柴油机燃烧的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为应对能源与环境的双重挑战,不断改进传统的柴油机燃烧是社会可持续发展的需要。随着计算科学的发展,数值模拟技术在内燃机的开发改进过程中的应用越来越广泛。近年来,提高燃油系统喷射压力、提高EGR率、提高进气压力成为各种新型柴油机燃烧的主要技术方向。这些技术的综合作用使柴油在缸内的雾化蒸发加快,并减慢了缸内的化学反应速率,延长了着火落后期,相较于传统的扩散燃烧,体现出更多的预混燃烧的特点,可以有效降低氮氧化物和颗粒物排放。传统的柴油燃烧数值模拟为降低对计算能力的要求,忽略或者简化其中的化学因素,主要关注油气混合过程,己不能适应新的燃烧模式。
     为了探索适用于新型柴油机燃烧模式的模拟方法,本文首先研究了液体燃料的高压喷射过程,重点关注喷射初始条件的设定。通过理论分析,引入一假想流体代替喷雾中的两相流,以此将流体的状态变化和运动规律解耦,并借助二阶单输出系统的阶跃响应函数模拟假想流体密度和动量的变化,建立了描述喷雾贯穿距和前锋速度的模型。对比文献中的研究结果,取得了较为满意的结果。模型中引入了密度时间常数和动量时间常数两个参数,当喷射压力提高或者环境压力提高时,上述两个时间常数都减小。基于信息熵的概念,把液体高压喷入气体的过程作为随机过程,分析其中的能量转换过程,得到了液滴破碎所遵循的物理约束条件,即液滴表面积的和与喷射初始时的动能成正比。在此基础上建立了描述液滴粒径分布的函数表达式,与文献中的研究结果进行了对比验证,获得了较为满意的结果。这证明液体高压喷射时,液滴的粒径可由统计学中常用的Rayleigh型分布描述,其参数为液滴的索特平均直径。在此基础上,利用定容弹和高速摄影技术研究了高压喷雾的发展,并应用上述模型和规律对喷射过程进行了三维数值模拟。对比喷雾形态和贯穿距发现,受计算方法的限制,在喷射开始的初始阶段模拟结果与实测结果相差偏大,但随着喷雾的发展,模拟结果与实测结果逐渐符合。
     然后以链式反应为基础,以燃烧过程中的过氧化烃基、酮类物质、链载体羟基、乙烯、甲醛等几种关键物质为主干,将各种烷基在高温下的分解反应概括为烷基直接分解成乙烯和甲基;以苯甲醛为关键中间产物,并将苯环的高温分解反应概括为加氧、脱碳、生成乙炔的反应,开发了较为精简实用的,仅包含26种组分、28个反应的正庚烷——甲苯氧化机理。在高压、高温、偏浓的环境下,其计算得到的滞燃期与文献中提供的实验数据符合的很好。将上述简化机理扩展到三维CFD计算中,并利用第二章中开发的喷雾模拟方法,利用温度、甲醛基(HCO)、乙炔(C2H2)的时空分布间接对比验证,其计算得到的低温火焰和高温火焰的发展过程均与定容燃烧弹内的柴油喷雾扩散燃烧过程符合的很好,而且能够较为准确的反映出EGR氛围中的燃烧状况。
     在此基础上,将四缸小型车用柴油机改造成为单缸研究用柴油机,搭建了相应的实验平台,并选择了三个工况进行了台架实验,其中两个使用高增压、高EGR和高压喷射的新型燃烧模式,另一个使用传统燃烧模式。利用前文建立的数值模拟计算方法,对上述三个工况的燃烧过程进行了数值模拟,得到的工况1和工况3的缸压曲线与实验数据符合的较好,但工况2因喷油规律不明有较大偏差。因表征燃料的限制,模拟得到的排放数据与实测数据差别较大,但其趋势基本一致。总的来说,本章的对比研究证明前文所建立的数值模拟适用于低温柴油机燃烧模式,可以为柴油机的开发改进提供有工程利用价值的依据。采用高增压、高EGR和高压喷射技术的新型燃烧模式,可以加快柴油液滴的雾化蒸发,提高缸内氧气的利用率,抑制了氮氧化物的生成;而且新型燃烧模式中,缸内缺氧区域的温度较低,抑制了颗粒物的生成。但是,在改善柴油机氮氧化物和颗粒物排放的同时,一氧化碳排放不可避免的升高。
Energy and environmental problems are worldwide challenge for humanity. It is essential to improve traditional energy application, such as diesel. Numerical simulation technology,which benefits from the development of computer science, plays a very important role in the design process of modern engines. To improve diesel combustion, higher fuel injection pressure, higher exhaust gas recirculation (EGR) rate, higher boost pressure are widely used in the development of new diesel combustion. These technologies accelerate the atomization and evaporation of fuel droplets, reduce the chemical reaction rate and retard the ignition in diesel engine, so emissions can be effectively reduced. Meanwhile, the new diffusion flame in diesel engine shows some similarity of premixing flame. In order to reduce the calculation cost, detailed chemical reactions have to be ignored or simplified in traditional diesel combustion simulation, which usually focuses on the mixing progress. Unfortunately these models cannot describe the modern diesel combustion.
