微波真空膨化浆果脆片的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用微波真空方法膨化浆果制品是一项新颖技术。微波真空膨化过程中,浆果的介电特性是影响其能耗和品质的关键指标。本研究的目的是分析浆果鲜片介电特性在微波真空场中动态变化规律,确定浆果鲜片最佳微波真空膨化模式和参数,获得高品质的浆果微波真空膨化脆片。
     该文研究以树莓为研究对象,研究微波真空膨化条件对浆果鲜片的介电特性指标(介电常数和介电损耗因子)的动态影响,以获得合理的微波真空膨化方案。研究微波真空膨化的动力学特性,构建理论与经验结合的微波真空膨化动力学模型;进行微波加工的介电特性研究,考虑微波能吸收和衰减因子,构建浆果微波真空膨化动态介电模型;根据动态介电特性,采用Matlab软件编程模拟内部温度、水分分布,采用Visual C#.Net软件进行膨化体积模拟;以提高脆性和膨化率为目标,采用遗传算法结合神经网络的方法优化微波真空膨化动态参数,并将其与响应面优化及试验结果进行对照。
     研究得到主要结论如下:
     1在确定了配方的基础上,构建浆果微波真空膨化动力学模型,并分析真空压强和初始含水率对膨化速率的影响。在浆果微波真空膨化过程中,膨化速率符合Sigmoid模型函数。在微波真空膨化前期,符合缓慢增加的受限增长Logistic模型;在膨化后期,符合单调递减的修正的Logistic模型。在浆果的微波真空膨化过程中,浆果鲜片吸收微波能,内部产生水蒸气的压力,与外部真空压力的差是鲜片膨化的动力。真空压强和初始含水率对浆果微波真空膨化的平均膨化速率均有极显著影响。
     2分析推导出浆果动态介电特性指标模型,通过四因素五水平的响应曲面中心组合试验,计算出介电常数和介电损耗因子,并分析微波真空膨化条件对介电特性的影响,影响因素为真空压强、膨化时间、初始含水率和加工量,响应指标为介电常数和介电损耗因子。
     初始含水率对脆片介电常数和介电损耗因子的影响均极显著,在膨化前期,介电常数随着初始含水率的增加而减小;在膨化后期,介电常数随着初始含水率的增加先减小后增大。而介电损耗因子在整个膨化过程中均随着初始含水率的增大而增大。
     各因素对介电常数和介电损耗因子的影响程度相同:初始含水率大于时间大于真空压强大于加工量。加工量为96g,初始含水率为22%条件下,在膨化前期,脆片的介电常数随着加工量的增大而增大;在膨化后期,介电特性随加工量的增大而减小。
     在低初始含水率水平下,脆片的介电常数与温度具有负相关性,但是在高初始含水率水平下,膨化时间对介电常数与介电损耗因子的影响均不显著。
     3根据微波真空膨化浆果脆片的机理,推导出动态介电模型,利用推导出的动态介电模型,进一步推导出微波真空膨化过程中的传热、传质数学模型,利用计算机模拟的方法得到温度、水分分布规律。较高的内部温度对热量传递有显著影响,随着果片半径的增加,温度减小,随着厚度的增加,温度也减小,在厚度与半径增加的方向上,温度梯度较大。温度最高点在果片内部中心,最低点在果片边缘。
     4用遗传算法(GA)结合BP神经网络(BPNN)的方法,优化了浆果微波真空膨化工艺参数,得到膨化脆片脆裂用功为最小值时的最佳工艺参数。与实际的实验结果相符,并略优于响应面优化的结果,基于遗传算法-BP神经网络对浆果微波真空膨化最佳工艺参数进行优化是完全可行的。
     研究了微波能在树莓鲜片内的吸收和热转化规律,建立树莓鲜片的介电常数和介电损耗因子与其温度、含水率、孔隙率间的数学模型,并仿真不同微波真空条件下树莓鲜片膨化过程,确定合理微波加热模式,并优化微波真空膨化工艺参数,研究成果可为浆果的微波加工提供理论依据,有望提升中国浆果深加工的技术水平。
Microwave vacuum puffing (MVP) is a novel method for the berry fruit processing. Thedielectric properties of berry are the key index to influence energy consumption and quality offinal product. This research focuses on the variations of dielectric properties of berry leather underMVP conditions. The optimal mode and parameters of MVP are deteriminated to get quality berrysnack.Raspberry fruit was selected as the material, the effect of microwave vacuum parameters onthe dielectric properties in terms of dielectric constant and dielectric loss factor of raspberryleather were studied as follows: First, according to the puffing rate of berry leather in the processof vacuum puffing, the puffing characteristics of material processed were studied. Second, half-theory and half-experience of MVP dynamics model was built. Thirdly, dielectric properties ofslices in microwave vacuum process were studied considering the absorebed microwave energyand attenuation factor to construct the dynamic dielectric model of slices in MVP process. Fourth,based on heat and mass transfer process considering the dynamic dielectric properties under MVP,the temperature and moisture distribution inside berry leather were simulated by using matlabprogramme, and volume expansion of berry leather was simulated by using Visual C#.Netsoftware. At last, through the genetic algorithm combined with the neural network method, MVPparameters were optimized and the comparisons with the response surface methods were done.
