无轴承电机通用磁悬浮模型及解耦控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无轴承电机突破了传统机械轴承支撑电机的运行理论范畴,是集旋转驱动和转子自悬浮功能为一体的新型磁悬浮电机。各种无轴承电机都有相同或相似的磁悬浮特性和规律,磁悬浮控制模型是实现无轴承电机可靠悬浮运转的基础。本文围绕无轴承电机的磁悬浮力产生机理,对具有圆筒式定子结构的二极悬浮控制四极无轴承电机的通用电感矩阵及电感系数解析模型、可控制磁悬浮力通用模型及磁悬浮解耦控制系统等进行了深入的理论分析和试验研究。
     以二极悬浮控制四极无轴承异步电机为例,考虑到转子偏心对气隙磁场分布的影响,解析了无轴承电机麦克斯韦磁悬浮控制机理。还对作用于感应型转子上的切向洛伦兹力衍生出的径向电磁力进行了解析研究,得出了洛伦兹力衍生出平均径向电磁力的基本条件。
     以凸极弧宽为“2ρ”弧度的凸极型转子结构无轴承电机为二极浮控四极无轴承电机的一般化结构模型,研究了转子偏心对无轴承电机内气隙磁场分布的影响。然后,基于无轴承电机气隙磁场分布规律,推导出了磁路不饱和情况下,二极悬浮控制四极无轴承电机的各个电感系数和电感矩阵的通用解析模型。该通用电感解析模型既适用于凸极型转子结构无轴承电机,又可适用于圆柱型转子结构无轴承电机,并针对具有圆柱型转子结构的无轴承异步电机进行了模型的实验验证。
     根据无轴承电机的通用电感模型,基于电磁场虚位移原理,推导出了无轴承电机的可控磁悬浮力通用模型。包括无轴承电机的旋转可控磁悬浮力通用模型和静止坐标系下的可控磁悬浮力通用模型等。并针对无轴承异步电机样机,进行了直流磁悬浮静力实验,验证了可控磁悬浮力模型的有效性。文中还认真分析了旋转可控磁悬浮力控制电流的频率特点,即:要产生同步速旋转可控磁悬浮力,需要在二极悬浮控制绕组中通入角频率为“0.5ω”的“半频”控制电流;要产生异步速旋转可控磁悬浮力,需要在二极悬浮控制绕组中通入角频率为“0.5(1+s)ω”的“近似半频”控制电流。
     基于三相无轴承异步电机可控磁悬浮力模型,设计了三相无轴承异步电机磁悬浮解耦控制系统。在对系统进行仿真试验分析之后,基于单TMS320LF2407A数字信号处理芯片设计了无轴承异步电机的硬软件控制系统实验平台,并实现了无轴承电机的稳定悬浮控制。仿真和实验结果表明,无轴承异步电机可控磁悬浮力模型具有良好的解耦性能,也从一个应用侧面验证了所推导出的通用可控磁悬浮力模型的有效性及合理性。
     最后,基于无轴承电机旋转可控磁悬浮力模型,研究了无轴承电机的周期性旋转惯性离心振动抑制技术和策略。试验结果验证了旋转可控磁悬浮力模型的有效性,并且验证了旋转磁悬浮力控制电流的半频特性。
The bearingless motor has breached the theory category on running of conventional motor with mechanical bearing, and is a newly type of motor which integrates the function of revolving drive and that of rotor’s self-levitation. All kinds of bearingless motor have the same or similar magnetic rules and characteristics, and the control-model is the foundation of reliable self-levitation control for bearingless rotor. Surrounding the principle how the magnetic suspension force be produced, and aiming at 4-pole bearingless motor with 2-pole magnetic suspension windings and cylindrical stator, a series of universal models have been analyzed and derived in detail, including the universal analytical models on inductance coefficients and inductance matrixes, the universal model on controllable magnetic suspension force. The decoupling control system of magnetic suspension system has been constructed, and relevant experiments have been made.
     Taking the 4-pole induction type bearingless motor with 2-pole magnetic suspension windings as example, and taking the influence of rotor eccentricity on airgap magnetic field into account, the Maxwell magnetic suspension principle of bearingless motor are analyzed. The radial electromagnetic force derived from Lorenz force which drives the rotor is analyzed in detail also, and the fundamental conditions are derived. When the fundamental conditions are satisfied, the radial electromagnetic force would be derived from tangent Lorenz force.