     To develop new simulation method for modern diesel combustion, this thesis firstly studied the injection process of liquid fuel, focusing on the initialization of injection simulation. A1D spray model and a droplet diameter profile have been established based on theoretical analysis and hypothesis, and validated with experimental data in literatures. Diesel spray in constant volume vessel has also been investigated with3D CFD simulation and validated by high speed photography. Calculated fuel penetration and spray shape fits the experimental results reasonably well besides the initial stage.
     Based on the low temperature oxidation mechanism of alkane and the assumption of alkyl and aromatic species thermal cracks, a reduced mechanism of n-heptane and toluene oxidation containing26species and28reactions is achieved. The calculated ignition delays fit the experimental data reasonably well. Diesel diffusion flame in a constant volume vessel is investigated with CFD simulation using this reduced mechanism, and validated by high speed photography. The calculated results show very good agreement with the experiment, both chemiluminescent flame and high temperature flame could be evaluated accurately.
     Finally, a single cylinder diesel engine test bench was built, and three cases were chosen for test, two were new combustion model with high boost, high EGR and high injection pressure, the other one was operated in the traditional model. Numerical simulation was performed with the method developed in this thesis to investigate the combustion process of these cases. The pressure curves of case1and case3fit the experimental data very well, but case2show some error because of unknown injection rate. The calculated emissions are several times higher than the test results, which cannot be refined since the stoichiometric ratio of reference species is difference with diesel. Generally speaking, this thesis built an appropriate simulation method for numerical investigation of new type diesel combustion.
引文
[1]BP. BP statistical review of world energy[R]. London:BP,2002.
    [2]BP. BP statistical review of world energy[R]. London:BP,2012.
    [3]国家统计局工业交通统计司.中国能源统计年鉴(2000-2002)[M].北京:中国统计出版社,2004.
    [4]http://www.sdpc.gov.cn/jjyx/gjyx/sh/t20130128_524039.htm
    [5]KAMIMOTO T, BAE M. High combustion temperature for the reduction of particulate in diesel engines[C]. SAE paper,1988,880423.
    [6]KITAMURA T, ITOT, SENDA J, et al. Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formation[J]. International Journal of Engine Research,2002,3(4):233-248.
    [7]YAO M, ZHENG Z, LIU H. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines[J]. Progress in Energy and Combustion Science,2009,35:398-433.
    [8]ONISHIS, JOSH, SHODA K, et al. Active thermo-atmosphere combustion (ATAC)-a new combustion process for internal combustion engines[C]. SAE paper,1979,790801.
    [9]NOGUCHI M, TANAKA T, TAK.EUCHI Y. A study on gasoline engine combustion by observation of intermediate reactive products during combustion[C]. SAE paper,1979,790840.
    [10]NAJT PM, FOSTER D E. Compression ignited homogeneous charge combustion[C]. SAE paper,1983,830264.
    [11]THRING R H. Homogeneous-charge compression ignition (HCCI) engines[C]. SAE paper, 1989,892068.
    [12]RYAN Ⅲ TW, CALLAHAN TJ. Homogeneous charge compression ignition of diesel fuel[C]. SAE paper,1996,961160.
    [13]GRAY Ⅲ AW, RYAN Ⅲ T W. Homogeneous charge compression ignition (HCCI) of diesel fuel[C]. SAE paper,1997,971676.
    [14]STANGLMAIER R H, ROBERTS C E. Homogeneous charge compression ignition (HCCI): benefits, compromise, and future engine applications[C]. SAE paper,1999,1999-01-3682.
    [15]ENG J A. Characterization of pressure waves in HCCI combustion[C]. SAE paper,2002, 2002-01-2859.
    [16]DEC J E. A computational study of the effects of low fuel loading and EGR on heat release rates and combustion limits in HCCI engines[C]. SAE paper,2002,2002-01-1309.
    [17]RICHTER M, ENGSTROM J, FRANKE A, et al. The influence of charge inhomogeneity on the HCCI combustion process[C]. SAE paper,2000,2000-01-2868.
    [18]SJOBERG M, DEC J E. An investigation of the relationship between measured intake temperature, BDC temperature, and combustion phasing for premixed and DI HCCI engines.[C] SAE paper,2004,2004-01-1900.
    [19]DEC J E, HWANG W, SJOBERG M. An investigation of thermal stratification in HCCI engines using chemiluminescence imaging[C]. SAE paper,2006,2006-01-1518.
    [20]DEC J E. SJOBERG M. Isolating the effects of fuel chemistry on combustion phasing in an HCCI engine and the potential of fuel stratification for ignition control[C]. SAE paper,2004, 2004-01-0557.
    [21]SJOBERG M, DEC J E. Smoothing HCCI heat-release rates using partial fuel stratification with two-stage ignition fuels[C]. SAE paper,2006,2006-01-0629.
    [22]ALEIFERIS P G, CHARALAMBIDES A G, HARDALUPAS Y, et al. Modelling and experiments of HCCI engine combustion with charge stratification and internal EGR[C]. SAE paper. 2005,2005-01-3725.