     The main conclusions about this topic research are as follows:
     1.Based on the existing formula, the berry MVP dynamics models were built, and the effect ofvacuum pressure and initial moisture content on the puffing rate were deterimined. In the processof berry MVP process, puffing rate function is presented by using sigmoid model. At the initialstage of the expansion, puffing rate of berry leather follow the slow increase of limited growthLogistic model, and in later stage, the puffing rate follows the modified Logistic model. In theconditions of MVP berry leather, puffing kinetic results from the difference between internal vaporpressure caused by microwave energy absorption and vacuum pressure in environment. Vacuumpressure and initial moisture content have significant influence on the average rate of puffing.
     2.Berry's physical condition,the process parameters of microwave processing will affect itsdielectric properties, affect the incident wave attenuation factor, heat volume, the absorption anduse of microwave energy, and then influence heat and mass transfer inside the material, at lastaffect the distribution of the internal temperature and moisture; meanwhile, internal temperatureand moisture distribution will react on the material to absorb microwave energy andtransformation, ultimately affect the dielectric properties of materials.
     Response surface center combination experiment with four factors and five levels wereemployed to calculate the dielectric constant and dielectric loss factor and to analyze the effect ofMVP conditions on the dielectric properties. Influencing factors are vacuum pressure, expansiontime, initial moisture content and processing capacity, and the response indicators are dielectricconstant and dielectric loss factor of berry leather. The initial moisture content of berry leather has the significant influence on the dielectric constant and dielectric loss factor.At the initial stage ofthe expansion, the dielectric constant decreases with the increase of initial moisture content; Atlater stage of expansion, dielectric properties increase with initial moisture content and thendecrease. And dielectric loss factor increase with the initial moisture content of berry leather. Theimprotance of factors influencing the dielectric constant and dielectric loss factor is follows: initialmoisture content, time, vacuum pressure and mass. When mass was96g and initial moisturecontent was22%, at the early stage of the expansion, the berry leather of the dielectric constantincreases with the increase of processing capacity, in later expansion, dielectric property decreaseswith the increasing of mass. When moisture content is in low level, dielectric constant has negativerelationship with temperature, and in high moisture content, no significant effect of puffing timeon the dielectric constant and dielectric loss factor was found.
     3.According to the process of MVP berries chip, heat transfer and mass transfer mathematicalmodel is deduced. According to the dynamic dielectric model deduced, heat and mass transfermathematical model related to MVP process was developed. Temperature and moisturedistribution inside berry leather puffed is obtained by using computer simulation method. Higherinternal temperature has a more obvious effect on heat transfer. With the increase of leather radiusand thickness, temperature of berry leather decreases. the increase both in the direction of fastestdecrease, Highest temperature gradient occur at the location of both decrease of temperature andthickness. Highest temperature is in the centre of berry leather, and lowest point is at edge.
     4.Optimal parameters of MVP berries were obtained by integrating genetic algorithm (GA) andBP neural network (BPNN) optimization method with lowest crisp brittle consumption energy.According to the actual experimental results, optimal parameters from GA are superior to thatrespone curves. Therefore, genetic algorithm, BP neural network to berry MVP optimum processparameter optimization is completely feasible.
     In the research, the absorption of microwave energy within the fresh slice of raspberry and heatconversion was studied. The models of dielectric properties of berry leather were established asfunction of temperature, moisture and porosity of berry leather. The optimal paremeters and modesof MVP raspberry leather were developed, which is expected to promote deeply processingtechnology level of berry fruit in China.
