基于断裂参量K因子的焊接接头等承载设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为减轻结构重量并保证结构的承载能力,高强钢以其高的强度和良好的塑韧性广泛应用于桥梁、建筑、航空航天等领域。焊接作为一种高效的连接方法,广泛应用于工程结构领域。由于焊接过程的特殊性,使得焊接缺陷不可避免,导致焊接接头容易产生低应力脆断破坏,显著降低了接头的承载能力,给焊接接头设计带来一定的局限性。为提高易产生缺陷的焊接接头的承载能力,本文从断裂力学角度出发,提出了基于应力强度因子(K因子)的焊接接头等承载设计思想,并给出了接头含不同缺陷时的等承载设计准则,使用该准则可以设计出承载能力与母材相当的焊接接头。
     对于焊缝和母材区都含缺陷的接头而言,提出了焊缝和母材区的K因子比值与焊缝金属和母材金属的断裂韧度比值相等时即可满足等承载要求的设计思想;对于焊缝区存在缺陷而母材区无缺陷的接头而言,提出了焊缝区裂纹失稳扩展的临界应力与母材的抗拉强度相等时即可满足等承载要求的设计思想;对于焊缝区无缺陷而母材区存在缺陷的接头而言,提出了母材区裂纹失稳扩展的临界应力与焊缝区峰值应力相等且不高于焊缝金属的抗拉强度时即可满足等承载要求的设计思想;本文主要针对前两种接头的等承载设计进行讨论和研究。
     本文研究了接头形状参数对含中心裂纹和单边裂纹对接接头形状因子的影响规律,研究表明,使用不考虑余高影响的传统的形状因子表达式计算含缺陷接头的形状因子是不合理的。提出了一种获得含裂纹复杂结构形状因子表达式的新方法,即首先采用有限元法研究结构各形状参数对其形状因子的影响规律,再引入一个能够统一各形状参数对形状因子影响规律的几何不连续形状协调参数,最后对具有不同形状参数结构的有限元结果以形状协调参数为自变量进行拟合,获得在传统形状因子表达式基础上的修正系数方程,进而获得较传统表达式更准确的形状因子表达式。本文利用该方法获得了考虑余高形状影响时的含中心裂纹和单边裂纹对接接头受单向拉伸载荷作用时的形状因子表达式。本文给出表达式能够更有效的指导含中心裂纹和单边裂纹对接接头的形状设计,并可获得相应的应力强度因子、临界应力、临界裂纹尺寸以及剩余寿命,以便对其进行安全性评估。
     运用有限元法获得含缺陷复杂结构形状因子和K因子,需进行有限元建模、边界条件和材料属性的定义、加载计算以及数据处理等一系列步骤,过程繁琐。为提高含缺陷复杂形状接头K因子的计算效率和准确度,本文开发了含缺陷焊接接头K因子计算系统,对数据进行回归分析,可获得具有一定接头形状的含缺陷接头的形状因子和K因子表达式。本文开发了基于断裂参量K因子的焊接接头等承载设计系统,可确定等承载接头的形状参数,并能计算服役的含缺陷等承载接头的K因子、裂纹尖端张开位移、J积分以及接头剩余寿命,有利于对服役的等承载接头进行安全评估,进一步推广了等承载设计思想及应用。
     对焊缝和母材都含缺陷等承载接头进行了实验研究,拉伸和疲劳试验结果表明,对于按照等承载接头形状参数设计的焊缝和母材都含中心裂纹或者单边裂纹的对接接头而言,即使焊缝区裂纹尺寸大于母材区裂纹尺寸,所有试件均断于含裂纹母材处,满足焊缝不先于母材破坏的等承载要求;对焊缝含缺陷母材无缺陷等承载接头进行了实验研究,对于按照等承载接头形状参数设计的焊缝含中心裂纹或者单边裂纹母材无缺陷的对接接头而言,所有拉伸试件均断于焊趾附近的母材处,且抗断应力达到母材的抗拉强度,满足等承载要求。所有疲劳试件均断于含裂纹焊缝处,其疲劳寿命远高于含相同缺陷承受相同疲劳载荷的普通接头的疲劳寿命。
     基于断裂参量K因子的含缺陷等承载接头的危险截面从焊缝区域向母材区域转移,保证焊缝区不先于母材区破坏,接头承载能力能够达到母材的承载能力。焊接接头K因子计算系统能够计算含缺陷接头的K因子,对所得数据进行处理并回归分析后,可获得含缺陷接头K因子表达式。等承载接头设计专家系统能够获得等承载接头所需的形状参数。
In order to reduce weight and ensure the load carrying capacity of structure,high-strength steel is commonly used in bridges, building, aerospace fields andso on due to its high strength and good ductility. As an efficient joining process,welding has been widely used in engineering field. Weld defects can not beenavoided because of the welding particularity. It has been found that weld defectscan significantly deteriorate the load carrying capacity of joint. Typical brittlefracture is often observed in the defect-existent joint. In order to increase loadcarrying capacity of defect-existent joint, equal load carrying capacity (ELCC)method based on stress intensity factor is proposed by using fracture mechanicstheory. ELCC design criteria of joint with different defects are given.