    [23]ZHENG ZHAOLEI, YAO MINGFA. Numerical simulation of the effects of charge stratification on combustion and emissions[J]. Energy & Fuel,2007,21 (4):2018-2026.
    [24]郑金保,缪雪龙,王先勇,等.柴油机预混合燃烧循环变动特性研究[J].内燃机工程,2011.1:85-92.
    [25]TAKEDA Y, NAKAGOME K, NIIMURA K. Emission characteristics of premixed lean diesel combustion with extremely early staged fuel injection[C]. SAE paper,1996,961163.
    [26]NAKAGOME K, SHIMAZAKI N, NIIMURA K, et al. Combustion and emission characteristics of premixed lean diesel combustion engines[C]. SAE paper,1997,970898.
    [27]SUN Y, REITZ R D. Adaptive injection strategy (AIS) for diesel engines[P]. University of Wisconsin WARF Patent Application,2007, P07342US.
    [28]WALTER B, GATELLIER B. Development of the high-power NADITM concept using dual-mode diesel combustion to achieve zero NOX and particulate emissions[C]. SAE paper,2002,2002-01-1744.
    [29]LECHNER G A, JACOBS TJ, CHRYSSAKIS C A, et al. Evaluation of a narrow spray cone angle, advanced injection timing strategy to achieve partially premixed compression ignition combustion in a diesel engine[C]. SAE paper,2005,2005-01-0167.
    [30]KIM M Y, LEE C S. Effect of a narrow fuel spray angle and a dual injection configuration on the improvement of exhaust emissions in a HCCI engine[J]. Fuel,2007,86:2871-2880.
    [31JKOBORIS, KAMIMOTOT, KOSAKA H. Ignition, combustion and emissions in a Dl diesel engine equipped with a micro-hole nozzle[C], SAE paper,1996,960321.
    [32]HELM ANTEL A, DENBRATT I. HCCI operation of a passenger car common rail DI diesel engien with early injection of conventional diesel fuel[C]. SAE paper,2004,2004-01-0935.
    [33]BEATRICE C, BELARDIN1 P, BERTOLI C, et al. Diesel combustion control in common rail engines by new injection strategies[J]. International Journal of Engine Research,2002,3(1):23-26.
    [34]BUCHWALD R, BRAUER M, BLECHSTEIN A, et al. Adaption of injection system parameters to homogeneous diesel combustion[C]. SAE paper,2004,2004-01-0936.
    [35]LIU Y, REITZ R D. Optimizing HSDI diesel combustion and emissions using multiple injection strategies[C]. SAE paper,2005,2005-01-0212.
    [36]KIMURA S, AOKI O, KITAHARA Y, et al. Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards|C]. SAE paper,2001,2001-01-0200.
    137] KIMURA S, AOKIH, OGAWA S, et al. New combustion concept for ultra-clean and high-efficiency small D1 diesel engines[C]. SAE paper,1999,1999-01-3681.
    [38]YANAGIHARA H. Ignition timing control at Toyota "UNIBUS" combustion system[C]. Proceedings of the IFP international congress,2001,35-42.
    [39]HASEGAWA R, YANAGIHARA H. HCCI combustion in DI diesel engine[C]. SAE paper, 2003,2003-01-0745.
    [40]KOPA R D, JEWELL R G, SPANGLER R V. Effect of exhaust gas recirculation on automotive ring wear[C]. SAE paper,1962,620121.
    [41]NEWHALL H K. Control of nitrogen oxides by exhaust recirculation, a preliminary theoretical study[C]. SAE paper,1967,670495.
    [42]UCHIDA N, DAISHO Y, TAKESHI S, et al. Combined effects of EGR and supercharging on diesel combustion and emissions[C]. SAE 930601.
    [43]MITCHELL D L, PINSON J A, LITZINGER T A. The effects of simulated EGR via intake air dilution on combustion in an optically accessible DI diesel engine[C]. SAE paper,1993,932798.
    [44]ARCOUMANIS C, BAE C, NAGWANEY A, et al. Effect of EGR on combustion development in a 1.9L diesel optical engine[C]. SAE paper,1995,950850.
    [45]SHIMAZAKI N, HATANAKA H, YOKOTA K, et al. A study of diesel combustion process under the condition of EGR and high pressure fuel injection with gas sampling method[C]. SAE paper, 1996,960030.
    [46]LADOMMATOS N, BALIAN R, HORROCKS R, et al. The effect of exhaust gas recirculation on combustion and NOx emissions in a high-speed direct-injection diesel engine[C]. SAE paper, 1996,960840.
    [47]SHIOZAKI T, NAKYAMA H, KUDO Y, et al. The analysis of combustion flame under EGR conditions in a DI diesel engine[C]. SAE paper,1996,960323.
    [48]LADOMATOS N, ABDELHALIM S M, ZHAO H, et al. The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions-parts 1,2,3,4[C]. SAE 961165, 961167,971659,971660.
    [49]LAPUERTA M, SALAVERT J M, DOMENECH C. Modeling and experimental study about the effect of exhaust gas recirculation on diesel engine combustion and emissions[C]. SAE paper,1995, 950216.
