天然金刚石精密车削不锈钢技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢因有优秀机械综合性能,在工业上得到广泛的应用,但其塑性强、韧性大、切屑粘附性强、导热率低以及采用传统加工工艺时,切削力大、切削温度高、刀具容易磨损、工件加工表面质量差、表面加工硬化严重等,属于典型的难加工材料。天然金刚石以其优良特性被认为理想精密切削的刀具材料,但金刚石刀具在常规条件下车削不锈钢材料时磨损极快,不锈钢材料的精密车削一直是尚未解决的技术难题。研究天然金刚石刀具精密车削不锈钢工件,有巨大的实用价值和理论意义。
     文中从选择刀具材料和加工工艺及改变切削冷却方式入手实现精密加工不锈钢材料。刀具材料选为天然金刚石,加工工艺为超声振动辅助车削,切削冷却方式为油气雾化冷却。研制了三套不同频率的天然金刚石超声振动车削系统:研制组装超声发生器、变幅杆、换能器及建立组装金刚石超声振动车削系统;研制油气雾化冷却系统;进行传统车削和超声振动车削对比实验,不同冷却润滑方式加工效果对比实验,改变切削参数对刀具磨损量和表面粗糙度影响实验;探索超声振动车削促进切削液冷却润滑作用机理;探索超声和油气雾化冷却联合作用下,天然金刚石车削不锈钢能减少刀具磨损机理;探索油气雾化冷却中二氧化碳气体及四氯化碳切削液有助于减少刀具化学磨损机理;经反复的加工实验得到天然金刚石刀具磨损量、切削参数以及工件表面粗糙度等各要素之间的关系及规律。
     由实验分析得知,天然金刚石超声振动车削不锈钢工件中,利用油气雾化冷却技术,刀具磨损量明显减少,工件表面质量得到提高。油气雾化冷却促进快速形成边界润滑膜,减少刀具与工件的摩擦,气流中所携带的细小切削液雾滴容易渗透到切削区,润滑作用得以充分发挥,达到很好的润滑作用;采用油气雾化冷却方法,气液两相流体混合形成的雾状射流喷射切削区,射流中微小液滴以较高的速度在切削区发生相变换热,油气雾化冷却中雾滴汽化的热交换效果更充分,从而实现强力降温,切削区域内的热量大幅度下降,工件变形量减小;气液两相流体喷射到切削区时,有较高的速度,动能较大,渗透能力较强,达到更好冷却目的;油气雾化装置的喷雾气流供给切削区,在二氧化碳的作用下,液体挥发迅速,把热量带走,冷却效果较好。
     油气雾化冷却结合超声振动车削有利于降低金刚石刀具和不锈钢工件间的石墨化,从而保护金刚石刀具。超声振动车削时的切削力很小,减少了金刚石刀具沿其晶面的微断裂;超声振动车削时的切削温度低,远低于金刚石发生石墨化的温度;油气雾化冷却中二氧化碳气体及四氯化碳切削液有助于减少刀具化学磨损,在切削区中提供富碳环境,能有效阻止金刚石刀具中的碳原子的扩散;二氧化碳气体在高温下,有效的打破金刚石中碳原子与工件碳原子的扩散平衡,根据优先反应原理,有效的阻止金刚石中的碳原子的扩散分解现象。
     在现有实验条件下,天然金刚石超声车削120个直径为30mm的不锈钢工件端面,工件表面粗糙度Rα小于0.06μm,后刀面磨损带宽小于9μm。增大刀具振幅可显著减小工件表面粗糙度和刀具磨损量。在一定进给量、切削速度和切削深度的情况下,采用超声振动结合油气雾化冷却方法,可实现不锈钢的天然金刚石精密车削。
The austenitic stainless steel has been enjoyed wide use in industry for its excellent mechanical properties, however, it is also known as a typical hardly machinable material for the low thermal conductivity, active reactivity, and short interface between the tool and the chips, high cutting temperature, small modulus of elasticity etc. In this paper, the machining was realized by choosing the tool material and changing the cooling method. The natural diamond is regarded as the ideal tool material for precise machining, but as for turning stainless steel, it is easy to produce wear, which is a difficult problem to solve. Hence it is a significant topic to advance the stainless steel cutting technology.
