应用于义齿基托的杂化抗菌涂层的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚甲基丙烯酸甲酯(PMMA)树脂材料具有成本低、容易加工和生物相容性好等特点,因而广泛应用于牙科医学上。义齿基托是人工义齿的重要组成部分,主要由PMMA树脂制成。研究表明,佩戴义齿会改变口腔内的微生态平衡,一些微生物,例如白色念珠菌和变形链球菌,会粘附在树脂材料表面并大量增殖,导致义齿性口炎和继发龋等口腔疾病。传统的义齿清洁方法存在着抗菌时间短、操作繁琐、容易破坏义齿表面形貌等缺点,不能完全满足临床上的应用。因此赋予基托树脂抗菌性成为口腔医学的重要研究课题。
     众所周知,银具有很高的抗菌活性和广谱的抗菌性,因此被广泛应用在各种抗菌材料中。与传统的有机物抗菌剂相比,载银无机抗菌剂具有更高的安全性、持久性和耐热性。介孔二氧化硅材料由于其良好的生物相容性,形貌多样性以及易修饰性,在作为银载体方面具有很大的应用潜力。通常情况下,载银抗菌剂被直接掺杂到树脂材料中,但是只有靠近树脂表面的抗菌剂才能起到抗菌作用,而树脂内部的抗菌剂完全起不到抗菌作用,造成了一定的浪费,而且过多的抗菌剂还可能影响树脂的机械性能。因此,使用含银的抗菌涂层是一个更经济有效的办法。
     本论文的主旨是设计和制备可应用于义齿基托表面的抗菌涂层。我们在载银抗菌剂的制备和杂化涂层的设计上进行了一些有意义的探索。我们制备了几种不同的载银介孔二氧化硅微球作为抗菌剂,分别掺杂到我们设计的一种有机无机杂化涂料中,制备成了抗菌涂层。
     在本论文第一章,我们简要介绍了义齿基托及其使用中的问题,简单回顾了一下抗菌剂和抗菌涂层的发展情况,简单的介绍了介孔材料及其在载银方面的应用,并提出了本论文的设计思想及主要内容。
     在本论文第二章,我们设计合成了一种由聚合物涂料和杂化硅溶胶混合制成的杂化涂料。聚合物涂料由甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)和甲基丙烯酸甲酯(MMA)三种单体共聚而成;杂化硅溶胶由缩水甘油醚基丙基三甲氧基硅烷(KH560)和正硅酸乙酯(TEOS)共水解缩合制得。聚合物作为有机组分可以为提高涂层与基底的附着力,硅溶胶作为无机组分可以高涂层的硬度。同时聚合物链和硅溶胶网络上都含有环氧基团,利用环氧基团的交联反应,形成有机无机互穿网络结构,可以进一步提高涂层的硬度。我们制备了一系列具有不同有机无机组分质量比值的杂化涂层,并表征了涂层的刮伤硬度、附着力和抗破裂性等性能。我们发现,当增加硅溶胶中TEOS的使用量以及增加杂化涂层中的硅溶胶含量时,涂层的硬度有所上升,但相应的附着力和抗破裂性有所下降。综合考虑,我们选择了KH560/TEOS摩尔比为2/5,有机无机组分质量比为9/1的杂化涂层。该涂层的硬度达到了4H,附着力和抗破裂性等级最高。同时,为了提高树脂材料的固位力,我们还尝试对涂层表面进行亲水化处理。利用六亚甲基二异氰酸酯与羟基的反应,在涂层表面接枝了不同分子量的PEG。通过红外光谱和接触角测试,证明我们成功在涂层表面接枝了PEG分子。PEG接枝前涂层亲水角为64°,PEG-1000和PEG-2000接枝后的涂层的亲水角分别为46°和35°。
     在本论文的第三章,我们先制备了具有介孔结构的纯二氧化硅微球,并探索了硅源加入方式、催化剂种类、催化剂用量以及水醇质量比等因素对微球粒径和形貌的影响。我们发现采用分批加入硅源和采用氨水做催化剂,有助于避免微球的团聚;增大催化剂的用量和降低水醇比能够使微球粒径变大,但是容易导致团聚发生。最终我们制备了粒径为400nm、分散性好的介孔二氧化硅微球,然后将氯化银负载到微球上,并将载银微球作为抗菌剂添加到有机无机杂化涂层中,制备了抗菌涂层。结果表明制得的无机涂层具有良好的抗菌性,当抗菌剂在涂层中固含量达到2%时,涂层抑菌率达到了99%以上。同时抗菌涂层的硬度达到4H,附着力等级在测试中达到最高等级。
     在本论文的第四章,我们制备了氨基、巯基和磺酸基修饰的介孔二氧化硅微球作为银的载体,探索了有机基团种类以及基团负载量对微球结构以及载银量的影响。巯基修饰的介孔微球具有更规则的孔道结构和更高的载银量,但是银离子的释放率较低。磺酸根修饰的介孔微球具有较高的载银量,同时也具备很高的银离子释放率。通过测试针对白色念珠菌的最小杀菌浓度,将具有最高的杀菌活性的载银硅球作为抗菌剂以不同的浓度掺杂到第二章制备的杂化涂层中。由此制备的抗菌涂层具有很高的抗菌活性、较高的硬度、良好的附着力。当抗菌剂在涂层中固含量达到2%时,抑菌率达到100%,涂层硬度为4H,附着力在测试中为最高等级。
     在本论文的第五章,我们采用具有空心介孔结构的硅铝氧化物微球作为氯化银的载体。空心微球上的载银量达到29.7wt%。我们将氯化银负载的空心球以不同的浓度掺杂到杂化涂层中,得到的涂层具有良好的抗菌效果,当载银空心球在涂层中固含量达到2%时,抑菌率达到100%。同时涂层还具有最高级别的附着力和较高的硬度4H。
     综上,我们制备的杂化抗菌涂层具有较高的抗菌活性、较高的硬度,对PMMA基底具有良好的附着力,因此在义齿基托上具有很大的应用潜力。