    [50]白晨盱,刘忠长,韩永强,等.阶跃EGR对重型柴油机燃烧过程的影响[J].内燃机学报,2011,1:8-15.
    [51]张全长,尧命发,郑尊清,等.进气氧浓度对柴油机低温燃烧影响的试验研究[J].内燃机学报,2009,4:298-305.
    [52]CHOI D, MILES P C, YUN H H, et al. A parametric study of low-temperature, late-injection combustion in a HSDI diesel engine[J]. JSME International Journal Series B,2005,48(4):656-664.
    [53]IDICHERIA C A, PICKETT L M. Soot formation in diesel combustion under high-EGR conditions[C]. SAE paper,2005,2005-01-3834.
    [54]NEELY G D, SASAKI S, HUANG Y, et al. New diesel emission control strategy to meet US Tier 2 emissions regulations[C]. SAE paper,2005,2005-01-1091.
    [55]NATTI K, HENEIN N, POONAWALA Y, et al. Particulate matter characterization in an HSDI diesel engine under conventional and LTC regimes[C]. SAE paper,2008,2008-01-1086.
    [56]SINGH S, REITZ R D, MUSCULUS M P B.2-color thermometry experiments and high-speed imaging of multi-mode diesel engine combustion[C]. SAE paper,2005.2005-01-3842.
    [57]MUELLER C J, UPATNIEK.S A. Dilute clean diesel combustion achieves low emissions and high efficiency while avoiding control problems of HCCI[C].11th Annual diesel engine emissions reduction (DEER) conference,2005.
    [58]KOOKS, BAE C, MILES P C, et al. The influence of charge dilution and injection timing on low-temperature diesel combustion and emissions[C]. SAE paper,2005,2005-01-3837.
    [59]KOOK S, BAE C, MILES P C, et al. The effect of swirl ratio and fuel injection parameters on CO emission and fuel conversion efficiency for high-dilution, low-temperature combustion in an automotive diesel engine[C]. SAE paper,2006,2006-01-0197.
    [60]KAZUHIRO A, YOSHIKI T, KAZUHISA I, et al. Mechanism of the smokeless rich diesel combustion by reducing temperature[C]. SAE paper,2001,2001-01-0655.
    [61]黄豪中,苏万华,裴毅强.基于CO-Φ-T图研究混合速率对柴油低温燃烧的影响[J].内燃机学报,2009,2:97-102.
    [62]DRONIOU N, LEJEUNE M, BALLOUL I. Combination of high EGR rates and multiple injection strategies to reduce pollutant emissions[C]. SAE paper,2005,2005-01-3726.
    [63]AOYAGI Y, OSADA H, MISAWA M, et al. Advance diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine[C]. SAE paper,2006,2006-01-0077.
    [64]COLBAN W, MILES P C, OH S. Effect of intake pressure on performance and emissions in an automotive diesel engine operating in low temperature combustion regimes[C]. SAE paper,2007, 2007-01-4063.
    [65]GENZALE C L, REIZE R D, MUSCULUS M P B. Effect of piston bowl geometry on mixture development and late-injection low-temperature combustion in a heavy-duty diesel engine[C]. SAE paper,2008,2008-01-1330.
    [66]OPAT R, RA Y, GONZALEZ D M A, et al. Investigation of mixing and temperature effects on HC/CO emissions for highly dilute low temperature combustion in a light duty diesel engine[C|. SAE paper,2007,2007-01-0193.
    [67]OGAWA H, MIYAMOTO N, SHIMIZU H, et al. Characteristics of diesel combustion in low oxygen mixtures with ultra-high EGR[C]. SAE paper,2006,2006-01-1147.
    [68]LUNDQVIST U, SMEDLER G, STALHAMMAR P. A comparison between different EGR systems for HD diesel engines and their effect on performance, fuel consumption and emissions[C]. SAE paper,2000,2000-01-0226.
    [69]LANGRIDGE S, FESSLER H. Strategies for high EGR rates in a diesel engine[C]. SAE paper, 2002,2002-01-0961.
    [70]鹿盈盈,苏万华,于文斌,等.柴油机燃烧路径及其对热效率和排放的影响[J].内燃机学报,2011,1:1-7.
    [71]AKEN M, WILLEMS F, JONG D. Appliance of high EGR rates with a short and long route EGR system on a heavy duty diesel engine[C]. SAE paper,2007,2007-01-0906.
    [72]KIM S, WAKISAKA T, AOYAGI Y. A numerical study of the effects of boost pressure and exhaust gas recirculation ratio on the combustion process and exhaust emissions in a diesel engine[J]. International Journal of Engine Research,2007,8(1):147-162.
    [73]HAHNE B, NEUENDORFS, PAEHR G, et al. New diesel engines for volkswagen commercial vehicle applications[j]. MTZ,2010,71(1):14-20.
    [74]LANGEN P, HALL W, NEFISCHER P, et al. The new two-stage turbocharged six-cylinder diesel engine of the BMW 740D[J]. MTZ,2010,71(4):4-11.