     In this paper, the tool material was the natural diamond, the ultrasonic vibration turning was adopted, and the cooling method was the atomization of oil gas. Three types of ultrasonic vibration systems of different frequencies were developed, the ultrasonicators, horns, transducers were developed accordingly. What's more, the atomization system was established. Meanwhile, the traditional turning was also placed to compare with the ultrasonic turning, and the turning results were compared by different cooling methods.Further more, the influence on the tool life and surface roughness could be evaluated by changing the cutting parameters. The mathematical models of the action of the ultrasonic turning and the atomization system were established to explore the mechanism of the lubrication mechanism of the cooling fluid. After reiterative experiments, we summarized the rules and relations among different factors such as the life of diamond turning, tool cutting parameters, material of piece, dimensional accuracy, surface quality, etc.
     Based on the analysis of the experiments, it follows that:in the ultrasonic vibration turning system, owing to the atomization scheme, the tool wear was decreased significantly, and the surface quality of the work piece was improved. In this type of cooling method, the lubricant film was formed rapidly leading to well lubrication action, which was also enhanced because of the fog drops contained in the cooling draught, reducing friction between the tool and the work piece. In addition, the heat exchange was more enough to control the deformation of the piece. The cooling effect in the cutting area was enhanced by the spraying of ill and gas with big speed and kinetic energy. In the cutting area, due to the carbon dioxide, the liquid volatilized rapidly removing the heat and improving the cooling effect.
     The combination of the ultrasonic vibration and the atomization system was good to reduce the affinity between the diamond and the stainless steel, protecting the tool. The small cutting force leaded to an improved micro-fracture, and a low cutting temperature which was far lower than the graphitizing temperature. The carbon dioxide and carbon tetrachloride were contributed to reduce the chemical wear of the tool in the abundant carbon cutting area. According to the prior reaction, the carbon dioxide could protect the carbon atom of diamond form diffusing and decomposing effectively under high temperature.
     The experimental results showed that, when turning 120 faces with diameter 30mm of the stainless steel, the surface roughness Ra was less than 0:15μm, and the wear land of the major flank was less than 5μm. Therefore, increasing amplitude of the tool could improve the surface roughness and wearing capacity obviously. With certain feed amount, cutting speed and cutting depth, by the combination of the ultrasonic vibration and the atomization system, it was feasible to turn the stainless steel precisely by the natural diamond.
引文
[1]王庭俊,周建华.1Cr18Ni9Ti不锈钢的切削加工[J].工具技术,2009(43):63-67.
    [2]O. Pantale, J-L. Bacaria, et al.2D and 3D numerical models of metal cutting with damage effects[J]. Computer Methods in Applied Mechanics and Engineering,2004 (193): 4383-4399.
    [3]N. Ahmed, A. V. Mitrofanov, et al.3D finite element analysis of ultrasonically assisted turning[J]. Computational Materials Science 2007(39):149-154.
    [4]王先逵.超精密加工切削和磨削机理研究[J].焦作大学学报,2002(2):1-5.
    [5]B. N. Mordyuk, G. I. Prokopenko, et al. Fatigue life improvement of α-titanium by novel ultrasonically assisted technique[C]. Materials Science and Engineering A,2006 (437):396-405.
    [6]E. Ceretti.M. Lucchi,et al. FEM simulation of orthogonal turning:serrated chip formation[C]. Journal of Materials Cutting Technology,1999(95):17-26.
    [7]吴敏镜.金刚石和超硬材料的应用和展望[J].航空精密制造技术,1999,Vol.35,N0.2:1-4.
    [8]M. Stanford, P.M. Lister. Investigation into the relationship between tool-wear and cutting environments when cutting EN32 steel[C]. Industrial Lubrication and Tribology,2004(56):114-121.
    [9]冈野燎.不锈钢的切削加工和冷却液[J].机械技术,1978(4):41-45.