     In order to guarantee the load-carrying capacity of under-matched joint withdefect reach that of the base metal, four different conditions have beenconsidered. The influences of joint shape parameters on shape factor ofcenter-cracked or edge-cracked butt joint are studied. The results showed that itis unreasonable to calculate the shape factor of center-cracked or edge-crackedbutt joint without considering weld reinforcement. A new approach to obtainingshape factor expression for defect-existent complicated structures is introduced.Firstly, the influences of structural shape parameters on shape factor should beinvestigated by using finite element method. Secondly, a coordinated parameterwhich can unify all influences of shape parameters on shape factor must beintroduced. Then a modified coefficient function on the basis of the traditionalshape factor expression can be obtained with regression analysis of all finiteelement results by using the coordinated parameter as the independent variable.Finally, the accurate shape factor expression considering the effect of allstructural shape parameters can be obtained. The accurate shape factorexpressions for center-cracked and edge-cracked butt joint under tensile load aregiven in this paper. The shape factor expressions given in this paper canefficiently guide defect-existent butt joint design. To conduct safety assessment,the corresponding stress intensity factor, critical stress, critical crack length andfatigue remaining life can also be obtained by using the shape factor expressions proposed in this paper.
     The procedures of obtaining shape factor and stress intensity factor fordefect-existent complicated structures by using finite element method are asfollowing, establishing finite element model, defining material parameters andboundary conditions, submitting job and processing data. The procedure is toocomplicated and error-prone. In order to improve the efficiency and accuracy ofcalculating the shape factor and stress intensity factor for defect-existentcomplicated structures, the expert system of calculating stress intensity factor fordefect-existent joint is developed. The expert system of ELCC joint design whichcan provide the ELCC joint shape parameters is also developed. This expertsystem can also give the stress intensity factor, crack tip opening displacement,J-integral and fatigue remaining life of existing ELCC joint.
     Tensile experiment and fatigue experiment of joint with center crack or edgecrack both in weld and base metal designed according to ELCC joint shapeparameters were tested. Although the crack length of weld metal is larger thanthat of the base metal, all the samples were fractured at the cracks in base metalzone which can satisfy the ELCC condition. Tensile experiment and fatigueexperiment of joint with center crack or edge crack only in weld metal designedaccording to ELCC joint shape parameters were also tested. All the tensilesamples were fractured at the base metal zone which is near to the weld toe, andtheir breaking stress can reach the tensile strength of base metal. This can satisfythe static ELCC condition. All the fatigue samples were fractured at the cracks inweld metal zone, but their fatigue remaining life were much higher than those ofthe normal joint with same crack.