     The paper has made 4-pole beaingless salient-pole motor with 2-pole magnetic suspension windings as the generalized bearingless model-motor, whose salient-pole arc-width equals to“2ρ”radians. Based on the generalized model-motor, the influence of rotor eccentricity on the distributing principle of airgap magnetic field has been analyzed firstly. After then, based the distributing principle of airgap magnetic field, the universal models on inductance coefficients and inductance matrixes of bearingless motor are analyzed and derived in detail. The universal models on inductance not only be applicable to those bearingless motors with salient-pole rotor, but also be applicable to bearingless motors with cylindrical rotor. The validity of universal inductance models are validated by parameter experiment of induction type bearingless motor.
     According to the universal inductance models, and based on the virtual displacement principle of electromagnetic field, the universal model on controllable magnetic suspension force of bearingless motor are analyzed and derived in detail. The set of universal models on magnetic suspension force include universal model on revolving magnetic suspension force and universal model on magnetic suspension force in stationary directions. In the paper, the stationary magnetic suspension force experiment has been made, and the validity of universal model on controllable magnetic suspension force has been validated. The frequency characteristic of control current which controls the revolving magnetic suspension force is analyzed also. To producing revolving controllable magnetic suspension force with synchronous speed, half-frequency control current should be injected into the 2-pole suspension windings. And to produce revolving controllable magnetic suspension force with asynchronous speed, the angle frequency of control current should be“0.5(1+s)”. Here,“s”is the difference ratio of the revolving speed of controllable magnetic suspension force relative to the synchronous speed of motor.
     The magnetic suspensions decoupling control system of three-phase bearingless induction motor has been designed based on the controllable magnetic suspension force model. After simulink simulation of decoupling control system, the experimental device on control system of bearingless induction motor are devised based on TMS320LF2407A CMOS chip, and the decoupling control experiment has been made. The simulation and experiment of decoupling control system have validated the decoupling characteristic of controllable magnetic suspension force model of bearingless induction motor, and the validity of the universal magnetic suspension force are validated in an applied example.
     At last, the periodic revolving inertia vibration and its control technology of bearingless motor are studied based on the controllable revolving magnetic suspension force model. The validity of revolving magnetic suspension force in controlling the periodic revolve-inertia vibration has been validated by the Simulation results and the half-frequency characteristics of control current has been validated also.
引文
[1] Schob.R,Fundamentals of the Bearingless Electric Motor and it’s Applications[OL], http://www.levitronix.com
    [2] Fukao. T,The Evolution of Motor Drive Technologies——Development of Bearingless Motors. Proc. of IPEMC, 2000: 33~38
    [3] Bosch R, Development of a bearingless motor. Proc. of ICEM, 1988: 373-375
    [4]王凤翔徐隆亚.一种用于人工心脏的无轴承无刷永磁直流电机的设计和特性分析,电机与控制学报,1997, 1(4):203-207
    [5]邓智泉,严仰光.无轴承交流电机的基本理论和研究现状.电工技术学报,2000, 15(2): 29-34
    [6]朱熀秋, J.Hugel.无轴承电机研究和应用前景(国外技术前沿)[N].科技日报,2004.3.27
    [7]贺益康,年珩.感应型无轴承电机的优化气隙磁场定向控制.中国电机工程学报, 2004, 24(6): 116-121
    [8] Bichsel J. The bearingless electrical machine. Proc.Int.Symp.Magn.Suspension Technol. NASA Langley Res.Center, Hampton. 1991: 561-573
    [9] P.K.Hermann. A radial active magnetic bearingless have a rotating drive. London Patient, No.1 500809, 9, Feb.1974