Poly(methyl methacrylate) based resins are widely used in dentistry due to theproperties of low cost, easy processing and good biocompatibility. As an importantpart of artificial denture, the denture base is mainly made of PMMA resin. However,the research results revealed that the wearing of denture could break the ecologicalbalance of the oral cavity. Then some microorganisms such as Candida albicans andStreptococcus mutans would accumulate and grow on the PMMA resin basedappliances and cause oral diseases such as denture stomatitis and secondary caries.The traditional cleaning methods have the disadvantages of short antibiosis time,tedious handling and damaging the surface of the resin. Therefore, improving theantimicrobial activity of the denture materials becomes one of the most importantresearch areas in dentistry.
     It is well known that silver is widely used in antibacterial materials because of itshigh antibacterial activity and broad antibacterial spectrum. Silver loaded inorganicantibacterial agents are superior in the aspects of safety, durability and heat resistance,compared with the conventional organic antibacterial materials. Ordered mesoporoussilica possesses the advantages of large specific surface area, diversity of morphology,easy functionalization and good biocompatibility, which makes it a good candidate forthe silver carrier material. Commonly, the antibacterial agents are directly doped in thepolymer resin. However, most of the inner antibacterial agents may not play anyantibacterial effect at all. Besides, the excess using of antibacterial agents may affectthe mechanical properties of the resin. According to what has been mentioned above,the using of antibacterial coatings is a preferable strategy for improving the antibacterial activity of the denture base.
     In this dissertation, we aim at the design and preparation of antibacterial coatingsthat can be used on denture base. Several kinds of silver loaded mesoporous silicaspheres have been prepared and doped in a designed hybrid coating as antibacterialagents to fabricate antibacterial coatings.
     In chapter1, we made a brief introduction of denture base and the problemsgenerated when using it. Then we reviewed the development and classification ofantibacterial agents, antibacterial coatings and mesoporous materials.