     The dangerous section of joint can be transferred from weld zone to basemetal zone after ELCC joint design. ELCC joint with defect would fracture at thebase metal zone and its load carrying capacity can reach that of the base metal.The stress intensity factor calculating system for defect-existent joint can be usedto efficiently calculate the stress intensity factor. The ELCC joint design systemcan easily provide the corresponding ELCC joint shape parameters.
引文
[1]刘涌. WDB620D高强钢钢岔管焊接技术[J].金属加工.2012,22(2):41-43.
    [2] Ravi S, Balasubramanian V. Influences of MMR, PWHT and NotchLocation on Fatigue Life of HSLA Steel Welds[J]. Engineering FailureAnalysis.2004,11(4):619-634.
    [3] Woghirena C O. Weld toe stress concentrations in multi-planar stiffenedtubular KK joints[J]. International Journal of Fatigue.2009,31(1):164-172.
    [4] Edwards K L. Supporting design decision-making when applying materialsin combination[J]. Materials and Design.2007,28(4):1288-1297.
    [5]郭桃红.焊接设计标准在燃气轮机研制中的应用[J].航空标准化与质量.2011,(6):13-15.
    [6]徐智珍.产品研制中焊接设计标准应用分析[J].航空标准化与质量.2010,(2):46-48.
    [7]孟宪国.关于大型电站锅炉钢结构焊接设计的几点说明[J].锅炉制造.2010,(6):1-6.
    [8]沈显璞.双相钢的发展现状及展望[J].机械工程材料.1988,(1):1-4.
    [9] Lee H W, Choe W H, Park J U. Weld metal hydrogen assisted cracking in50mm TMCP steel plate with SAW process[J]. Science and Technology ofWelding and Joining.2006,11(3):243-249.
    [10]王爱华,彭云,肖红军.690MPa级低合金高强钢熔敷金属冲击断裂行为研究[J].机械工程学报.2012,48(2):73-79.
    [11]段争涛,李艳梅,朱伏先.淬火温度对Q690D高强钢组织和力学性能的影响[J].金属热处理.2012,37(2):81-84.
    [12] Czyryca E J, Link R E, Wong R J, et al. Development and certification ofHSLA-100steel for naval ship construction[J]. Naval Engineers Journal.1990,102(3):63-82.
    [13]李亚江,王娟,刘鹏.低合金钢焊接及其工程应用[M].北京:化学工业出版社,2003:36-38.
    [14] Cam G, Kocak M, Dobi D, et al. Fracture behaviour of diffusion bondedbimaterial Ti-Al joints[J]. Science and Technology of Welding and Joining.1997,2(3):95-101.
    [15] Tsuei H, Dunne D, Li H. Neural network analysis of impact properties offlux cored arc weld metals for structural steels[J]. Science and Technologyof Welding and Joining.2003,8(3):205-212.
    [16] Gliha V, Vuherer T, Ule B, et al. Fracture resistance of simulated heataffected zone areas in HSLA structural steel[J]. Science and Technology ofWelding and Joining.2004,9(5):399-406.
    [17] Enzinger N, Cerjak H. Investigation of cracks in original material ofCleuson-Dixence shaft[J]. Science and Technology of Welding and Joining.2006,11(3):347-351.
    [18] Magudeeswaran G, Balasubramanian V, Reddy G M. Effect of weldingprocesses and consumables on high cycle fatigue life of high strength,quenched and tempered steel joints[J]. Materials and Design.2008,29(9):1821-1827.
    [19] Ravi S, Balasubramanian V, Nasser S N. Influences of post-weld heattreatment on fatigue crack growth behaviour of strength mismatched HSLAsteel welds[J]. Science and Technology of Welding and Joining.2004,9(3):246-252.
    [20]方洪渊.焊接结构学[M].北京:机械工业出版社,2008:35-62.
    [21] Betegon C. Numerical analysis of the influence of material mismatching inthe transition curve of welded joints[J]. Engineering Fracture Mechanics.2008,75(11):3464-3482.