    [75]NITTA J, MINATO A, SHIMAZAKI N. Performance evaluation of three-stage turbocharging system for heavy-duty diesel engine[C]. SAE paper,2011,2011-01-0374.
    [76]DENT J C. A basic for the comparison of various experimental methods for studying spray penetration[J]. SAE 710571,1971.
    [77]HAY N, JONES P L. Comparison of the various correlations for spray penetration[J]. SAE 720776,1972.
    [78]LEFEBVRE A H. Atomization and sprays[M]. London:Taylor and Francis,1989.
    [79]HIROYASU H, ARA1 M. Structures of fuel sprays in diesel engines[J]. SAE 900475,1990.
    [80]GHOSH S, HUNT J C R. Induced air velocity within droplet driven sprays[J]. Proceedings of the royal society A,1994,444:105-127.
    [81]SAZHIN S S, FENG G, HEIKALM R. A model for fuel spray penetration[J]. Fuel,2001,80: 2171-2180.
    [82]SAZHIN S, CRUA C, KENNAIRD D, et al. The initial stage of fuel spray penetration[J]. Fuel, 2003,82:875-885.
    [83]DELACOURT E, DESMET B, BESSON B. Characterisation of very high pressure diesel sprays using digital imagine techniques[J]. Fuel,2005,84:859-867.
    [84]DOUDOU A. Turbulent flow study of an isothermal diesel spray injected by a common rail system[J]. Fuel,2005,84:287-298.
    [85]DESANTES J M, PAYRI R, SALVADOR F J, et al. Development and validation of a theoretical model for diesel spray penetration[J]. Fuel,2006,85:910-917.
    [86]DESANTES J M, PAYRI R, GARCIA J M, et al. A contribution to the understanding of isothermal diesel spray dynamics[J]. Fuel,2007,86:1093-1101.
    [87]BREIDENTHAL R. The turbulent exponential jet[J]. Physics of Fluids,1986,29:2346-2347.
    [88]ABANI N, REITZ R D. Unsteady turbulent round jets and vortex motion[J]. Physics of fluids, 2007,19:125102.
    [89]解茂昭.内燃机计算燃烧学[M].第二版.大连:大连理工大学出版社,2005.
    [90]BENJAMIN C K, GOLNARAGHI F. Automatic control systems[M], New York:Wiley,2003.
    [91]董志勇.冲击射流[M].北京:海洋出版社,1997.
    [92]董志勇.射流力学[M].北京:科学出版社,2005.
    [93]CATANIA A E, FERRARI A, MITTICAA, et al. Common rail without accumulator: development, theoretical-experimental analysis and performance enhancement at DI-HCCI level of a new generation FIS[J]. SAE 2007-01-1258,2007.
    [94]PAYRI R, GARCIA F J, SALVADOR F J, et al. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on sparay characteristics[J]. Fuel,2005,84: 551-561.
    [95]ALBERTSON M L, DAI Y B, JENSEN R A, et al. Diffusion of submerged jets[J]. Transactions ASCE,115:639-664.
    [96]ABRAMOWITZ M, STEGUN 1. Handbook of mathematical functions with formulas, graphs, and mathematical tables[M]. New York:Dover Publications,1964.
    [97]KOSTAS J, HONNERY D, SORIA J. Time resolved measurements of the initial stages of fuel spray penetration[J]. Fuel,2009,88:2225-2237.
    [98]BRACCO F V. Two-phase, two-dimensional, unsteady combustion in internal combustion engines[C]. SAE paper,760114,1976.
    [99]REITZ R D, BRACCO F V. Mechanism of atomization of a liquid jet[J]. Physics of Fluids, 1982,25:1730-1742.
    [100]REITZ R D, DIWAKAR R. The effect of drop breakup on fuel sprays[C]. SAE paper,860469, 1986.
    [101]LIN SP, KAG J. Atomization of a liquid jet[J]. Physics of Fluids,1987,30:2000-2006.
    [102]TANNER F X. Liquid jet atomization and droplet breakup modeling of non-evaporating diesel fuel sprays[C]. SAE paper,970050,1997.
    [103]GOSMAN A D, JOHNS J R. Computer analysis of fuel-air mixing in D.I. Diesel engines[C].SAE paper,800091,1980.
    [104]REITZ R D, DIWAKAR R. Structure of high pressure fuel sprays[C]. SAE paper,870598, 1987.
    [105]曹建明Nukiyama-Tanasawa型雾化液滴尺寸分布函数的引中[J].中国公路学报,1999,12:106-111.
    [106]DE JUHASZ K J, ZAHN O F, SCHWEITZER P H. On the formation and dispersion of oil sprays.
    [107]SCHWEITZER P H. Mechanism of disintegration of liquid jets[J]. Journal of Applied Physics. 1937,8:513-521.
    [108]CHEN T F, DAVIS J R. Disintegration of the turbulent water jet[J], Journal of Hydraulics Division,1964,1:175-206.
    [109]GRANT R P, MIDDLEMAN S. Newtonian jet stability[J]. American Institute of Chemical Engineers,1966,12:669-678.