    [10]吴全兴.Ti-6Al-4V合金的超声波振动切削[J].轻金属,2008(27):44-46.
    [11]Z. C. Lin, S. Y. Lin. A coupled finite element model of thermo-eiastic-piastic large deformation for orthogonal turning[J]. Journal of engineering materials and technolooy,1992 (114):218-226.
    [12]A.Moufki,A. Molinari, et al. Modelling of orthogonal cutting with a temperature dependent friction law[J]. Journal of the Mechanics and Physics of Solids,1998 (46):45-48.
    [13]谢开明.采用低温切削方法在不锈钢上形成光学质量表面[J].低温与特气,1992(3):58-59.
    [14]戴恩期.不锈钢加工中切削液的选择[J].润滑与密封,2003(2):102-103.
    [15]李艳聪,徐燕申等.不锈钢立铣切削力实验研究及模型建立[J].设计与研究,2009(8):72-75.
    [16]李建楠,肖林京.不锈钢切削表面残余应力的模拟[J].机械设计与制造,2007(10):86-88.
    [17]林峰.不锈钢切削参数优化[J].暨南大学学报,2007(28):276-278.
    [18]谢国如.不锈钢切削加工的研究[J].工具技术,2004(38):23-25.
    [19]李纯彬,聂广华,侯江华.不锈钢切削加工性能探讨[J].河南机电高等专科学校学报,2008(6):1-2.
    [20]肖继世,吴湘柠.奥氏体不锈钢的超声振动切削研究[J].广西机械,2002(3):29-31.
    [21]谷美林,黄传真,肖守荣.基陶瓷刀具切削不锈钢时的切削性能研究[J].工艺与检测,2008(8):89-91.
    [22]杜金萍,王桂梅,高术振.不锈钢切削参数模糊正交优化[J].河北工程大学学报,2007(24):65-68.
    [23]郝春水,朱习年,庄润平.奥氏体不锈钢1Cr18Ni9Ti的切削机理[J].东北工学院学报,1985(3):94-101.
    [24]A. V. Mitrofanov, V. I. Babitsky, et al. Silberschmidt. Finite element analysis of ultrasonically assisted cutting of Inconel 718[J]. Journal of Materials Turning Technology,2004(153):233-239.
    [25]Z. J. Yuan, M. Zhou et al. Effect of diamond tool sharpness on minimum turning thickness and turning surface integrity in ultraprecision machining[J]. Journal of Materials Cutting Technology,1996(62):327-330.
    [26]Donald R. Dreger. The promise of cryogenic processing[J], Machine Design,1981 (2):73-76.
    [27]DR. H. E. TRUCKS. How cryogenics is used for the treatment of metals[J]. Manufacturing Engi.eering.1983(11):54-55.
    [28]Casstevans, J.M. Diamond Turning of steel in Carbon-Saturated Atmospheres[C]. Precision Engineering,1983(5):9-15.
    [29]Evans, C. Cryogenic Diamond Turning of Stainless Steel. Annals of the CIRP[C], 1991(40):571-575.
    [30]Moriwaki, T., Shamoto, E.. Ultrasonic Elliptical Vibration Turning[C]. Annals of the CIRP,1995(40):31-34.
    [31]Moriwari T. et al. Ultra-Precision Diamond Turning of Stainless Steelby Applying Ultrasonic Vibration[C]. Annals of the CIRP,1991(43):559-562.
    [32]Shamoto, E., Moriwaki, T. Ultraprecieion Diamond Turning of Hardened Steel by Applying Elliptical Vibration Turning[C]. Annals of the CIRP,1999(48):441-444.
    [33]Moriwaki T, Shamoto E. Ultrasonic elliptical vibration cutting[J]. Annals of CIRP,1995, (44):31-34.
    [34]V. I. Babitsky, A. V. Mitrofanov et al. Ultrasonically assisted turning of aviation materials:simulations and experimental study[J]. Ultrasonics,2004 (42):81-86.
    [35]李晋年,袁哲俊,周明.黑色金属的超低温金刚石超精密车削[J].机械工程学报,1989(40):69-71.