    [22]严鸢飞,杨毅力,印建正.钢焊接接头的强韧性设计原则的研究[J].机械工程学报.1996,32(2):101-105.
    [23] Hao S, Schwalbe K H, Cornec A. The effect of yield strength mis-match onthe fracture analysis of welded joints: slip-line field solutions for purebending[J]. International Journal of Solids and Structures.2000,37(39):5385-5411.
    [24] Rodrigues D M, Loureiro A. Numerical study of the plastic behaviour intension of welds in high strength steels[J]. International Journal ofPlasticity.2004,20(1):1-18.
    [25] Rodrigues D M, Loureiro A. The influence of the HAZ softening on themechanical behaviour of welded joints containing cracks in the weldmetal[J]. Engineering Fracture Mechanics.2004,71(13-14):2053-2064.
    [26] Inoslav R. Fracture behaviour of welded joints fabricated in HSLA steels ofdifferent strength level[J]. Engineering Fracture Mechanics.1999,64(4):401-415.
    [27] Moltubakk T, Zhang Z L. Application of local approach to inhomogeneouswelds: Influence of crack position and strength mismatch[J]. EngineeringFracture Mechanics.1999,62(4-5):445-462.
    [28] Rakin M, Dobrojevic M. Modelling of ductile fracture initiation in strengthmismatched welded joint[J]. Engineering Fracture Mechanics.2008,75(11):3499-3510.
    [29] Ravi S. Effect of mis-match ratio (MMR) on fatigue crack growth behaviourof HSLA steel welds. Engineering Failure Analysis.2004,11(3):413-428.
    [30] Ravi S, Nasser S N. Fatigue life prediction of strength mis-matched highstrength low alloy steel welds. Materials and Design.2006,27(4):278-286.
    [31] Predan J, Kolednik O. On the local variation of the crack driving force in adouble mismatched weld[J]. Engineering Fracture Mechanics.2007,74(11):1739-1757.
    [32] Boothman D P, Luxmoore A R. The effects of weld mismatch on J-integralsand Q-values for semi-elliptical surface flaws[J]. Engineering FractureMechanics.1999,64(4):433-458.
    [33] Kim Y J, Ainsworth R A. Simplified J-estimations based on the engineeringtreatment model for homogeneous and mismatched structures[J].Engineering Fracture Mechanics.2001,68(1):9-27.
    [34] Kim Y J. Numerical analyses of strength mis-match effect on local stressesfor ideally plastic materials[J]. Engineering Fracture Mechanics.2004,71(7-8):1177-1199.
    [35] Shi Y W. Geometry effect of welded joints on failure assessment curves[J].International Journal of Pressure Vessels and Piping.1997,74(1):71-76.
    [36]张彦华.焊接结构设计及应用[M].北京:化学工业出版社,2009:14-30.
    [37]闻邦椿.机械设计手册[M].北京:机械工业出版社,2010:72-91.
    [38]王承禹,常汉宝,洪哲.基于传统设计方法的曲柄强度校核分析[J].结构与可靠性.2009,31(6):38-41.
    [39]张彦华.各种焊接结构设计加工生产工艺技术汇编[M].北京:北京航空航天大学出版社,2011:103-126.
    [40]高阳,杨昌军,白广忱.涡轮盘低循环疲劳可靠性设计方法[J].航空发动机.2011,37(1):1-7.
    [41]叶小芬,王起梁,黄智勇.齿轮的概率可靠性设计方法研究[J].机车车辆工艺.2011,21(3):1-5.
    [42] Kaveh A, Kian M J. Efficient finite element analysis using graph-theoreticalforce method with brick elements[J]. Finite Elements in Analysis andDeisgn.2012,54:1-15.
    [43] Yi H J, Kim J Y, Yoon J H. Investigations on welding residual stress anddistortion in a cylinder assembly by means of a3D finite element methodand experiments[J]. Journal of Mechanical Science and Technology.2011,25(12):3185-3193.