    [110]PHINNEY R E. The breakup of a turbulent liquid jet in a gaseous atmosphere[J]. Journal of Fluid Mechanics,1973,60:689-701.
    [111]YULE A, AKHTAR P, SHRIMPTON J, et al. PDA measurements of fuel effects on atomization and spray structure from a diesel engine injector[C]. SAE paper,982544,1998.
    [112]SHANNON C E. A mathematical theory of communication[J]. Bell system technical journal, 1948,27(3):379-423.
    [113]辛格(美),张继国译.信息熵理论与应用[M].北京:中国水利水电出版社,2012.[114]张学文.组成论[M].合肥:中国科学技术大学出版社,2003.
    [115]http://en.wikipedia.org/wiki/Rayleighdistribution
    [116]SWITHENBANK J M, BEER J B, TAYLOR D S, et al. A laser diagnostic technique for the measurement of droplet and particle size distribution[C].14th AIAA aerospace sciences meeting, 1976:69-76.
    [117]BACHALO W D, HOUSER M J. Phase/doppler spray analyzer for simultaneous measurements of drop size and velocity distributions[J]. Optical engineering,1984,23:583-590.
    [118]DOBBINS R A, JIZMAGIA G S. Optical scattering cross sections for polydispersions of dielectric spheres[J]. Journal of the optical society of America,1966.56:1345-1349.
    [119]MA L, SANDERS S T, JEFFRIES J B, et al. Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor[C]. Proceedings of the combustion institute,2002,29:161-166.
    [120]CHEN P C, WANG W C, ROBERTS W L, et al. Spray and atomization of diesel fuel and its alternatives from a singe-hole injector using a common rail fuel injection system[J]. Fuel,2013,103: 850-861.
    [121]LACOSTE J, CRUAC, HEIKALM, etal. PDA characterization of dense diesel sprays using a common-rail injection system[C]. SAE paper,2003-01-3085,2003.
    [122]HIROSHI H, KIKUO N, MITSUHIRO T. Analysis of initial breakup mechanism of diesel spray injected into high-pressure ambience[C]. SAE paper,2004-01-0528,2004.
    [123]CRUAC, SHOBAT, HEIKALM, etal. High-speed microscopic imaging of the initial stage of diesel spray formation and primary breakup[C]. SAE paper,2010-01-2247,2010.
    [124]SUTF, PATTERSON M, REITZRD, et al. Experimental and numerical studies of high pressure multiple injection sprays[C]. SAE paper,960861,1996.
    [125]O'ROURKE P J, BRACCO F V. Modeling of drop interactions in thick sprays and a comparison with experiments. Proceedings of the Institution of Mechanical Engineers,1980,194,101-116.
    [126]NORDIN N. Complex chemistry modeling of diesel spray combustion[D]. Goteborg:Chalmers University of Technology,2001.
    [127]VEYNANTE D, VERVISCH L. Turbulent combustion modeling[J]. Progress in energy and combustion science,2002,28:193-266.
    [128]SPALDING D B. Mixing and chemical reaction in steady confined turbulent flamesfC]. The Combustion Institute,1971:649-657.
    [129]MOSS J B, BRAY K N C. A unified statistical model of the premixed turbulent flame[J]. Acta Astronaut,1977,4:291-319.
    [130]LAHJAILY H, CHAMPION M, KARMED D, et al. Introduction of dilution in the BML model: application to a stagnating turbulent flame[J]. Combustion science and technology,1998,135: 153-173.
    [131]VEYNANTE D, DUCLOS J M, PI ANA J. Experimental analysis of flamelet models for premixed turbulent combustion[C]. The Combustion Institute,1994,25:1249-1256.
    [132]VEYNANTE D, PIANA J, DUCLOS J M, et al. Experimental analysis of flame surface density model for premixed turbulent combustion[C]. The Combustion Institute,1996:413-420.
    [133]DUCLOS J M, VEYNANTE D, POINSOTT. A comparison of flamelet models for premixed turbulent combustion[J]. Combustion and Flame,1993,95:101-108.
    [134]CANT R S, POPE S B, BRAY K N C. Modelling of flamelet surface to volume ratio in turbulent premixed combustion[C]. The Combustion Institute,1990:809-815.
    [135]CHOI C R, HUH K Y. Development of a coherent flamelet model for a spark ignited turbulent premixed flame in a closed vessel[J]. Combustion and Flame,1998,114:336-348.
    [136]SUN C J, LIU J B, LAW C K. Structural response of counter-flow diffusion flames to strain rate variations[J]. Combustion and Flame,1996,107:321-335.
    [137]PITZ W J, CEMANSKY N P, DRYER F L. et al. Development of an Experimental Database and Kinetic Models for Surrogate Gasoline Fuels[C]. SAE 2007-01-0175,2007.
    [138]FARRELL J T, CEMANSKY N P, DRYER F L, et al. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels[C]. SAE 2007-01-0201,2007.
    [139]WESTBROOK C K, PITZ W J, HERBINET O, et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J]. Combustion and flame,2009,156:181-199.
    [140]PITSCH H. Detailed kinetic reaction mechanism for ignition and oxidation of a-methylnaphthalene[C]. The Combustion Institute,1996:721-728.