    [36]顾立志,龙泽明,冉启文等.超声振动切削研究状况及发展趋势[J].佳木斯大学学报(自然科学版),2000(18):121-125.
    [37]H. Tanaka, S. Shimada, et al. Wear Mechanism of Diamond Turning Tool in Machining of Steel[J]. Key Engineer Material,2001(196):66-78.
    [38]S. Shimada, H. Tanaka, et al. Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals[J]. CIRP Annals-Manufacturing Technology 2004(53):57-60.
    [39]Ed Paul, Chris J. Evans, et al. Chemical aspects of tool wear in single point diamond turning[J]. Precision Engineering,1996 (18):4-9.
    [40]董丽华,任洪斌等.奥氏体不锈钢切削加工刀片选材的试验研究[J].机械工程师,1997(2):7-8.
    [41]初犁.不锈钢的切削加工[J].工具技术,1993(10):22-26.
    [42]E. Brinksmeier, R. Glabe and J. Osmer. Ultra-precision diamond turning of steel molds[C]. CIRP Annals-Manufacturing Technology,2006(55):551-554.
    [43]Zhou zhimin, Zhang yuanliang, et al. Effect of turning parameters on diamond tool life during turning stainless steel [J]. Materials Science Forum,2009(36):105-110.
    [44]Zhang yanliang,Zhou zhimin, et al. Compensation control of turning tool position in machining non-axisymmetric optic mirror surface[C]. Progress on advanced manufacture for micro/nano technology 2006(52):181-186.
    [45]Junyan Liu, Rongdi Han, Yongfeng Sun. Research on experiments and action mechanism with water vapor as coolant and lubricant in green cutting[J]. International Journal of Machine Tools&manufacture,2005(45):687-694.
    [46]Satish G. Kandlikar, Akhilesh V. Bapat. Evaluation of jet impingement, spray and icrochannel chip cooling options for high heat flux removal.Heat Transfer Engineering,2007,28(11).911-923.
    [47]Visaria M., Mudawar I. A systematic approach to predicting critical heat flux for inclined sprays, Transactions of the ASME,2007, Vol.129:452-459.
    [48]程文龙,刘期聂,赵锐等.喷雾冷却参数优化实验研究.中国工程热物理学会,传热传质学,08:34-54.
    [49]方崇成,谢晓星.喷雾冷却现象之研究.国立中山大学机械与机电工程学系硕士论文.中华民国九十二年六月.
    [50]隈部淳一郎.精密加工与超声振动车削[M].第一版.北京:机械工程出版社,1979.58-74
    [51]王洪祥,董小瑛,董申.金刚石车削表面微观形貌形成机理的研究[J].哈尔滨工业大学学报,2002(4):510-517.
    [52]S. Thamizhmanii, B. Bin.Omar, et al. Surface roughness analyses on hard martensitic stainless steel by turning[J]. Journal of Achievements in Materials and Manufacturing Engineering,2008(26):139-142.
    [53]Young Chan Song, Kentaro Nezu, et al. Tool wear control in single-crystal diamond turning of steel by using the ultra-intermittent turning method[J]. International Journal of Machine Tools and Manufacture 2009 (49):339-343.
    [54]T. F.Dai, F. Z. Fang and X. T. Hu. Tool wear study in diamond turning of steels[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 2009(27): 1335-1339.
    [55]J. Sun, C. Ju, Y. Yue, K. L. Gunter, et al. Sutherland. character and behavior of mist generated by application of cutting fluid to a rotating cylindrical Workpiece[C], Part 2:Experimental Validation. Transactions of the ASME,2004(126):426-434.
    [56]N. Ahmed, A. V. Mitrofanov, et al. Analysis of forces in ultrasonically assisted turning[J]. Journal of Sound and Vibration,2007, (308):845-854.
    [57]林峰.切削参数对不锈钢加工表面粗糙度的影响[J].工具技术,2007,41(7):78-79.
    [58赵继,王立江.超声波超声振动车削时的表面粗糙度及其数学模型[J].吉林工业大学学报,1985(3):122-131.