    [44] Lee C Y, Hang J K, Bae W J. Analysis of residual stress for narrow gapwelding using finite element method[J]. International Journal of ModernPhysics.2010,24(15-16):2797-2802.
    [45] Campilho R D, Banea M D, Chaves F J. Extended finite element method forfracture characterization of adhesive joint in pure mode I[J]. ComputationalMaterials Science.2011,50(4):1543-1549.
    [46] Nguyen T N, Wahab M A. The effect of weld geometry and residual stresseson the fatigue of welded joints under combined loading[J]. Journal ofMaterials Processing Technology.1998,77(1-3):201-208.
    [47]于有生.对接接头工作应力分布及其应力集中系数的研究[J].武汉理工大学学报.2005,29(1):123-125.
    [48]胡兵,杨玉恭.对焊接头几何形状参数统计分布及焊趾处Kt计算[J].航空学报.1994,15(11):1408-1410.
    [49]李栋才.对接接头应力集中系数的有限元分析[J].西安石油学院学报.1997,1(12):30-35.
    [50] Yoshida S, Kanao M. Influence of joint geometry on stress concentrationfactor of butt joint[J]. Transactions of Japanese welding society.1978,47(9):627-631.
    [51] Chae D, Koss D A. Damage accumulation and failure of HSLA-100steel[J].Materials Science and Engineering A.2004,366(2):299-309.
    [52] Gurney T R著.周殿群译.焊接结构的疲劳[M].北京:机械工业出版社,1988:198-213.
    [53] Beretta S, Carboni M. Fatigue assessment of root failures in HSLA steelwelded joints: A comparison among local approaches[J]. InternationalJournal of Fatigue.2009,31(1):102-110.
    [54] Shao Y B. Geometrical effect on the stress distribution along weld toe fortubular T-and K-joints under axial loading[J]. Journal of ConstructionalSteel Research.2007,63(10):1351-1360.
    [55] Diaye A N, Pluvinage G, Azari Z. Stress concentration factor analysis fornotched welded tubular T-joints[J]. International Journal of Fatigue.2007,29(8):1554-1570.
    [56] Hou C Y. Fatigue analysis of welded joints with the aid of realthree-dimensional weld toe geometry[J]. International Journal of Fatigue.2007,29(4):772-785.
    [57] Balasubramaniana V, Swamidas A S J, Seshadri R. Influences of shieldedmetal arc welded cruciform joint dimensions on toe crack failures ofpressure vessel grade steels[J]. Engineering Failure Analysis.2000,7(3):169-179.
    [58] Nykanen T, Bjork T. Fatigue analysis of non-load-carrying fillet weldedcruciform joints[J]. Engineering Fracture Mechanics2007,74(3):399-415.
    [59] Kirkhope K J, Caron L. Weld detail fatigue life improvement techniques[J]Marine Structures.1999,12(7-8):447-474.
    [60] Baptista R, Branco C M. Study of the fatigue behavior in welded joints ofstainless steels treated by weld toe grinding and subjected to salt watercorrosion[J]. International Journal of Fatigue.2008,30(3):453-462.
    [61] Baud R V. Fillet profiles for constant stress[J]. Production Engineering.1934,5(4):133-134.
    [62] Schnack E. Mechanical dynamic programming algorithm for structureoptimisation[J]. Internationa Journal for Numerical Methods in Engineering.1986,23(11):1985-2004.
    [63] Schnack E. Shape optimization under fatigue using continuum damagemechanics[J]. Computer Aided Design.2002,34(12):929-938.
    [64] Mattheck C. The evolution of notch shape optimization from complex tosimple[J]. Engineering Fracture Mechanics.2006,73(12):1732-1742.
    [65] Mattheck C, Tesari I, Kraft O. Shape optimization without the use of FEM:an easy approach for the reduction of stress concentrations[J]. MaterialWiss Werkstofftech.2003,34(3):514-515.