引文
[1]LIU H J,LIU C H,ZHENG X Z,et al.Effects of Processing Conditions on PuffingCharacteristics of Blackcurrant Snack with Microwave Vacuum Puffing Method.InternationalJournal of food engineering.2012,8(2):1556-3758.
    [2]LIU H J,LIN Z,ZHENG X Z,et al.Temperature Simulation of Berry Slices under MicrowaveVacuum Puffing Conditions.Journal of Northeast Agricultural University,2012,49(04):77-80.
    [3]周先汉,阮少钧,成刚.基于遗传算法与神经网络的微波浸提过程优化[J].食品科学,2007,(10):180-183.
    [4]周广文,张培正,朱英莲.非油炸膨化果蔬脆片的改进技术措施[J].农产品加工.2005,(1):39-40.
    [5]阳辛凤.微波膨化木瓜脆片的加工工艺[J].食品工业科技,2008,29(1):173-175.
    [6]刘成海,霍俊伟,郑先哲等.应用微波真空方法膨化蓝靛果脆片的研究[J].东北农业大学学报.2009,40(11):116-120.
    [7]ZHANG J,ZHANG M,SHAN L,et al.Microwave-vacuum heating parameters for processingsavory crisp bighead carp (Hypophthalmichthys nobilis) slices[J]. Journal of FoodEngineering,2007,79(3):885-891.
    [8]CLARY C D,MEJIA M E,WANG S,et al.Improving grape quality using microwave vacuumdryingassociated with temperature control[J].Journal of Food Science,2007,72(1):23-28.
    [9]李清明,谭兴和,申双贵,等食品微波膨化技术研究进展[J].包装与食品机械,2003,(04):13-16.
    [10]张立彦,芮汉明,李作为,等.蔗糖对淀粉物料微波膨化的影响研究[J].食品工业科技,2001,(03):19-21.
    [11]张立彦,芮汉明.蛋白质对淀粉物料微波膨化的影响.华南理工大学学报(自然科学版)2002(02):56-59.
    [12]张立彦,芮汉明.油脂对淀粉物料微波膨化的影响.中国粮油学报2002(01):34-37.
    [13]WANG Y Q,ZHANG M,MUJUMDAR S.Influence of green banana lour substitution forcassava starch on the nutrition, color, texture and sensory quality in two types ofsnacks[J].LWT-Food Science and Technology,2012,47(1):8.
    [14]李作为,芮汉明,张立彦.淀粉老化对微波膨化影响及机理的研究[J].中国粮油学报,1999,(6):31-33.
    [15]蒋家新,邓建军,张宁.米饼微波膨化工艺的研究[J].中国粮油学报,2000(5):45-48.
    [16]卢晓会,黄午阳,李春阳.微波膨化苹果脆片的响应曲面法优化分析[J].南方农业学报,2011,4:188-191.
    [17]邓宇,郑先哲.蕨菜微波真空干燥特性和品质试验研究[J].农业工程学报,2008,24(5):253-257.
    [18]于华宁,时玉强,郑先哲等.黑加仑真空冷冻干燥工艺研究[J].干燥技术与设备,2008,6(1):24-28.
    [19]贾暑花.基于微波真空方法的蓝靛果脆片膨化工艺研究[D].哈尔滨:东北农业大学,2009.
    [20]刘成海.黑加仑果片微波真空膨化工艺及品质研究[D].哈尔滨:东北农业大学,2010.
    [21]MU Y Q,LIU C H,ZHENG X Z,et al.Effects of microwave vacuum puffing conditions onthe texture characteristics and sensory properties of blackcurrant (Ribes nigrum. L)snack[J].International Agricultural Engineering Journal,2010,19(3):45-52.
    [22]牟艳秋.树莓脆片微波真空膨化工艺和数学模拟的研究[D].哈尔滨:东北农业大学,2011.
    [23]DROUZAS A E,TSAMI E,SARAVACOS G D.Microwave vacuum drying of model fruitgels[J].Journal of Food Engineering,1999,39:117-122.
    [24]VINEET R,DATTA A K.Microwave puffing:Determination of optimal conditions using acoupled multiphase porous media–Large deformation model[J]. Journal of FoodEngineering,2011,107:152-163.