    [59]宋坚,吴敏镜.金刚石刀具的研磨与车削实验[J].现代制造工程,2002(3):31-32.
    [60]John S.Strenkowski, Albert J. Shih, et al. An analytical finite element model for predicting three-dimensional tool forces and chip flow [J]. International Journal of Machine Tools & Manufacture, 2002 (42):723-731.
    [61]Wuyi Chen. Turning forces and surface finish when machining medium hardness steel using CBN tools[J]. International Journal of Machine Tools & Manufacture 2000 (40): 455-466.
    [62]C. S. Liu, B. Zhao, G. F. Gao and F. Jiao. Research on the characteristics of the turning force in the vibration turning of a particle-reinforced metal matrix composites SiCp/Al[J]. Journal of Materials Turning Technology, 2002(129):196-199.
    [63]G. F. Gao, B. Zhao, F. Jiao et al. Research on the influence of the turning conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration turning[J]. Journal of Materials Turning Technology,2002(129):66-70.
    [64]D. E. Brehl and T. A. Dow. Review of vibration-assisted machining[J]. Precision Engineering,2008(32): 53-72.
    [65]Chunxiang Ma, E. Shamoto, T. Moriwaki, et al. Study of machining accuracy in ultrasonic elliptical vibration turning[J]. International Journal of Machine Tools & Manufacture,2004(44):1305-1310.
    [66]C. Phaal. Surface Studies of Diamond. Industrial Review[R].1965(26):300-486.
    [67]N. Ikawa, S. Shimada. Microfracture of diamond as fine tool material[C], Annals of the CIRP,1982(13):17-23.
    [68],Zhang yuanliang, Zhou zhimin, et al. Diamond turning of titanium alloy by applying ultrasonic vibration. Transactions of nonferrous metals society of china, 2005(15):279-282.
    [69]骆红云,焦红,范猛等.金刚石刀具与精密超精密加工技术[J].长春光学精密机械学院学报,2000(1):49-53.
    [70]李智.单晶金刚石研磨方法与机理的研究[D].大连:大连理工大学,2004.
    [71]夏志辉.天然金刚石刀具刃磨技术及设备研究[D].大连:大连理工大学,2004.
    [72]Merchant M E. The Physical Chemistry of Cutting Fluid Action. Am. Chem. Soc. Div. Petrol. Chem. Preprint 3,1958(4A):179-189.
    [73]篠崎襄,吉川弘之.切削劑の润滑効果(第1报).精密机械.1958,24(3):140-145.
    [74]Usui E,Gural A, Shaw M C. Experimental Study of Action of CC14 in Cutting and Other Processes Involving Plasitic Flow. Int. J. Machine Tool Design and Research[J]. 1961(3):187-197.
    [75]蒋森春.新型切削液在加工不锈钢孔中的应用[J].机械工人,1999(6):11.
    [76]戴恩斯.不锈钢加工中切削液的选择.润滑与密封[J].2003(2):102-103.
    [77]杨颖.低温冷风在绿色加工中应用的若干问题研究[D].重庆,重庆大学,2004.
    [78]赵威.基于绿色切削的钛合金高速切削机理研究[D].南京,南京航空航天大学,2006.
    [79]宋宏文.冷风切削薄壁不锈钢工件的加工探讨[J].航空精密制造技术,2002(38):40-41.
    [80]V. Erukhimovtch and J. Baramt. Analysis of solidification in spray atomized and codepusited metal-matrix composites[J]. J. Mater. Sci. Technol,1995(11):79-90.
    [81]Ghodbane,M., Holman et al. Experimental study of spray cooling with freon-113[M].Int J. Heat Mass Transfer,1991(34):1163-1174.
    [82]Sleiti, A K., Kapat, J S. An experimental investigation of liquid jet impingement and single-phase spray cooling using polyalphaolefin[J]. Experimental Heat Transfer,2006,19.149-163.
    [83]叶受清,张幼祯.超声波振动切削技术的现状和发展趋势[J].机械工程,1989(2):20-22.