    [66] Mattheck C, Kriechbaum R, Walther F. Computational methods for theunderstanding of biological optimization mechanisms[J]. ComputationalMaterials Science.1993,1(5):302-312.
    [67]赵智力.基于等承载能力原则的高强钢低匹配焊接接头设计[D].哈尔滨:哈尔滨工业大学,2009:31-53.
    [68]郦正能.工程断裂力学[M].北京:北京航空航天大学出版社,1993:10-25.
    [69]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995:13-21.
    [70] Wells A A. Application of fracture mechanics at and beyond generalyielding[J]. British Welding Journal.1963,10:563-570.
    [71] Rice J R. A path independent integral and the approximate analysis of strainconcentrations by notches and cracks[J]. Journal of Applied Mechanics.1968,35:379-386.
    [72] Hutchnison J W. Singular behavior at the end of a tensile crack in ahardening material[J]. Journal of the Mechanics and Physics of Solid.1968,16:13-31.
    [73] Rice J R. Plane strain deformation near crack tip in a power-law hardeningmaterial[J]. Journal of the Mechanics and Physics of Solid.1968,18:1-12.
    [74] Paris P C. A rational analytic theory of fatigue[J]. The Trend in Engineering.1961,13:9-14.
    [75] Yoffe E H. The moving Griffith crack[J]. Philosophical Magazine.1951;42:739-750.
    [76] Rosler J, Harders H, Baker M. Mechanical behaviour of engineeringmaterials[M]. Berlin: Springer,2007:130-131.
    [77]程靳,赵树山.断裂力学[M].北京:科学出版社,2006:15-22.
    [78] Ada H, Irwin G R. The stress analysis of cracks handbook[M]. New York:ASME,2000:83-90.
    [79] Murakami Y. Stress intensity factors handbook[M]. England: Pergamon,1987:123-135.
    [80] Wang J G, Sun M J, Li S L. A new analytical method for stress intensityfactors based on in situ measurement of crack deformation under biaxialtension[J]. Materials and Design.2011,32(2):664-670.
    [81]刘钧玉,胡志强.裂纹面载荷作用下多裂纹应力强度因子计算[J].工程力学.2011;28(4):7-12.
    [82] Gdoutos M K. Limitations in mixed-mode stress intensity factor evaluationby method of caustics[J]. Engineering Fracture Mechanics.1996,55(3):371-382.
    [83] Newman J C. Stress-intensity factors and crack-opening displacements forround compact specimens[J]. International Journal of Fracture.1981,17(6):567-578.
    [84] Sarangi H, Chakraborty D. Radial locations of strain gages for accuratemeasurement of mode I stress intensity factor[J]. Materials and Design.2010,31(6):2840-2850.
    [85] Ren X D, Zhang T. Comparison of the simulation and experimental fatiguecrack behaviors in the nanoseconds laser shocked aluminum alloy[J].Materials and Design.2011,32(3):1138-1143.
    [86] Yala A A. Optimisation of composite patches repairs with the design ofexperiments method[J]. Materials and Design.2009,30(1):200-205.
    [87] Bouiadjra B B, Berrahou M, Ouinas D. Numerical estimation of the massgain between double symmetric and single bonded composite repairs inaircraft structures[J]. Materials and Design.2010,31(6):3073-3077.
    [88] Ouinas D, Bouiadjra B B, Benderdouche N. Interaction effectcrack-interfacial crack using finite element method[J]. Materials andDesign.2010,31(1):375-381.
    [89] Shahani A R. Finite element analysis of dynamic crack propagation usingremeshing technique[J]. Materials and Design.2009,30(4):1032-1041.
    [90] Rizov V. Fracture behavior of HT-90structural foam-A three-dimensionalanalysis[J]. Materials and Design.2009,30(3):617-621.