    [10] Chiba A. Analysis of bearingless AC motors. IEEE Trans on Energy Conversion, 1994, 9(1): 61-68
    [11] Chiba A. Characteristics of a bearingless induction motor, IEEE Transactions on Magnetics, 1991, 27(6): 5199-5201
    [12] Chiba A. Analysis of No-Load Characteristics of a bearingless induction motors, IEEE Transactions on IA, 1995, 31(1): 77-83
    [13] Chiba A, Furuichi R. Stable operation of induction-type bearingless motors under loaded conditions. IEEE Transactions on IA, 1997, 33(4): 919-924
    [14]邓智泉,何礼高,严仰光.无轴承交流电机的原理及应用,机械科学与技术, 2002, 21(5):730-733
    [15] Schob R, Bichsel J. Vector control of the bearingless motor. Proc. 4th Int.Symp. Magnetic Bearings, 1994: 327-332
    [16] Santisteban J A, Stephan R M. Analysis and control of a loaded bearingless machine. IEEE Transactions on Magnetics, 1999, 35(5): 3998-4000
    [17] Chiba A. Radial Force in a bearingless reluctance motor, IEEE Transactions on Magnetics, 1991, 27(2): 786-790
    [18] Fengxiang Wang, Longya Xu. A Novel Bearingless Motor with Hybrid Rotor Structure and Levitation Force Control. 37th IEEE IAS, 2002: 212~215
    [19] BaoGuo Wang, Fengxiang Wang. Levitation forces control by current vector orientation for a bearingless motor with hybrid rotor structure. IEEE CCECE, 2003: 383-386
    [20] J.Zhou, K.J.Tseng. A Disk-Type Bearingless Motor for Use As satellite Momentum Reaction Wheel. 33th IEEE PESC, 2002: 1971~1975
    [21] Koji Kiryu, Akira Chiba, Tadashi Fukao. A Radial Force Detection and Feedback Effects in Bearingless Motors. 36th IEEE IAS, 2001: 64~69
    [22] Tomonori Kuwajima, Tetsuya Nobe. An Estimation of the Rotor Displacements of Bearingless Motors Based on a High Frequency Equivalent Circuit. IEEE PEDS, 2001: 725~731
    [23] M.Takemoto, H.Suzuki, A.Chiba.Improved Analysis of Bearingless Switched Reluctance Motor, IEEE Transactions on IA, 2001: 26-34
    [24] Yohji Okada. Analysis and comparison of PM Synchronous motor and induction motor type magnetic bearings, IEEE Transactions on IA, 1995: 1047-1053
    [25] S.Nomura, A.Chiba. A Radial Postion control of induction type bearingless motor considering phase delay caused by the rotor squirrel cage, IEEE PCCON, 1993: 438-443
    [26] K.Kobayashi, M.Yamashita, A.Chiba. Principles of Self-excitation at Radial Force Winding Terminalsin Bearingless Induction Motors with a Squirrel Cage Rotor, IEEE IAS, 2000: 235-240
    [27] Wang Baoguo, Wang Fengxiang. Modeling and Analysis of levitation force considering Air Gap eccentricity in a bearingless induction motor, ICEMS, 2001: 934-937
    [28] Andres Ortiz Salazar. A Bearingless Method for induction machines, IEEE Transactions on Magnetics, 1993, 29(6): 2965-2967
    [29] HE Yikang, NAN Hang. Analytical Model and feedback control of the levitation force for an induction-type bearingless motor, IEEE PEDS, 2003: 242-246
    [30] Takahiro Suzuki. An Air-Gap-Flux-Oriented Vector Controller for Stable Operation of Bearingless Induction Motors, IEEE Trans on IA, 2000: 1069-1076
    [31] Makahiro Suzuki. An airgap flux oriented vector controller for stable magnetic suspension during high torque acceleration in bearingless induction motors, 34th IEEE IAS, 1999: 1543-1550
    [32]邓智泉,张宏全,王晓琳等.基于气隙磁场定向的无轴承异步电机非线性解耦控制,电工技术学报, 2002,17(6): 19-24
    [33] Y. Kobayashi, M.Yamashita, A.Chiba. An optimal design of rotor circuit in induction type bearingless motors. IEEE Transactions on Magneitcs, 1998, 34(4): 2108-2110
    [34]年珩,贺益康.感应型无轴承电机磁悬浮力解析模型及其反馈控制,中国电机工程学报, 2003, 23(11): 139-144
    [35]邓智泉,王晓琳.无轴承异步电机悬浮子系统独立控制的研究,中国电机工程学报, 2003, 23(9): 107-111
    [36] R.Schoeb, B.Natale. A bearingless motor for a left ventricular assist device (LVAD), 7th ISMB, 2000: 110-116
    [37]曹建荣,虞烈,谢友柏.感应型磁悬浮电动机的解耦控制,电工技术学报,2000,15(5):1-4
    [38]朱熀秋,翟海龙.无轴承永磁同步电机控制系统设计与仿真, 2005, 25(14): 120-123
    [39] M.Ohsawa. Study of the induction type bearingless motor. 7th ISMB, 2000: 389-394.