    [25]LIU C H,ZHENG X Z.Comparative experiment of color and structure on microwave andmicrowave-vacuum puffing of blackcurrant chip[C]. Proceedings2011InternationalConference on New Technology of Agricultural Engineering,Zibo,Shandong,China.
    [26]RESSING H,RESSING M,DURANCE T.Modeling the mechanisms of dough puffing duringvacuum microwave drying using the finite element method[J].Journal of Food Engineering2007,82:498–508.
    [27]FIGIEL A.Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves andslices[J]. Journal of Food Engineering,2009,94(1):98-104.
    [28]ZHENG X Z, LIU C H, ZHOU H.Optimization of parameters for microwave assisted foammat drying of blackcurrant pulp[J]. Drying Technology,2011,29(2):230-238.
    [29]PARDESHI I L.,Chattopadhyay P. K. Hot air puffing kinetics for soy-fortified wheat-basedready-to-eat (rate) snacks[J].2010,3:415–426.
    [30]GIRI S K,Prasad S.Quality and moisture sorption characteristics of microwave-vacuum,airand freeze-dried button mushroom (Agaricus Bisporus)[J].Journal of Food Processing andPreservation,2009,33(1):237-251.
    [31]LEI X Q.Study on the Microwave Vacuum Drying Characteristics and Drying TechnologyOptimization Of Banana Slices[D]. Fujian Agricu1ture and Forestry University,2010.
    [32]徐圣兰,石彦国,李春阳.微波膨化南瓜脆片的工艺优化[J].食品工业科技,2011,32(24):279-284.
    [33]李远志,郑素霞,罗树灿等.真空微波加工马铃薯脆片的工艺特性[J].食品与发酵工业版社.2003,29(8):40-43
    [34]毕金峰,魏益民,王杕等.哈密瓜变温压差膨化干燥工艺优化研究[J].农业工程学报,2008,24(3):232-237.
    [35]蒋玉萍.番薯微波干燥特性和工艺的实验研究[D].浙江大学,2008.
    [36]BAI N S,THERDTHAI N,et al.Characterization of microwave vacuum-dried durianchips[J].Journal of Food Engineering,2011,104(1):114-122.
    [37]MEDA V, GUPTA M. OPOKU A. Drying kinetics and quality characteristics ofmicrowave-vacuum dried Saskatoon berries[J]. Journal of Microwave Power&Electromagnetic Energy,2008,42(4):4–12.
    [38]DOYMAZ I. Convective Drying Kinetics of Strawberry[J]. Chemical Engineering andProcessing.2008,47(5):914-919.
    [39]GULSAH,CAKMAK,CENGIZ Y.The drying kinetics of seeded grape in solar dryer withPCM-based solar integrated collector,Food and Bioproduct Processing,2011,89(2):103-108.
    [40]PARDESHI I L, CHATTOPADHYAY P K. Hot Air Puffing Kinetics for Soy-fortifiedWheat-based Ready-to-Eat (RTE) Snacks.Food and Bioprocess Technology,2008,3(3):415-426.
    [41]GIRI S K,SURESH P.Quality and moisture sorption characteristics of microwave-vacuum,air and freeze-dried button mushroom (Agaricus Bisporus)[J].Journal of Food Processingand Preservation,2009,33(1):237-251.
    [42]ZHENG X Z,LIU C H,SHI J,et al.Analysis of volume expansion and dehydration rate ofberry slab under microwave-vacuum puffing conditions. LWT-Food Science andTechnology,2013,52(1):39-48.
    [43]郭文川.果蔬介电特性研究综述[J].农业工程学报,2007,23(5):284-289.
    [44]郑先哲,汪春,贾富国.农产品干燥理论与技术[M].北京:中国轻工业出版社,2008.
    [45]郑先哲,刘成海,周贺.黑加仑果浆微波辅助泡沫干燥特性[J].农业工程学报,2009,25(8):288-293.
    [46]TANAKA F.Dielectric properties of shrimp related to microwave frequencies: from frozento cooked stages[J].Journal of Food Process Engineering,1999,22:455-468.
    [47]王瑞.典型蔬菜制品高效微波冷冻干燥的工艺与机理研究[D].江南大学,2010.
    [48]SIPAHIOGLU O,BARRINGER S.A.Dielectric Properties of Vegetables and Fruits as aFunction of Temperature,Ash,and Moisture Content.Journal of food science,2003,68(1):234-239.