    [91] Moreira P M G P, Pastrama S D. Stress intensity factor and load transferanalysis of a cracked riveted lap joint[J]. Materials and Design.2007,28(4):1263-1270.
    [92] Megueni A, Bedia E A. Evolution of the stress intensity factor for patchedcrack with bonded hygrothermal aged composite repair[J]. Materials andDesign.2007,28(1):287-293.
    [93] Mimaroglu A, Avci E. Numerical analysis of fracture in ceramic coatingssubjected to thermal loading[J]. Materials and Design.1996,17(5-6):283-287.
    [94] Chowdhury M S, Gao W. Probabilistic fracture mechanics by using MonteCarlo simulation and the scaled boundary finite element method[J].Engineering Fracture Mechanics.2011,78(12):2369-2389.
    [95] Mikulik Z, Thomson R S. Fracture mechanics based predictions of initiationand growth of multi-level delaminations in a composite specimen[J].International Journal of Fracture.2011,170(2):145-157.
    [96] Henrik D. A probabilistic fracture mechanics method and strength analysisof glulam beams with holes[J]. European Journal of Wood and WoodProducts.2011,69(3):407-419.
    [97] Stuart D H, Newman J C. Correlation of one-dimensional fatigue crackgrowth at cold-expanded holes using linear fracture mechanics andsuperposition[J]. Engineering Fracture Mechanics.2011,78(7):1389-1406.
    [98] Toribio J, Gonzalez B. Critical stress intensity factors in steel crackedwires[J]. Materials and Design.2011,32(8-9):4424-4429.
    [99] Jayaprakash M, Yoshii K. Fretting fatigue behavior and life prediction ofautomotive steel bolted joint[J]. Materials and Design.2011,32(7):3911-3919.
    [100]Boehm R, Hufenbach W. A phenomenologically based damage model for2D and3D-textile composites with non-crimp reinforcement[J]. Materialsand Design.2011,32(5):2532-2544.
    [101]Li Q B, Mueeller N. Simulation of fatigue failure in composite axialcompressor blades[J]. Materials and Design.2011,32(4):2058-2065.
    [102]Aid A, Bouiadjra B B. Fatigue life prediction under variable loading basedon a new damage model[J]. Materials and Design.2011,32(1):183-191.
    [103]Mirapeix J, Cobo A, Conde O M. Real-time arc-welding defect detectionand classification with principal component analysis and artificial neuralnetworks[J]. NDT&E International.2007,40(4):315-323.
    [104]Fujii H, Aoki Y, Nogi K. Bubble formation in aluminium alloy duringelectron beam welding[J]. Journal of Materials Processing Technology.2004,155:1252-1255.
    [105]Durocher A, Chagnot C, Lipa M, et al. CuCrZr alloy hot cracking duringelectron beam welding[J]. Journal of Nuclear Materials.2007,367:1208-1212.
    [106]Kim Y G, Tsumura Y, Komazaki T. Three defect types in friction stirwelding of aluminum die casting alloy[J]. Materials Science andEngineering A.2006,415(1-2):250-254.
    [107]Zhang H, Wu L, Feng J C. Defects formation procedure and mathematicmodel for defect free friction stir welding of magnesium alloy[J]. Materialsand Design.2006,27(9):805-809.
    [108]Li B., Hu W Y. The study on defects in aluminum2219-T6thick buttfriction stir welds with the application of multiple non-destructive testingmethods[J]. Materials and Design.2011,32(4):2073-2084.
    [109]Dubourg L, Jahazi M. Process optimisation and mechanical properties offriction stir lap welds of7075-T6stringers on2024-T3skin[J]. Materialsand Design.2010,31(7):3324-3330.
    [110]Shim D J, Rudland D L. Determination of the elastic-plastic fracturemechanics Z-factor for alloy182weld metal flaws[J]. International Journalof Pressure Vessels and Piping.2011,88(5-7):231-238.