     In chapter2, we prepared a hybrid coating by mixing a polymer coating solutionand a hybrid silica sol. The polymer coating solution was prepared byco-polymerization of glycidyl methacrylate (GMA), acrylic acid (AA) and methylmethacrylate (MMA). The hybrid silica sol was prepared by co-hydrolysis andco-condensation of γ-glycidyloxypropyltrimethoxysilane (KH560) and tetraethylorthosilicate (TEOS). The polymer could increase the adhesion while the silica solcould increase the hardness of the hybrid coatings. Besides, the epoxy groups on thepolymer chain and silica sol could form linking structure, which could further increasethe hardness of the coatings. A series of hybrid coatings with differentorganic/inorganic component weight ratio were prepared and the hardness, adhesionand resistance to rupture of the coatings were tested. As the amount of TEOS and thesilica sol component increased, the hardness of the coatings increased while theadhesion and resistance of rupture both decreased. Considering the balance of theproperties, we chose the hybrid coating with the KH560/TEOS molar ratio of2/5andthe organic/inorganic components weight ratio of9/1. The hardness of the coatingreached4H and the adhesion reached the highest level according to the test method.On the other hand, to increase the retention force of the resin, we have successfullygrafted PEG molecular on the hybrid coating surface through the reaction between theisocyanate group of HDI and the hydroxyl group of PEG, which was proved by FTIRspectroscopy and water contact angle test. The contact angle of original hybrid coatingis64°. After PEG-1000and PEG-2000were grafted, the contact angle decreased to46°and35°respectively.
     In chapter3, we prepared pure mesoporous pure silica spheres and studied theinfluence of the factors including the adding method of precursor, the type and theamount of catalysis and the mass ratio of water/ethanol on the size and morphology of the silica spheres. We found that the using of ammonia as catalyst and adding theprecursor by several times are helpful to avoid the formation of aggregation.Increasing the amount of ammonia and the mass ratio of ethanol/water could increasethe size of the silica spheres. Finally, the silica spheres with the size of400nm andgood dispersity were prepared and loaded with AgCl, and then dispersed in the hybridcoating to fabricate antibacterial coatings. The coatings showed high antibacterialactivity. When the weight ratio of the silica spheres reached2%, the reduction rate ofthe fungus was higher than99%. The hardness of the coatings reached4H and theadhesion reached the best level according to the test method.
     In chapter4, the amino, thiol and sulfonic group functionalized mesoporous silicaspheres were prepared and used as silver carrier. We studied the influence of the typeand amount of organic groups on the structure of the silica spheres and the loadingamount of silver. We found that the thiol-functionalized silica spheres possess moreordered mesopores, higher silver loading amount, but a much lower releasing rate ofsilver ions. The sulfonic group functionalized silica spheres possess a high loadingamount and a high releasing rate of silver ions at the same time. The samples showedthe highest antibacterial activity in the MBC test on Candida albicans were doped inthe hybrid coating with different weight ratio. The as prepared coatings exhibited highantibacterial activity, high hardness and good adhesion to the substrates. The reductionrate of the fungus reached100%when the weight ratio of antibacterial agent reached2%in the coating. The hardness of the coatings reached4H and the adhesion reachedthe best level according to the test method.
     In chapter5, hollow mesoporous aluminosilica spheres were prepared byalkaline etching method and loaded with silver chloride to used as antibacterial agent.The hollow mesoporous aluminosilica spheres possess radially oriented orderedmesopores and a high loading amount of AgCl (2.75mmol/g). Then the AgCl loadedhollow mesoporous aluminosilica spheres were doped in the hybrid coating withdifferent weight ratio to fabricate antibacterial coatings. The antibacterial activity ofthe coatings was tested against the fungus Candida albicans. As the doping amountincreased to2wt%, the reduction rate of the fungus reached100%. The hardness ofthe coating reached4H and the adhesion reached the best level according to the testmethod.
     To sum up, all the hybrid antibacterial coatings exhibited high antibacterial activity, high hardness and good adhesion to the PMMA substrate. Thus the coatingsshowed a great potential in the application in denture base.