    [49]CALAY R K,NEWBOROUGH M,PROBERT D,et al.Predictive equations for dielectricproperties of foods. International Journal of Food Science&Technology,1995,29:699–713.
    [50]RYYNAMEN S.The electromagnetic properties of food materi-als:a review of the basicprinciples [J].Journal of Food En-gineer,1995,26:409-429
    [51]SIPAHIOGLU Q,BARRINGER S A.Dielectric properties of vegeta-bles and fruits as afunction of temperature,ash and moisture content[J].Journal of Food Science,2003,68(1):1248-1253
    [52]NELSON S O,TRABELSI S.Influence of water content on RF and microwave dielectricbehavior of foods[J].Journal of Microwave Power and Electromagnetic Energy,2009,43(2):13-23.
    [53]刘成海,郑先哲,李强.微波和微波真空膨化黑加仑脆片的对比研究[A].黑龙江省农业工程学会.黑龙江省农业工程学会2011学术年会论文集[C].哈尔滨:[出版者不祥],2011.
    [54]张薇,王泽槐,许静芬.淮山药微波干燥过程温度水分的特征变化研究[J].中药材,2005,28(9):760-764.
    [55]SANTOS T,VALENTE M A,MONTEIRO J,et al.Electromagnetic and thermal history duringmicrowave heating[J].Applied Thermal Engineering,2011,31:3255-3261.
    [56]ZHANG H, DATTA A K. Microwave power absorption in single and multiple itemfoods. Food and Bioproducts Processing,2003,81(3):257-265.
    [57]AYAPPA K G,DAVIS H T,Barringer S A,et al.Resonant microwave power absorption inslabs and cylinders. AIChE Journal,1997,43,615-624.
    [58]ZHENG X Z,WANG Y K,LIU C H.Microwave Energy Absorption Behavior of FoamedBerry Puree under Microwave Drying Conditions[J]. Drying Technology,2012.(DOI:10.1080/07373937.2012.761635)
    [59]黄勇,坎杂,王丽红,张晓海.介电特性及其在农业生产中的应用[J].现代化农业,2006,12:35-36.
    [60]周熙,利用介电特性在线检测食用菌干燥过程的研究[D].成都:四川农业大学,2007.
    [61]徐树来,郑先哲[译].食品微波加工技术[M].北京:中国轻工业出版社.2008.
    [62]黄建立.银耳微波真空干燥机理及品质特性的研究[D].福建农林大学,2010.
    [63]KIRANOUDIS C T, MAROULIS Z B. Microwave vacuum drying kinetics ofsomefruits[J].Drying Technology,1997,15(10):2421-2440.
    [64]PERR P,TURNER I W.A3-D version of transport:A comprehensive heat and mass transfercomputational model for simulating the drying in porous media. International Journal ofHeat and Mass Transfer,1999,42,4501–4521.
    [65]熊永森,王金双,王俊.土豆片的微波干燥特性及较佳工艺研究.食品科技,2002,(7):16-19.
    [66]Kiranoudis C T, Sami E, Maroulis B. Microwave vacuum drying kinetics of somefruits[J].Drying Technology,1997,15(10):2421-2440;
    [67]冉旭,吕联通,刘学文,等.片状食品微波干燥热质传递模型及其干燥特性[J].农业工程学报,2004,20(3):145-148.
    [68]LEE D S,SHIN D H,KIT L Y.Improvement of temperature uniformity in microwave-reheatedrice by optimizing heat/hold cycle[J].Food Service Technology,2002,2:87-93
    [69]ROMANO V R,MARRA F,TAMMARO U.Modelling of microwaveheating of foodstuff:study on the influence of sample dimensions with a FEM approach[J]. Journal of FoodEngineering,2005,71(3):233-241.
    [70]OLIVEIRA M E C,FRANCA A S.Microwave heating of foodstuffs[J]. Journal of FoodEngineering,2002,53(4):347-359.
    [71]章焰,鲁长新,熊善柏,等.膨化米饼加工过程的热力学特性及膨化机理研究[J].中国粮油学报,2008,(01):14-16.
    [72]秦文,张惠,邓伯勋,等.部分农产品水分含量与其介电常数关系模型的建立[J].中国食品学报,2008,(03):62-67.