    [40]曹建荣,虞烈.磁悬浮电动机的状态反馈线性化控制,中国电机工程学报, 2001, 21(9): 22-26
    [41]朱熀秋,巫亮.无轴承永磁同步电机转子悬浮原理与解耦控制,东南大学学报(自然科学版),2005,35(Z): 34-38
    [42]陆玉军,邓智泉.基于CRPWM的无轴承异步电动机矢量控制系统,南京航空航天大学学报,2002,34(2):164-167
    [43]王晓琳,邓智泉.无轴承异步电机研究与实现,航空学报,2003, 24(3):259-262
    [44]邓智泉,王晓琳.无轴承异步电机的转子磁场定向控制,中国电机工程学报, 2003, 23(3): 89-92
    [45]王晓琳,邓智泉.无轴承异步电机控制系统实验平台设计,数据采集与处理,2003, 18(1):83-87
    [46]张宏荃,邓智泉.无轴承异步电机转子偏心补偿的研究,电机与控制学报, 2004, 6(2): 148-164
    [47]李兵,邓智泉.无轴承异步电机的最大径向力有限元分析,中小型电机,2003,30(3): 20-24
    [48]张宏荃,王晓琳.基于逆变器开关状态的无轴承异步电机悬浮系统独立控制,南京航空航天大学学报,2004,36(5):607-609
    [49]张宏荃,邓智泉.无轴承异步电机的系统实现,哈尔滨工业大学学报,2004,36(11):1490-1493
    [50]张宏荃,王晓琳.无轴承异步电机间接气隙磁场定向控制,燕大学报, 2004, 28(4): 325-328
    [51]王晓琳,邓智泉.一种新型的五自由度磁悬浮电机,南航学报,2004,36(2):210-214
    [52]卜文绍,黄声华,万山明等.无轴承异步电机研究现状及应用前景,微电机,2006,39(6):67-70
    [53]卜文绍,黄声华,万山明等.无轴承二极电机麦克斯韦磁悬浮力解析模型,电机与控制学报,2006,10(5):443-446
    [54] Masahide Oshima, Characteristics of a Permanent magnet type bearingless motor, IEEE IAS, 1994: 196-202
    [55] M.Ooshima, S.Miyazawa. A Rotor Design of a Permanent Magnet-Type Bearingless Motor Considering Demagnetization, IEEE PCCON, 1997: 655-660
    [56] Fengxiang Wang. Calculation and Measurement of Radial and Axial Forces for A Bearingless PMDC Motor, IEEE IAS, 2000: 249-252
    [57] Masahide Ooshima. A Rotor Design of a Permanent Magnet-Type Bearingless Motor Considering Demagnetization, IEEE PCCON, 1997: 655-660
    [58] Masahide Ooshima. Design and analysis of permanent magnet-type bearingless motors, IEEE Transactions on Industrial Electronics, 1996: 292-299
    [59] W.Amrhein. Levitation forces in bearingless permanent magnet motors, IEEE Transactions on Magnetics, 1999: 4052-4054
    [60] Akira Chiba. Performance Characteristics and Parameter Identification for Inset Type Permanent Magnet Bearingless Motor Drive, IEEE Power Engineering Society General Meeting, 2004: 1268-1271
    [61] Kohei Inagake. Performance Characteristics of Inset-Type Permanent Magnet Bearingless Motor Drives, IEEE Power Engineering Society Winter Meeting, 2000: 202-207
    [62] Yohji Okada. Levitation and torque control of internal permanent magnet type bearingless motor,IEEE Transactions on Control Systems Technology, 1996: 565-571
    [63] Masatsugu Takemoto. A Deeply-Buried Permanent Magnet Bearingless Motor with 2-pole Motor Windings and 4-pole Suspension Windings, 38th IEEE IAS, 2003: 1413-1420
    [64] Masahide Ooshima. An Identification Method of Suspension Forceand Magnetic Unbalance Pull Force Parameters in Buried-type IPM Bearingless Motors, IEEE Power Engineering Society General Meeting, 2004: 1276-1279
