins, Geneva. 2000:361-468.
    108. International Agency for Research on Cancer (IARC).Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Aflatoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1993, 56:245-395.
    109. ILSI Europe Report Series. Summary report of a workshop held in October 2008. Application of the margin of exposure approach to compounds in food which are both genotoxic and carcinogenic.
    110. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants. World Health organization Technical Report Series, 1987, 759.
    111. Jonathan H Williams, Timothy D Phillips, Pauline E Jolly, Jonathan K Stiles, Curtis M Jolly, and Deepak Aggarwal. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions.The American Journal of ClinicalNutrition.2004,80:1106-1122.
    112. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants. WHO Technical Report Series, 1997, 868.
    113. J.W. Bennett, D. Bhatnager and P.K. Chang.The molecular genetics of aflatoxin biosynthesis. In: K.A. Powell.A. Renwick and J.F. Peberdy, Editors, The Genus Aspergillus, Plenum Press, New York. 1994:51-58.
    114. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants. WHO Technical Report Series, 1999, 884.
    115. J.C. Bourdon,V. Deguin-Chambon,J.-C. Lelong, P. Dessen, P. May, B. Debuire and E. May,Further characterisation of the p53 responsive element-identification of new candidate genes for trans-activation by p53.Oncogene 1997,(14):85-94.
    116. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants. WHO Technical Report Series, 2002, 906.
    117. Juge N, Mithen RF,Traka M. Molecular basis for chemoprevention by sulforaphane:a comprehensive review. Cell. Mol. Life Sci. 2007. 64:1105–1127.
    118. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants. WHO Technical Report Series, 2007, 947.
    119. K.A.V.R. Krishnamachari, R.V. Bhat,V. Nagarajon and T.B.G. Tilek,Hepatitis due to aflatoxinosis. Lancet i (1975):1061-1063.
    120. K. Sargeant.A. Sheridan.J. O'Kelly and R.B.A. Carnaghan.Toxicity associated with certain samples of groundnuts. Nature.1961, 192:1096.
    121. Kuiper-Goodman, T. Prevention of human mycotoxicoses through risk assessment and risk management. In: Miller and Trenholm (Eds.), Mycotoxins in Grains: Mycotoxins other than Aflatoxins, Eagan Press, St. Paul, Minn. 1994.
    122. Kuiper-Goodman, T. Uncertainties in the risk assessment of three mycotoxins: aflatoxin, ochratoxin, and zearalenone. Can. J. Physiol. Pharmacol. 1990,68, 1017-1024.
    123. Kuiper-Goodman. T. Risk assessment to humans of mycotoxins in animal-derived food products. Vet. Hum. Toxicol. 1991,33, 325-333.
    124. Kurtzman C P, Horn B W, Hesseltine C W, Aspergillus nomius, a new aflatoxin producing species related to Aspergillus flavus and Aspergillus tamarii. Antoine van Leeuwenhoek, 1987, 53: 147-158.
    125. Ktnper-Goodman, T. Approaches to the risk assessment of mycotoxins: aflatoxins. In: G. Bray and D. Ryan (Eds.), Pennington Center Nutrition Series. Volume 1. Mycotoxins, Cancer, and Health. Louisiana State University. Baton Rouge, 1991, 65-86.
    126. Kirk G D, Camus-Randon A M, Mendy M, et al. Ser-249 p53 mutations in plasma DNA of patients with hepatocellular carcinoma from the Gambia.J Natl Cancer Inst, 2000, 92(2): 148-153.
    127. Kroes, R., Renwick, A.G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Shilter, B., Schlatter, J.,van Schothorst, F.,Vos, J.G., Wurtzen, G., 2004. Strcturebased thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem.Toxicol. 42, 65-83.
    128. L.J. Ko and C. Prives,p53: puzzle and paradigm. Genes and Development, 1996,10:1054-1072.
    129. Lutz, W.K., 1990. Dose-response relationship and lowdose extrapolation in chemical carcinogenesis.Carcinogenesis 11, 1243-1247.
    130. L.Nickelsen, M.Jakobsen. Quantitative risk analysis of aflatoxin toxicity for the consumers of“kenkey”—a fermented maize product. Food Control.1997,8:149-159.
    131. M. Olsen, T.M?ller and A.-C.Salomonsson,Occurrence of aflatoxins and aflatoxin producing moulds in spices. Revue de Médicine Vétérinaire.1998,149:529.
    132. M.O.Moss.Recent studies of mycotoxins. Journal of Applied Microbiology, Symposium Supplement. 1998, 84:62S-76S.
    133. Maurice O.Moss.Risk assessment for aflatoxins in foodstuffs.International biodeterioration & biodegradation.2002, 50:137-142.
    134. M.E. Ewen and S.J. Miller, p53 and translational control. Biochimica et Biophsica Acta 1244 (1996):181-184.
    135. Neal 1998. G.E. Neal, Participation of animal biotransformation in mycotoxin toxicity. Revue de Médecine Vétérinaire 149 (1998):555-560.
    136. Nichols, T.E., Economic impact of aflatoxin in corn. In: Diener, U.L., Asquith, R.L., Dickens, J.W. (Eds.), Aflatoxin and Aspergillus flavus in corn. Southern Cooperative Series Bulletin 279, Auburn University, 1983. 67-71.
    137. Nwokolo C, Okonkwo P. Aflatoxin load of common food in savanna and forest regions of Nigeria. Trans. R. Soc. Trop. Med. Hyg, 1978, 72: 329-332.
    138. O’Brien, J., Renwick, A.G., Constable, A., Dybing, E., Muller, D.J.G., Schlatter, J., Slob,W., Tueting,W., van Benthem, J., Williams, G.M.,Wolfreys, A., Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal. Food Chem. Toxicol. 2006. 44, 1613-1635.