    [73]魏明英,邬应龙.食品的微波焙烤技术[J].食品工业科技,2006,(07):196-199.
    [74]Fathima A, Begum K, Rajalakshimi D.Microwave drying of selected greens and their sensorycharacteristics[J].Plant fields for human nutrition,2001,56(4):303-311.
    [75]颜伟强.颗粒状切割块茎类蔬菜微波喷动均匀干燥特性及模型研究[D].江南大学,2011.
    [76]余莉,明晓,蒋彦龙.微波对流联合干燥特性的数值模拟[J].重庆大学学报,2005,28(1):135-139.
    [77]MCMINN W A M,KHRAISHEH M A M,MAGEE T R A.Modeling the mass transfer duringconvective, microwave and combined microwave-convective drying of solid slabs andcylinders[J].Food Research International,2003,36:977-983.
    [78]SHARMA G P, PRASAD S.Effective moisture diffusivity of garlic cloves undergoingmicrowaveconvective drying[J].Journal of Food Engineering,2004,65:609–617.
    [79]何天宝,程裕东.温度和频率对鱼糜介电特性的影响[J].水产学报,2005,(02):252-257.
    [80]HAGHI A K,AMANIFARD,N.Analysis of heat and mass transfer during microwavedrying of food products.Brazilian Journal of Chemical Engineering,2008,25(03):491–501.
    [81]STEFAN J, KOWALSKI G M, JACEK B. Heat and mass transfer duringmicrowave-convective drying.American Institute of Chemical Engineers,2010,56:24–35.
    [82]LAURA A C,CARLOS A P,MASCHERONI R H.Modeling and simulation of microwaveheating of foods under different process schedules[J].Food Bioprocess Technology,2010.(doi:10.1007/s11947-010-0378-5).
    [83]蒋益虹,冯雷.人工神经网络方法在红曲杨梅果酒发酵工艺优化中的应用[J].农业工程学报,2003.
    [84]李琳,赵谋明,张黎.人工神经网络在食品工业中的应用[J].食品研究与开发,2005,(01):13-16.
    [85]夏定纯,秦尚臻.啤酒发酵过程中的神经网络糖度混合建模[J].武汉科技大学学报,2003,16(4):43-46.
    [86]霍虹,雷阳.大蒜油提取工艺优化及神经网络模型的研究[J].粮油加工与食品机械,2003(5):40-44.
    [87]孙祖莉,郭明恩,刘玉田.酿制樱桃补酒工艺参数的优化[J].烟台大学学报(自然科学与工程版),2005(02):142-145.
    [88]张建友,王嘉文,吕飞,等.BP人工神经网络在鱼糜挤压制品生产中的应用[J].食品科技,2012(09):102-107.
    [89]蒋益虹.荷叶生物碱的提取工艺优化[J].浙江大学学报(农业与生命科学版),2004,(05):51-55.
    [90]郑先哲.干燥后稻米食味值的预测与分析[J]农业工程学报,2004,(02):193-195.
    [91]侯清娥,秦小明,林华娟,等.基于神经网络法制备牡蛎呈味肽工艺优化研究.2011,32(11):301-304.
    [92]王宏立,张祖立,梁春英,等.基于人工神经网络的秸秆挤压膨化工艺参数优化[J].农机化研究,2005,(03):131-132.
    [93]付强.基于神经网络的洋葱伯克霍尔德菌脂肪酶发酵过程建模[D].武汉:华中科技大学,2009.
    [94]李琳.鳙鱼蛋白控制酶解及酶解物抗氧化研究[D].广州:华南理工大学,2006.
    [95]徐彩娜,殷涌光,王二雷,等.基于遗传算法的卵黄高磷蛋白提取工艺优化[J].吉林大学学报(工学版),2011,(03):876-881.
    [96]舒服华,肖伯慈.基于遗传神经网络的水解米渣制备小肽工艺优化[J].粮食与饲料工业,2007,(10):23-25.
    [97]舒服华,王晓明.基于遗传神经网络的大豆螺杆膨化工艺参数优化[J].粮食加工,2008,(02):52-55.
    [98]刘德玲,关晓颖,黄艳萍.基于BP神经网络和改进遗传算法的钩藤碱提取工艺优化研究[J].计算机与现代化,2012,(08):17-20.