    [84]M. Xiao, Q. M. Wang, K. Sato, et al. The effect of tool geometry on regenerative instability in ultrasonic vibration turning[J]. International Journal of Machine Tools and Manufacture,2006(46):492-499.
    [85]黄霞春.超声变幅杆的参数计算及有限元分析[D].湖南湘潭大学2007.
    [86]张云电,喻家英.超声变幅杆的超声精密加工[J].应用声学,1993(4):30-33.
    [87]J.Lawrence Katz, Anil Misra, et al. Multiscale mechanics of hierarchical structure/property relationships inalcified tissues and tissue/material interfaces[J]. Materials Science and Engineering:C,2007(27):450-468.
    [88]F. Z. Fang, H. Wu, et al.A study on mechanism of nano-turning single crystal silicon[J]. Journal of Materials Turning Technology,2007(184):407-410.
    [89]高洁.超声变幅杆的优化设计及声学特性分析[D].陕西,陕西师范大学,2006.
    [90]O. B. Abouelatta and J. Madl. Surface roughness prediction based on turning parameters and tool vibrations in turning operations[J]. Journal of Materials Turning Technology,2001(118):269-277.
    [91]K. C. Chan, C. F. Cheung, et al.A theoretical and experimental investigation of surface generation in diamond turning of an A16061/SiCp metal matrix composite[J]. International Journal of Mechanical Sciences,2001(43):2047-2068.
    [92]王春艳,秦永左,白素平.超声波加工工件振幅检测系统原理及部分信号处理电路[J].长春光学精密机械学院学报,2000(1):63-66.
    [93]冯冬菊,赵福令,徐占国等.超声波加工工具对复合变幅杆谐振性能影响[J].大连理工大学学报,2004(5):685-688.
    [94]A. V. Mitrofanov, N. Ahmed, et al. Silberschmidt. Effect of lubrication and turning parameters on ultrasonically assisted turning of Inconel 718[J]. Journal of Materials Turning Technology,2005(56):649-654.
    [95]Vladimir Babitsky and Vladimir Astashev. Nonlinear dynamics and control of ultrasonically assisted machining[J]. Journal of Vibration and Control,2007(13): 441-460.
    [96]陈太洪.大功率超声波发生器的设计[J].常州技术师范学院学报,2005(7):24-29.
    [97]徐建华.函数信号发生器的原理及调试与维护[J].嘉兴学院学报,2001(13):61-64.
    [98]王立江,赵继,王利群等.超声波振动切削系统幅载特性的研究[J].兵工学报,1994(4):48-52.
    [99]秦军,刘传绍,赵波等.关于超声振动切削中振幅衰减理论的探讨[J].湖南工程学院学报,2006(4):42-45.
    [100]王艳东.压电换能器在并联谐振频率附近的特性和自动频率跟踪的研究[D],西安,陕西师范大学,2006.
    [101]Zhou Zhi-min, Zhang Yuan-liang, et al. The effect of turning parameters on surface roughness when diamond turning stainless steel[C]. International forum on information technology and applications,2009(3):72-74.
    [102]周正干,王春生,张波等.超声振动车削中的自动调谐技术研究[J].北京航空航天大学学报,2001(27):166-170.
    [103]陈桂生.超声换能器的设计[M].北京:海洋出版社,1984(4):20-35.
    [104]杨志斌,吴凤林,轧刚.大振幅比超声变幅杆的优化设计[J].电加工与模具2007(6):44-48.
    [105]V. K. Astashev, V. I. Babitsky. Ultrasonic turning as a nonlinear (vibro-impact) process[J]. Ultrasonics,1998(36):89-96.
    [106]Chandra Nath, M. Rahman, and S. S. K. Andrew. A study on ultrasonic vibration turning of low alloy steel[J]. Journal of Materials Turning Technology 2007(193):159-165.
    [107]赵莉.基于有限元的超声波加工中变幅杆的动力学分析与设计[D].太原,太原理工大学,2005.
    [108]Masahiko Jin. Masao Murakawa. Development of a practical ultrasonic vibration cutting tool system. Journal of Matericals Processing Technology,2001(3):342-347.