    [65] Masahide Ooshima. An Improved Control Method of Buried-Type IPM Bearingless Motors Considering Magnetic Saturation and Magnetic Pull Variation, IEEE Transactions on Energy Conversion, 2004, 19(3): 569-575
    [66] DGDorrell. Force Analysis of a buried Permanent-Magnet Bearingless Motor, IEEE IEMDC, 2003: 1091-1097
    [67]年珩,贺益康.永磁型无轴承电机的无传感器运行研究,中国电机工程学报, 2004, 24(11): 101-105
    [68]年珩,贺益康.永磁型无轴承电机设计与运行分析,浙江大学学报, 2005, 39(6): 891-895
    [69]翟海龙,朱熀秋.无轴承永磁同步电机的设计与仿真,微电机,2005,38(3):40-42
    [70]邓智泉,邓智泉,仇志坚等.无轴承永磁同步电机的转子磁场定向控制研究,中国电机工程学报,2005,25(1): 104-108
    [71]朱熀秋,巫亮等.无轴承永磁同步电机转子磁场定向控制系统研究,中国工程科学,2006,8(6):35-40
    [72]刘贤兴,孙宇新,朱熀秋.无轴承永磁同步电机的发展、应用和前景,中国机械工程, 2004,15(17): 1594-1597
    [73]仇志坚,邓智泉.无轴承永磁同步电动机的原理与实现,电工技术学报,2004,19(11): 8-12
    [74]年珩,贺益康,永磁型无轴承电机无径向位移传感器运行研究,电工电能新技术,2006, 25(4): 15-18
    [75] Osamu Ichikawa. Inherently Decoupled Magnetic Suspension in Homopolar-Type Bearingless Motors, IEEE Transactions on IA, 2001, 37(6): 1668-1674
    [76] DGDorrell. Analytical modeling of a consequent-pole bearingless permanent magnet motor [C], 5th IEEE PEDS, 2003: 247-252
    [77] Jun Amemiya. Basic Characteristics of a Consequent-Pole-Type Bearingless Motor, IEEE Transactions on Magnetics, 2005, 41(1): 82-88
    [78]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算,电工技术学报,2002, 17(5): 6-9
    [79]王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析,中国电机工程学报,2002,2(5): 105-108
    [80] Axial Flus. Design and control of a PM type Synchronous Magnetically Levitated Motor, http://www.levitronix.com
    [81] Akira Chiba. Effects of Magnetic saturation on radial force of bearingless synchronous reluctancemotors, IEEE IAS, 1993: 233-238
    [82] Akira Chiba. Effects of Magnetic saturation on radial force of bearingless synchronous reluctance motors, IEEE Transactions on IA, 1996, 32(2): 354-361
    [83] Chikara Michioka. A Decoupling Control method of reluctance type bearingless motors considering magnetic saturation, IEEE Transactions on IA, 32(5): 1204-1210
    [84] Akira Chiba. Radial Force in a bearingless reluctance motor, IEEE Transactions on Magnetics, 1991, 27(2): 786-790
    [85] Masatsugu Takemoto. Improved Analysis of a Bearingless Switched Reluctance Motor, IEEE Transactions on IA, 2001, 37(1): 26-34
    [86] M.Takemoto. Improved Analysis of a Bearingless Switched Reluctance Motor, IEMD, 1999: 773-775
    [87] Masatsugu Takemoto. Radial Force and Torque of a Bearingless Switched Reluctance Motor Operating in a Region of Magnetic Saturation, IEEE Transactions on IA, 2000, 40(1): 103-111