    [99]王莹,栾天奇,朴美子.基于神经网络和遗传算法的醋酸发酵培养基优化[J].中国食品学报,2012,(05):88-94.
    [100]张纪兴,周玉平,陈小坚,等.应用神经网络-遗传算法优化青蒿油环糊精包合物制备工艺[J].中成药,2011,(12):2166-2168.
    [101]周先汉,阮少钧,成刚.基于遗传算法与神经网络的微波浸提过程优化[J].2007,28(10):180-183.
    [102]刘红梅,李可意.基于BP神经网络和遗传算法优化莪术超临界萃取工艺[J].中国药学杂志,2006,41(5):371-374.
    [103]赵武奇.红景天苷缓释微囊技术及其优化研究[D].长春:吉林大学,2004.
    [104]ZHENG X Z,LIU C H,MU Y Q,et al.Analysis of puffing characteristics using a Sigmoidfunction for the berry fruit snack subjected to microwave vacuum conditions.DryingTechnology,2012,30(5):494–504.
    [105]AYENSU A. Dehydration of food crops using a solar dryer with convective heatflow[J].Solar Energy,1997,59:121-126.
    [106]RESSING H,RESSING M,DURANCE T.Modeling the mechanisms of dough puffingduring vacuum microwave drying using the finite element method [J]. Journal of FoodEngineering.2007,82:498-508.
    [107]LIU C H,ZHENG X Z,JIA S H.Comparative experiment on hot-air and microwave-vacuumdrying and puffing of blue honeysuckle snack. International Journal of Food Engineering,2009,5(4):Article4.
    [108]郭硕鸿.电动力学[M].北京:高等教育出版社,1995.
    [109]韩光泽,陈明东,郭平生,李绍新.微波辅助萃取的微波吸收系数与吸收功率密度[J].华南理工大学学报(自然科学版),2007,(04):52-57.
    [110]黄艳,彭强,谢明贵.微波在高分子中的应用[J].化学研究与应用,2002,(01):84-89.
    [111]李鹏飞,谢扩军.微波陶瓷加热的数值模拟[A].中国电子学会微波分会.第十四届全国微波能应用学术会议论文集[C].重庆:材料导报编辑部,2009.
    [112]DATTA A K,ANANTHESWARAN R C.Handbook of Microwave Technology For FoodApplications[M].Marcel Dekker,Inc,2001.
    [113]BOLDOR D,SANDERS T H,SWARTZEL K R,et al.A model for temperature and moisturedistribution during continuous microwave drying.Journal of Food Process Engineering,2005,28:68–87.
    [114]项红卫[译].水和蒸汽的性质[M].北京:科学出版社,2003.
    [115]AKKARI S,CHEVALLIER L,BOILLEREAUX.A2D non-linear“grey-box”model dedicatedto microwave thawing: Theoretical and experimental investigation[J]. Computers andChemical Engineering,2005,30:321–328
    [116]金维芳.电介质物理学[M].北京:机械工业出版社,1997.
    [117]SCHUBERT H,REGIER M. The microwave processing of foods[M]. England:CRC press,2005.
    [118]BARBARA R.Dielectric properties of salmon fillets as a function of temperature andcomposition[J].Journal of Food Engineering,2008,87:236-240.
    [119]HERVE A G,TANG J M,LUEDECKEB L,et al.Dielectric properties of cottage cheese andsurface treatment using microwaves[J].Journal of Food Engineering,1998,37:389-410.
    [120]HOLY M,WANG Y F,TANG J M,et al.Dielectric properties of salmon(Oncorhynchusketa) and sturgeon(Acipenser transmontanus) caviar at radio frequency (RF) andmicrowave(MW) pasteurization frequencies[J].Journal of Food Engineering,2005,70:564-570.
    [121]李春香,范大明,陈卫,等.米饭热物性和介电特性研究[J].食品科学,2011(03):103-107.
    [122]靳志强,王顺喜,韩培.频率、温度和含水率对玉米介电性能的影响[J].中国农业大学学报,2011(04):141-147.
    [123]GUO W, TIWARI G, TANG J, et al. Frequency, moisture and temperature dependentdielectric properties of chickpea flour [J].Biosystems Engineering,2008,101:217-224
    [124]刘正怀.香菇热风干燥中质传递模拟与试验研究[J].金华职业技术学院学报,2011,11(6):45-48
    [125]AYAPPA K G.Modelling transport processes during microwave heating:a review.Reviewsin Chemical Engineering,1997,13(2),1-67.