    [109]Bohdan N. Mordyuk, and Georgiy I.Prokopenko. Ultrasonic impact peening for the surface properties'management[J]. Journal of Sound and Vibration,2007(308):855-866.
    [110]Chunxiang Ma, E. Shamoto, et al. Suppression of burrs in turning with ultrasonic elliptical vibration turning[J]. International Journal of Machine Tools & Manufacture,2005(45):1295-1300.
    [111]Kei Harada and Hiroyuki Sasahara. Effect of dynamic response and displacement/ stress amplitude on ultrasonic vibration turning[J]. Journal of Materials Turning Technology,2009 (209):4490-4495.
    [112]T-wardany, e. Mohammed and A. Elbestawi. Turning temperature of ceramic tools in high speed machining of difficult-to-cut materials[J]. Int. J. Mach. Tools Manufact,1996(36):611-634.
    [113]冯冬菊,赵福令,徐占国等.超声波数控加工中工具振幅的简易测量[J].电加工与模具,2004(5),32-36.
    [114]陈永昌,李守华,谭家隆.一种功率超声变幅杆振幅位移的测量方法[J].物理测试,2007(5):42-44.
    [115]王立江,赵继,谭庆昌.超声波超声振动车削的运动学及其加工表面质量[J].兵工学报,1987(3):24-30.
    [116]A. V. Mitrofariov, V. I. Babitsky and V. V. Silberschmidt. Finite element simulations of ultrasonically assisted turning[J]. Computational Materials Science,2003 (28):645-653.
    [117]C. Nath, M. Rahman, and K. S. Neo.A study on ultrasonic elliptical vibration turning of tungsten carbide[J]. Journal of Materials Turning Technology,2009(209): 4459-4464.
    [118]Taminian D A, Dantzengerg J H. Bluntness of the tool and process force in high-precision turning[C]. Annals of the CIRP,1991(40):65-68.
    [119]Zhou Zhi-min, Zhang Yuan-liang, Li Xiao-yan. Application of single linear blade diamond tools to turning of unitary wave-front corrector[C]. International forum on information technology and applications,2009(3):69-71.
    [120]Zhou Zhimin, Zhang Yuangliang, et al. Application of gas-fluid atomization technology in ultrosonic vibration turning titanium alloy workpiece [J]. ACOUSTICAL PHYSICS,2008(6):925-928.
    [121]Vishal S. Sharma, Manu Dogra and N. M. Suri. Cooling techniques for improved productivity in turning[J]. Machine Tools and Manufacture,2009(6):435-453.
    [122]Shane Y. Hong. Economical and ecological cryogenic machining[J]. Manufacturing Science and Engineering,2001(12):331-338.
    [123]Andres F. Clarens, Kim F. Hayes and Steven J. Skerlos. Feasibility of metalworking fluids delivered in supercritical carbon dioxide[J].Manufacturing Processes, 2006(8):47-53.
    [124]P.W. Marksberry and I. S. Jawahir. A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing[J]. Machine Tools and Manufacture,2008,48(7-8):878-886.
    [125]L. De Chiffrer, J. L. Andreasen, S. Lagerberg. Performance testing of cryogenic CO2 as cutting fluid in parting/grooving and threading austenitic stainless steel[J]. Annals of the CIRP,2007,56(1):101-104.
    [126]A. V. Mitrofanov, V. I. Babitsky and V. V. Silberschmidt. Thermomechanical finite element simulations of ultrasonically assisted turning[J]. Computational Materials Science,2005(32):463-471.
    [127]Chandra Nath, and M. Rahman. Effect of machining parameters in ultrasonic vibration turning[J]. International Journal of Machine Tools & Manufacture,2008 (48):965-974.
    [128]安庆龙.低温喷雾射流冷却技术及其在钛合金机械加工中的应用[D].南京,南京航空航天大学,2006.
    [129]刘俊岩.水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究[D].哈尔滨:哈尔滨工业大学,2005.
    [130]梅国晖,孟红记,武荣阳等.高温表面喷雾冷却传热系数的理论分析[D].冶金能源,2004,23(6):18-22.