    [141]BOUNACEUR R, GLAUDE P A, FOURNET R, et al. Kinetic modeling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines[J]. International Journal Vehicle Design,2007,44: 124-142.
    [142]WANG H, WARNER S J, OEHLSCHLAEGER M A, et al. An experimental and kinetic modeling study of the autoignition of α-methylnaphthalene/air and a-methylnaphthalene/n-decane/air mixtures at elevated pressures[J]. Combustion and flame,2010,157:1976-1988.
    [143]HASEGAWA R, SAKATA I, KOYAMA T. Numerical analysis ignition control in HCCI engine[C]. SAE 2003-01-1817,2003.
    [144]LINDSTEDT R P, MAURICE L Q. Detailed kinetic modelling of n-heptane combustion[J]. Combust Sci Technol,1995,107:317-353.
    [145]CURRAN H J, GAUFFURI P, PITZ W J, et al. A comprehensive modeling study of n-heptane oxidation[J]. Combustion and flame,1998,114:149-177.
    [146]TANAKA S, AYALA F, KECK J C. A reduced chmical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine[J]. Combustion and flame,2003,133: 467-481.
    [147]RA Y, REITZ R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels[J]. Combustion and flame,2008,155:713-738.
    [148]CHELLIAH H K, BUI-PHAM M, SESHADRI K, et al. Numerical description of the structure of counterflow heptane-air flame using detailed and reduced chemistry comparison to experiments[C]. Symposium on Combustion,1992,24:851-857.
    [149]BOLLIG M, PITSCH H, HEWSON J C, et al. Reduced n-heptane mechanism for non-premixed combustion with emphasis on pollutant-relevant intermediate species[C]. Symposium on Combustion,1996.26:729-737.
    [150]GUIBET J C. Fuels and Engines[M]. Paris:Editions Technip,1999.
    [151]LINDSTEDT R P, MAURICE L Q. Detailed kinetic modeling of toluene combustion[J]. Combustion science and technology,1996,120:119-167.
    [152]DAGAUT P, PENGLOAN G, RISTORI A. Oxidation, ignition and combustion of toluene: experimental and detailed chemical kinetic modelling. Physical Chemistry Chemical Physics.2002, 4:1846-1854.
    [153]RIBAUCOUR M, ROUBAUD A, MINETTI R, et al. The low-temperature autoignition of alkylaromatics:experimental study and modelling of the oxidation of n-butylbenzene[J]. Proceeding of combustion institute,2000,29:1701-1707.
    [154]BLANQUART G, PEPIOT-DESJARDINS P, PITSCH H. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors[J]. Combustion and flame,2009,156:588-607.
    [155]张庆峰,郑朝蕾,何祖威,等.适用于HCCI燃烧研究的甲苯参比燃料化学动力学简化模型.物理化学学报,2011,27(3):530-538.
    [156]何学良,李疏松.内燃机燃烧学[M].北京:机械工业出版社,1990.
    [157]BATTIN-LECLERC F. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates[J]. Progress in energy and combustion science,2008,34:440-498.
    [158]EMELEUS H J. The spectra of the phosphorescent flames of carbon disulphide and ether[J]. Journal of the chemical society,1926,0:2948-2951.
    [159]BARATP, CULLIS C F, POLLARD RT. Studies of the combustion of branched-chain hydrocarbons[J]. Process symposium combustion institute,1971,13:171-192.
    [160]HEYBERGERB, BELMEKKIN,CONRAUD V, et al. Oxidation of small alkenes at high temperature[J]. International Journal of Chemical Kinetics,2002,34:666-677.
    [161]BREZINSKY K. The high temperature oxidation of aromatic hydrocarbons[J]. Progress in energy and combustion science,1986,12:1-24.
    [162]NICOVICH J M, GUMP C A, RAVISHANKARA A R. Rates of reactions of O(3P) with benzene and toluene[J]. The journal of physical chemistry,1982,86:1684-1690.
    [163]ELLIS C, SCOTT M, WALKER R W. Addition of toluene and ethylbenzene to mixture of H2 and O2 at 773K[J]. Combustion and flame,2003,132:291-304.
    [164]COLUSSI A J, ZABEL F, BENSON S W. The very low-pressure pyrolysis of phenyl ethyl ether, phenyl allyl ether, and benzyl methyl ether and the enthalpy of formation of the phenoxy radical[J]. International Journal of Chemical Kinetics,1977,9:161-178.
    [165]TSURUSHIMA T. A new skeletal PRF kinetic model for HCCI combustion. Proceedings of the combustion institute,2009,32:2835-2841.
    [166]MARINOV N M, MALTE P C. Ethylene oxidation in a well-stirred reactor. International Journal of Chemical Kinetics,1995,27:957-986.
    [167]HORIM, MATSUNAGA N, MARINOV N M, et al. An experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO2 conversion in a flow reactor[J]. Proceedings of the combustion institute,1998,27:389-396.