    [126]SALAGNAC P,GLOUANNEC P, LECHARPENTIER D.Numerical modeling of heat andmass transfer in porous medium during combined hot air,infrared and microwavesdrying[J].International Journal of Heat and Mass Transfer,2004,47:4479–4489.
    [127]蔡云秀.基于ANSYS的普洱茶微波干燥过程温度场的数值分析[D].昆明:昆明理工大学,2009.
    [128]NELSON S O.Dielectric properties of agricultural products[J].IEEE Transactions onElectrical Insulation,1999,26(5):845–869.
    [129]SUN J K,ZHENG X Z.Effect of mircrowave-vacuum drying methed on quality propertiesof agro-products.Journal of Northeast Agricultural University,2007,14(3),269-273.
    [130]LIU C H,ZHENG X Z,DING N Y.Principal Component Analysis of Cooked Rice TextureQualities.Journal of Northeast Agricultural University,2008,15(1),70-74.
    [131]YANG H W, GUNASEKARAN S.Comparison of temperature distribution in model foodcylinders based on Maxwell’s equations and Lambert’s law during pulsed microwaveheating[J]. Journal of Food Engineering,2004,64(4),445-453.
    [132]HAO F,YUN Y,TANG J M.Microwave Drying of Food and Agricultural Materials:Basicsand Heat and Mass Transfer Modeling[J].2012.(DOI10.1007/s12393-012-9048-x).
    [133]李维新,魏巍,何志刚,林晓姿,梁璋成.糖姜间歇微波真空干燥特性及其动力学模型[J].农业工程学报,2012,(S1):262-266.
    [134]丘苑新,吴雪君,张辉玲.香芋脆片的微波加工工艺研究[J].广东农业科学,2010,(02):116-118.
    [135]李春香.微波复热米饭过程温度分布规律的研究以及传热模型的建立[D].无锡:江南大学,2010.
    [136]VILAYANNUR R S,PURI V M,ANANTHESWARAN R C.Size and shape effect onnonuniformity of temperature and moisture distributions in microwave heated food materials:Part I Simulation [J].Journal of Food Process Engineering,1998,21:209-233
    [137]PIETER V,DATTA A K,NGUYEN T,et al.A computation of airflow effects on heat andmass transfer in a microwave oven[J].Journal of Food Engineering,2003,59:181-190.
    [138]CAMPANONE L A, ZARITZKY N E. Mathematical analysis of microwave heatingprocess[J].Journal of Food Engineering,2005,69:359-368;
    [139]陈卫,张灏,赵建新等.冷冻馒头微波复热过程中温度和水分变化的研究[J].中国粮油学报,2002,17(5):21-23.
    [140]刘自强.食品膨化机理的理论探析[J].食品工业科技,1997(6):52-53.
    [141]STEPHAN H,DORIS J,HARALD R,et al. Relationship between water activity andcrispness of extruded rice crisps.Journal of Texture Studies,2004,35(6),621–633.
    [142]MARZEC A,LEWICKI P,RANACHOWSKI Z.Influence of water activity on acousticemission of flat extruded bread[J].Journal of Food Engineering,2007,79:410–422.
    [143]ZHANG J,ZHANG M,SHAN L.Microwave-vacuum heating parameters for processingsavory crisp bighead carp (Hypophthalmichthys nobilis) slices[J]. Journal of FoodEngineering2007,79(3):885–891.
    [144]LIU C H,ZHENG X Z,SHI JOHN,et al.Optimizing microwave vacuum puffing for bluehoneysuckle snacks[J].International Journal of Food Science and Technology,2010,45(3):506-511.
    [145]马强,马少华,毛宗磊.利用遗传算法优化BP神经网络[J].科技广场,2008(12):196-197.
    [146]张梅,潘大仁,周以飞,艾育芳.BP神经网络结合正交试验法优选锦锈杜鹃黄酮的提取工艺[J].信阳师范学院学报(自然科学版),2011(02):261-264.
    [147]赵武奇,殷涌光,仇农学.遗传算法对红景天苷缓释微囊制作参数优化的研究[J].食品科学,2007(03):70-72.
    [148]赵淑海.多层前馈神经网络拓扑结构的遗传优化研究[D].山东大学,2005.