    [88] M.Takemoto, A.Chiba. A New Control Method of Bearingless Switched Reluctance Motors Using Square-wave Currents, IEEE Power Engineering Society Winter Meeting, 2000: 375-380
    [89]邓智泉,杨钢,张媛.一种新型无轴承开关磁阻电机数学模型,中国电机工程学报,2005,25(9):139-146
    [90]刘贤兴,吉敬华,孙玉坤.磁悬浮开关磁阻电动机电磁力的计算,农机学报, 2004, 35(6): 160-146
    [91]刘国海,孙玉坤,张浩.磁悬浮开关磁阻电动机径向力的动态解耦控制,东南大学学报, 2004, 34(Z): 63-67
    [92] Jossana M.S.Ferreira. DSP Utilization in Radial Positioning control of bearingless machine, IEEE ISIE, 2003: 312-317
    [93] Francesco Profumo, Julio Moreira. Universal Field Oriented Controller Based on Air Gap Flux Sensing via Third Harmonic Stator Voltage, IEEE Transactions on IA, 30(2): 448-455
    [94] Rik W. De Doncker, Michele Pastorelli. Comparison of Universal Field Oriented (UFO) Controllers in Different Reference Frames, IEEE Transactions on Power Electronics, 1995, 1(2): 205-212
    [95] R.W.De Doncker. Parameter Sensitivity of Indirect Universal Field-Oriented Controllers, IEEE Transactions on Power Electronics, 1994, 9(4): 367376
    [96] F.Profumo, A.Tenconi, R.W.De Doncker. The universal field oriented (UFO) controller applied to wide speed range induction motor drives, IEEE PESC,1991: 681-686
    [97] J.Soltani, M.Hajian, Y.Abdolmaleki. Robust Speed Sensorless Control of Universal Field Oriented Induction Motor Drive with On-Line Stator Resistance Tuning, 5th IEEE PEDS, 2003: 193-198
    [98] R.W.De Doncker. Self-Tuning of Tapped Stator Winding Induction Motor Servo Drives Using the Universal Field-Oriented Controller, IEEE Transactions on Power Electronics, 1994, 9(4): 357-365
    [99] E.Levi. Adaptive decoupling circuit for universal field oriented controller operating in the air gap flux reference frame, 5th European Conference on Power Electronics and Applications, 1993: 57-62
    [100] R.Sch?b, N.Barletta, Jorgen Hahn. THE BEARINGLESS CENTRIFUGAL PUMP-A PERFECTEXAMPLE OF A MECHATRONICS SYSTEM, 1st IFAC-Conference on Mechatronic Systems, 2000: 1-6
    [101] A.O.Salazar, J.M.S.Ferreira. Analyses of a Bearingless Three Phase Induction Machine, http:// www.google.com
    [102]朱熀秋.无轴承电动机的轴向磁轴承参数设计和控制系统研究,电工技术学报,2002,17(3): 12-16
    [103]何炜.一种磁悬浮开关磁阻电机的自适应控制器,大电机技术, 2004(5):57-64
    [104]刘恒坤,常文森.非线性磁悬浮系统的稳定性分析,兵工自动化, 2004, 23(6):56-58
    [105]李希南,王凤翔.无轴承磁悬浮电机系统中的非接触传感器,微特电机, 2005(3):36-40
    [106] A.Chiba. Super-high-speed Electrical Machines, IEEE Power Engineering Society General Meeting, 2001: 1272-1275
    [107] W.Amrhein. Developments of bearingless drive technology, 8th ISMB, 2002: 189-196
    [108] Andrei G. Technology potential of Fly Wheel Storage and Application Impact on Electric Vehicle”, Proc of 12th Int.Electric Vehicle Symp, 1994: 562-568.