    [168]APPEL J, BOCKHORN H, FRENKLACH M. Kinetic modeling of soot formation with detailed chemistry and physics:laminar premixed flames of C2 hydrocarbons[J]. Combustion and flame, 2000,121:122-136.
    [169]C ANNEAUX S, LOUIS F, RIBAUCOUR M, et al. A theoretical study of the kinetics of the benzylperoxy radical isomerization[J]. The journal of physical chemistry A,2008,112:6045-6052.
    [170]NARAYANASWAMY K, BLANQUART G, PITSCH H. A consistent chemical mechanism for oxidation of substituted aromatic species[J]. Combustion and flame,2010,157:1879-1898.
    [171]CIEZKI H K, ADOMEIT G. Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevent conditions[J]. Combustion and flame,1993,93:421-433.
    [172]FIEWEGER K, BLUMENTHAL R, ADOMEIT G. Self-ignition of SI engine model fuels:a shock tube investigation at high pressure[J]. Combustion and flame.1997,109:599-619.
    [173]SHEN H S, VANDEROVER J, OEHLSCHLAEGER M A. A shock tube study of the auto-ignition of toluene/air mixtures at high pressures[C]. Proceedings of the Combustion Institute, 2009,32:165-172.
    [174]MITTAL G, SUNG C J. Autoignition of toluene and benzene at elevated pressures in a rapid compression machine[J]. Combustion and flame,2007,150:355-368.
    [175]SIRIGNANO W A. Fluid dynamics and transport of droplets and sprays[M]. Cambridge: Cambridge University Press,1999.
    [176]FUCHS N A. Evaporation and droplet growth in gaseous media[M]. London:Pergamon Press, 1959.
    [177]DUKOWICZ J K.. Quasi-steady droplet change in the presence of convection[R]. Informal report Los Alamos Scientific Laboratory. LA7997-MS.
    [178]ABRAMZON B, SIRIGNANO W A. Droplet vaporization model for spray combustion calculations[J]. Internal Journal Heat Mass Transfer,1989,32:1605-1618.
    [179]BRENN G, DEVIPRASATH L J, DURST F. Computations and experiments on the evaporation of multi-component droplets[C]. Proceedings 9th International conference liquid atomization spray syst (ICLASS).
    [180]BERTOLI C, MIGLIACCIO M. A finite conductivity model for diesel spray evaporation computations[J]. International Journal of Heat Fluid Flow.1999,20:552-561.
    [181]PEKALSKI A A, ZEVENHERGEN J F, PASMAN H J, et al. The relation of cool flame and auto-ignition phenomena to process safety at elevated pressure and temperature [J]. Journal of hazardous materials,2002,93:93-105.
    [182]ZHAO H, LADOMMATOS N. Optical diagnostics for soot and temperature measurement in diesel engines[J]. Progress in energy and combustion science,1998.24:221-255.
    [183]WANG X G, HUANG Z H, ZHANG W, et al. Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray[J]. Applied Energy,2011,88:1620-1628.
    [184]苏万华,鹿盈盈,于文斌,黄豪中,韩志强,赵菲阳等.柴油机高密度—低温燃烧的数值模拟[J].燃烧科学与技术,2010,16(3):191-198.
    [185]SHI X Y, QIAO X Q, NI J M, et al. Study on the combustion and emission characteristics of a diesel engine with multi-injection models based on experimental investigation and computational fluid dynamic modelling[J]. Proceedings of the Institution of Mechanical Engineers Part D:Journal of automobile engineering,2010,224:1161-1176.
    [186]SHUAI S, ABANI N, YOSHIKAWA T, et al. Simulating low temperature diesel combustion with improved spray models[J], International Journal of Thermal Sciences,2009,48:1786-1799.
    [187]YAMAMOTO S, NAGAOKA M,UEDA R, et al. Numerical simulation of diesel combustion with a high exhaust gas recirculation rate[J]. Proceedings of the Institution of Mechanical Engineers Part D:Journal of automobile engineering,2010,11:17-28.
    [188]郑朝蕾.柴油机高效清洁燃烧方式基础理论研究[D].天津:天津大学,2008
    [189]俞佐平.传热学[M].北京:人民教育出版社,1979.
    [190]SCHWARZ F, SPICHER U. Determination of residual gas fraction in IC engines[C]. SAE paper,2003-01-3148,2003.
    [191]DE FRANCQUEVILLE L, THIROUARD B, RICORDEAU V. Measurement of residual gas fraction using IR absorption[C]. SAE paper,2006-01-3337,2006.
    [192]WELLING O, COLLINGS N. UEGO based measurement of EGR rate and residual gas fraction[C]. SAE paper,2011-01-1289,2011.
    [193]KAWAHARA N, TOMITA E, OHTSUKI A, et al. Cycle-resolved residual gas concentration measurement inside a heavy-duty diesel engine using infrared laser absorption[J]. Proceedings of the combustion institute,2011,33:2903-2910.
    [194]苏海峰,张幽彤,王尚勇,孙帅.高压共轨喷油器喷射特性实验与仿真[J].农业机械学报,2011,42(1):22-26.
    [195]李建秋,赵六奇,韩晓东.汽车电子学教程(第2版)[M].北京:清华大学出版社.