    [111]Balasubramanian T S, Manickam M A. Fatigue crack growth behaviour ofgas tungsten arc, electron beam and laser beam welded Ti-6Al-4V alloy[J].Materials and Design.2011,32(8-9):4509-4520.
    [112]Sevim I. Effect of hardness to fracture toughness for spot welded steelsheets[J]. Materials and Design.2006,27(1):21-30.
    [113]Takahashi H, Tsuchiya K. Fracture mechanics analysis including the buttjoint geometry for the superconducting conductor conduit of the NationalCentralized Tokamak[J]. Fusion Engineering and Design.2006,81(8-14):1005-1011.
    [114]郭晓妮,潘严.基于专家系统的桥梁在线智能监测系统设计[J].山西建筑.2012,38(8):196-197.
    [115]李春生,张可佳,杨雨.基于工程决策的专家系统模型设计与研究[J].计算机技术与发展.2012,22(2):89-92.
    [116]付荣华,康慧,曲平.焊接专家系统的应用现状及发展[J].热加工工艺.2006,35(3):53-55.
    [117]高长贵.专家系统在焊接领域的应用[J].电焊机.2005,35(10):17-19.
    [118]邓军平田爱芬. OOA模型在焊接工艺设计专家系统中的应用[J].西安科技大学学报.2008,28(1):76-80.
    [119]刘立鹏,魏艳红,梁宁,等.不锈钢焊接性分析与焊接工艺设计专家系统[J].焊接设备与材料.2009,38(7):30-34.
    [120]罗丹,许先果.不锈钢查询专家系统的设计与实现[J].机电一体化.2005,23(6):64-66.
    [121]姚宗湘,许先果,朱成华,等.低温压力容器焊接工艺设计专家系统[J].电焊机.2005,35(4):44-46.
    [122]陈世艳,李伟武,王志平.焊接材料计算专家系统的建立[J].电焊机.2010,40(9):86-88.
    [123]李思奇,吴志生,郭建业.弧焊电源的智能输入专家系统设计[J].电焊机.2011,41(7):19-22.
    [124]苏辉,吕柏林,谢禹钧.基于ASP.NET的焊接裂纹远程预测专家系统[J].焊接设备与材料.2007,36(4):48-51.
    [125]戴勇波,饶建华.连续驱动摩擦焊接专家系统研究[J].机械设计与制造.2007,(1):45-47.
    [126]刘立鹏,王伟,魏艳红.铝合金真空电子束焊接专家系统[J].信息化技术.2011,(2):63-65.
    [127]徐培全,徐国祥,黄金湘.汽车用钢板电阻焊焊接专家系统开发[J].焊接.2008,(1):46-48.
    [128]薛龙,梁亚军,杨海亮.全位置管道焊接机器人专家系统的研究[J].电焊机.2008,38(8):45-47.
    [129]朱志明,郝刚,杨雷.压力容器焊接工艺制定与管理专家系统[J].电焊机.2005,35(4):14-19.
    [130]刘传根,张杰,徐培全.硬质合金异质焊接工艺专家系统[J].焊接技术.2010,39(2):39-42.
    [131]刘海江,范幸华.专家系统在白车身侧围焊接机器人工位规划中的应用[J].机电一体化.2006,(2):33-34.
    [132]王大康,曹久梅,邓威.专家系统在焊接工艺评定中的应用[J].北京工业大学学报.2006,32(9):769-772.
    [133]机械工程手册编辑委员会编.机械工程手册:第四卷(机械设计)[M].北京:机械工业出版社,1982:19-135.
    [134]易志坚.理想弹塑性裂纹问题的一种全新分析方法[C].北京:第六届全国断裂力学学术会议,1991:15-23.
    [135]李敬勇,李标峰,冯刚宪.焊缝几何特征对5A30铝合金焊接接头疲劳性能的影响[J].中国有色金属学报.2004,14(11):1895-1900.
    [136]Marc A M, Krishan K C. Mechanical behavior of materials[M]. New York:Cambridge University Press,2009:425-427.