    [109]朱熀秋,翟海龙.无轴承永磁同步电机控制系统设计与仿真,中国电机工程学报, 2005, 25(14): 120-123
    [110]朱熀秋,张涛.无轴承永磁同步电机有限元分析,中国电机工程学报,2006, 26(3):136-140
    [111]廖启新,李立,邓智泉.无轴承永磁薄片电机磁悬浮机理研究,微特电机,2006(12):1-3
    [112]卢健康,范慧赟.磁悬浮无轴承电机的解耦控制,微电机,2006,39(6): 15-18
    [113]曹鑫,邓智泉.新型无轴承开关磁阻电机双相导通数学模型,电工技术学报,21(4):50-56
    [114]周媛,贺益康.永磁型无轴承电机的设计与控制研究,浙江大学学报(工学版), 2006, 40(1): 14-19
    [115]张媛,邓智泉.无轴承开关磁阻电机控制系统的设计与实现,航空学报,2006,27(1):77-81
    [116] BU Wenshao, HUANG Shenghua, et al. A kind of generalized analytical model on inductance matrix of bearingless motor, IEEE ICIEA, 2007: 1657-1662
    [117] BU Wenshao, HUANG Shenghua, et al. A kind of generalized analytical model on magnetic suspension force of bearingless motor, IEEE ICIEA, 2007: 1663-1668
    [118]王德明,陈保进,鞠平.无轴承永磁同步电机径向悬浮力产生机理研究,江苏大学学报,2004,25(5): 434-437
    [119]王新芝.参数变化对异步机解耦控制的影响,天津大学学报, 1996,29(4): 637-641
    [120]许实章,电机学(上、下册),北京:机械工业出版社,1990
    [121]顾绳谷,电机及拖动基础(上、下册),北京,机械工业出版社,1997
    [122]陈坚,交流电机数学模型及调速系统,北京:国防工业出版社,1989
    [123]汤蕴璆,电机内的电磁场,北京:科学出版社,1998
    [124]陈伯石,电力拖动自动控制系统(第三版),北京:机械工业出版社,2003
    [125]李华德,交流调速控制系统,北京:电子工业出版社,2003
    [126]陈坚,电力电子学—电力电子变换和控制技术,北京:高等教育出版社,2003
    [127]贾正春,马志源,电力电子学,北京:中国电力出版社,2002
    [128]王兆安,电力电子技术,北京:机械工业出版社,2003
    [129]黄声华,三微电机及其矢量控制系统,武汉:华中理工大学出版社,1998
    [130]辜承林,机电动力系统分析,武汉:华中理工大学出版社,1998
    [131]刘和平,严利平. TMS320LF240x DSP结构、原理及应用,北京:北京航空航天大学出版社,2002
    [132]刘和平,TMS320LF240x DSP C语言开发应用,北京:北京航空航天大学出版社,2003
    [133]王晓明.电动机的DSP控制,北京:北京航空航天大学出版社,2004
    [134]孙乃刚,电力电子和电拖控制系统MATLAB仿真,北京:机械工业出版社,2006
    [135]王晓明,电动机的单片机控制,北京:北京航空航天大学出版社,2002
    [136]薛定宇,基于MATLAT/Simulink的系统仿真技术与应用,北京:清华大学出版社, 2002
    [137]姚俊,SIMULINK建模与仿真,西安:西安电子科技大学出版社,2002
    [138]虞列,可控磁悬浮转子系统,北京:科学出版社,2003
    [139]陈建业,电力电子电路的计算机仿真,北京:清华大学出版社,2003
    [140]年珩,无轴承电机的设计与控制研究,浙江大学博士学位论文,2005
    [141]王晓琳,无轴承异步电机基础控制策略研究与实现,南京航空航天大学博士学位论文,2004
    [142]张宏荃,无轴承异步电机非线性解耦控制的研究,南京航空航天大学博士学位论文,2004
    [143]李序葆,电力电子器件及其应用,北京:机械工业出版社,2004
    [144]张德魁,江伟.磁悬浮轴承系统不平衡振动控制的方法,清华大学学报(自科版),2000, 40(10): 28-31
    [145]孙岩桦,虞烈.基于TMS320C30的电磁轴承不平衡补偿方案,自动化与仪器仪表,2001年第9期: 33-35
    [146] M.O.T. Cole, P.S. Keogh. Adaptive-Q control of vibration due to unknown disturbances in rotor-magnetic bearing systems, Proc of IEEE ICCA,2000: 965-970
    [147] Kenzo Nonami, Zi-he Liu. Adaptive Unbalance Vibration Control of Magnetic Bearing System Using Frequency Estimation for Multiple Periodic Disturbances with Noise, Proc of ICCA, 1999: 576-581
    [148] J.Shi, RZ-mood. The Direct Method for Adaptive feed-Forward Vibration Control of Magnetic Bearing Systems, 7th ICARCV, 2002: 675-680
    [149] R.B.Zmood, D.K.Anand. The effect of structural vibrations on magnetic bearing operation, 24th IECEC, 1989: 1499-1503
    [150]胡寿松,自动控制原理,北京:国防工业出版社,2000
    [151]陶永华,新型PID控制及其应用(第二版),北京:机械工业出版社,2005