    139. Park, J. W., Kim, E. K., & Kim, Y. B. Estimation of the daily exposure of Koreans to aflatoxin B1 through food consumption. Food Additives and Contaminants, 2004. 21(1): 70-75.
    140. Pettersson, H., Holmberg, T., Kaspersson, A., Larsson, K. Occurrence of aflatoxin M1 in milk due to aflatoxin formation by A. flavus-parasiticus in acid treated grain.Proceedings of the Nordic Mycotoxin Meeting.1986, 8.
    141. Parkin D M.Global cancer statistics in the year 2000.Lancet Oncol,2001,2533-2543.
    142. Plymoth A, Viviani S, Hainaut P. Control of hepatocellular carcinoma through Hepatitis B vaccination in areas of high endemicity: perspectives for global liver cancer prevention. Cancer Lett.2009. 286(1):15–21.
    143. Qian G S,Ross R K, Yu M C,et al.Afollow-up study of urina markers of aflatoxin exposure and liver cancer risk in shanghai peoples republic of China.Cancer Epidemiol Biom Prevent,1994,3:3210.
    144. Razzazi-Fazeli E, Noviandi C T, Porasuphatana S, Agus A, Bh?m J. A survey of aflatoxin B1 and total aflatoxin contamination in baby food, peanut and corn products sold at retail in Indonesiaanalysed by ELISA and HPLC. Mycotoxin Research, 2004,20:51-58
    145. R.A. Hill,D.M. Wilson,W.W. McMillan,N.W. Widstrom, R.J. Cole,T.H. Sanders and P.D. Blankenship.Ecology of the Aspergillus flavus group and aflatoxin formation in maize and groundnuts. In: J. Lacey, Editor, Trichothecenes and other mycotoxins, Wiley, New York. 1985, pp. 79-95.
    146. S. Díaz,L. Domínguez,J. Prieta,J.L.Blanco and M.A.Moreno.Application of a diphasic dialysis membrance procedure for surveying occurrence of aflatoxin M1 in commercial milk.Journal of Agricultural and Food Chemistry.1995,43:2678-2680.
    147. Salifu A. Mycotoxins in short season sorghums in Northern Nigeria. Samaru. J. Agric. Res, 1981, 1: 83-88.
    148. Sanner, T., Dybing, E., Comparison of carcinogenic and in vivo genotoxic potency estimates. Basic Clin. Pharmacol. Toxicol. 2005,96:131-139.
    149. Sanner, T., Dybing, E., Comparison of carcinogenic hazard characterization based on animal studies and epidemiology. Basic Clin. Pharmacol. Toxicol. 2005,96:66-70.
    150. Sanner, T., Dybing, E., Willems, M.I., Kroese, D., A simple method for quantitative risk assessment of non-threshold carcinogens based on the dose descriptor T25. Pharmacol. Toxicol. 2001,88:331-341.
    151. Santos C C M, Lopes M R V, Kosseki S Y. Ocorre?ncia de aflatoxinas em amendoim e produtos de amendoim comercializados na regia~o de Sa~o Jose′de Rio Preto/SP. Revista do Instituto Adolfo Lutz, 2001, 60(2): 153-157.
    152. Strosnider H, Azziz-Baumgartner E, Banziger M, Bhat RV, Breiman R, Brune M, et al. 2006. Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries. Environ Health Perspect 114:1898-1903.
    153. Sugita-Konishi, Y., Sato, T., Saito, S., Nakajima, M., Tabata, S., Tanaka, T., et al. . Exposure to afaltoxins in Japan: risk assessment for aflatoxin B1. Food Additives and Contaminants, 2010, 27(3): 365-372.
    154. T. Asoa, G. Buchi, M.M. Abdel-Kader, S.B. Chang, E.L. Wick and G.N. Wogan Aflatoxins B and G. Journal of the American Chemical Society.1963,85:1706-1707.
    155. Thompson KM. Variability and uncertainty meet risk management and risk communication.Risk Anal,2002,22:647-654.
    156. Torsten Berg. How to establish international limits for mycotoxins in food and feed. Food control.2003,14:219-224.
    157. T.Kuiper-Goodman. Mycotoxins: risk assessment and legislation.Toxicology letters. 1995, 82/83:853-859.
    158. US EPA (US Environmental Protection Agency), 2005. Guidelines for Carcinogen Risk Assessment. Washington, DC: Risk Assessment Forum, USEPA. EPA Publication No. EPA/630/P-03/001F (http://cfpub.epa.gov/ncea/raf/recordisplay.cfm?deid=116283).
    159. Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue.Carcinogenesis.2010. 31:71-82.
    160. Williams J H, Phillips T D, Jolly P E, et al. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr.2004. 80(5), 1106-1122.
    161. W.P. Blount.Disease of turkey poults. Veterinary Record.1960,72:786.
    162. Wogan, G.N., Paglialung, S.,Newebern, P.M., Carcinogenic effects of lowdietary levels of aflatoxins. Food Cosmet. Toxicol. 1974. 12, 681-685.
    163. Wu, F., Mycotoxin risk assessment for the purpose of setting international regulatory standards. Environmental Science and Technology.2004. 38, 4049-4055.
    164. Yan Liu,Felicia Wu.Global burden of aflatoxin-induced hepatocellular carcinoma:a risk assessment.Enviromental health perspectives.2010,118(6):818-824.
    165. Yong, Z. Q., Chen C, Qi Z, Yun, L., Zhi, J. C., Min, L. Concentration of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food control, 2010, 21(12), Sp.1: 1757-1763.