    [131]王云峰.基于绿色制造的低温气动喷雾冷却的基础研究[D].南京,南京航空航天大学,2005.
    [132]朱颖,张汝春.金属切削加工喷雾冷却方法[J].煤矿机械,2005(6):73-75.
    [133]张巍巍,裴宏杰,张春燕.金属切削液油雾的形成及控制[J].机床与液压,2008,36(1):25-30.
    [134]张绍坤.流体动力式超声波喷嘴的实验研究[D].北京,北京工业大学,2007.
    [135]颜科红,李长生,朱成顺等.喷雾冷却和刀具表面涂层复合润滑在切削加工中的应用[J].机械工程材料,2005,29(7):17-24.
    [136]Q Caklr, M Klyak, E Altan. Comparison of gases applications to wet and dry cuttings in turning. Journal of Materials Processing Technology,2004(3):35-41.
    [137]Mahmod Shatla, Christian Kerk, Taylan Altan. Process Modeling-in Machining. Part Ⅱ:Validation and Applications of the Determined Flow Stress Data. International Journal of Machine Tools&Manufacture 2001(42):637-647.
    [138]朱冬生,孙纪远,宋印玺.喷雾冷却技术综述及纳米流体喷雾应用前景[J].化工进展,2009,28(3):368-373.
    [139]孙发明.喷雾冷却建模与仿真分析[D].西安,西安电子科技大学,2009.
    [140]高珊,曲伟,姚伟.喷雾冷却中液滴冲击壁面的流动和换热[J].工程热物理学报,200728(1):221-224.
    [141]刘锡录,张耀良,闰通海.喷雾冷却装置技术性能的试验研究[J].现代机械,1994(3):1-4.
    [142]肖继明,张敏.气泡雾化喷嘴下游流场的特性分析[J].西安理工大学学报,2008(1):67-70.
    [143]胡佳英,彭跃,湘任东.切削加工中喷雾冷却技术的试验研究[J].机械设计与制造,2007(10):96-97.
    [144]刘存祥,胡荣生.切削区的喷雾冷却[J].工具技术,1996(28):2-4.
    [145]周华琴.热表面脉冲式喷雾冷却的实验研究[D].天津,天津大学,2007.
    [146]Chandra Nath, Mustafizur Rahman, et al. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration turning[J]. International Journal of Machine Tools & Manufacture 2009.
    [147]袁松梅,刘晓旭,严鲁涛.微量润滑系统冷却性能实验研究[J].设计与研究,2008(11):56-58.
    [148]王彬.雾化角对压力式液体雾化效果影响的理论及实验研究[D].重庆,重庆大学,2007.
    [149]文东辉,刘献礼,杨兴.硬态切削中的冷却润滑技术[J].工艺与检测,2001(12):28-30.
    [150]V. I. Babitsky, A. N. Kalashnikov, et al. Ultrasonically assisted turning of aviation materials[J]. Journal of Materials Turning Technology,2003(132):157-167.
    [151]V. Jurenas, R. Gaidys. Experiments and simulations of ultrasonically assisted turning tool[J]. Mechanika.2009(4):67-70.
    [152]V. I. Babitsky, A. N. Kalashnikov and F. V. Molodtsov. Autoresonant control of ultrasonically assisted turning[J]. Mechatronics,2004(14):91-114.
    [153 Tae Jo Ko, Hee Sool Kim and Bo Gu Chung. Air-oil cooling method for turning of hardened material[J]. Advanced Manufacturing Technology,1997(7):470-477.
    [154]Martin B. G. Jun. An experimental evaluation of an atomization-based cutting fluid application system for micromachining[J].Manufacturing Science and Engineering, 2008(6):130-138.
    [155]M. Xiao, S. Karube,T. Soutome and K.Sato. Analysis of chatter suppression in vibration turning[J]. International Journal of Machine Tools & Manufacture2002 (42):1677-1685.
    [156]V. I. Babitsky, V. K. Astashev and A. N. Kalashnikov. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications[J]. Ultrasonics, 2004(42):29-35.