引文
[1]赵信义,孙皎.口腔材料学(第五版).北京:人民卫生出版社,2012.
    [2]周学东,胡涛,李继遥.牙菌斑生态防治新概念[J].国外医学口腔医学分册,1997,24(6):323324.
    [3]余占海,包广洁,王毅,等.可摘局部义齿与口腔微生态关系的实验室研究[J].北京口腔医学,1998,6(S: S):6869.
    [4]孙延.添加纳米载银无机抗菌剂对义齿基托树脂和烤瓷用釉相关性能影响的研究[D].西安:第四军医大学口腔临床医学,2007.
    [5] SREENIVASAN P K, MATTAI J, NABI N, et al. A simple approach to examineearly oral icrobial biofilm formation and the effects of treatments [J]. OralMicrobiol Immunol,2004,19(5):297302.
    [6] FORNA N, STADOLEANU C, BOSNEA D, et al. A comparative study of thebacterial dental plaque formation on fixed dentures with different surface,characteristics [J]. Revista medico chirurgicala a Societatii de Medici siNaturalisti din Iasi,1999,103(34):210215.
    [7] ZERMAENO I J A. Formation of dento-bacterial plaque under dentalprostheses [J]. Revista espa ola de estomatología,1988,36(1):3338.
    [8] NADA M A, SHOEIB M A, ABBAS N. Microbiological study on early plaqueformation in artial denture wearers [J]. Egyptian Dental Journal,1987,33(2):173199.
    [9] ETTINGER R L, MANDERSON D, WEFEL J S, et al. An in vitro evaluation ofthe prevention of aries on overdenture abutments [J]. Journal of DentalResearch,1988,67(10):13381341.
    [10] ETTINGER R L, KRELL K. Endodontic problems in an overdenture population[J]. Journal of Prosthetic Dentistry,1988,59(4):459462.
    [11] KAMBHU P P, ETTINGER R L, WEFEL J S. An in vitro evaluation ofartificial caries-like esions on restored overdenture abutments [J]. Journal ofDental Research,1988,67(3):582584.
    [12] ETTINGER R L. Tooth loss in an overdenture population [J]. Journal ofProsthetic Dentistry,1988,60(4):459462.
    [13]苏葆辉,肖晓蓉,胡雁平.可摘局部义齿基牙易发龋坏部位致龋菌的检出比较[J.]中国微生态学杂志,1999,11(1):1921.
    [14] GHAMRAWY E. Qualitative changes in dental plaque formation related toremovable partial dentures [J]. Journal of Oral Rehabilitation,1979,6(2):183188.
    [15] FOUCHE M H. Bacterial antibodies in patients undergoing treatment fordenture stomatitis [J]. Journal of Prosthetic Dentistry,1987,58(1):6368.
    [16] OLSEN I, BONDEVIK Q. Experimental candida-induced denture stomatitis inthe wistar rat [J]. Scandinavian Journal of Dental Research,1978,86(5):392398.
    [17] CATALAN A, HERRERA R, MARTINEZ A. Denture plaque and palatalmucosa in denture stomatitis: scanning electron microscopic and microbiologicstudy [J]. Journal of Prosthetic Dentistry,1987,57(5):581586.
    [18] CATALAN A. Stomatitis associated with wearing removable dentures: etiologyand Treatment [J]. Cah Prothese,1984,12(46):5978.
    [19] CATALAN A. Denture stomatitis. Microbial colonization of base materialsincomplete dentures [J]. Revista de la Asociación Odontológica Argentina,1981,69(3):155158.
    [20] ALFONSO CATALAN S, ALVARO CELIS S F, ALDO REVECO G. Denturestomatitis (clinicalstudy of143patients)[J]. Revista odontológica ecuatoriana,1978,23(79):16.
    [21] CATALAN A, CELIS A, REVECO A. Stomatitis under prosthesis [J].Odontología Chilena,1977,25(118):102106.
    [22]王永生.两种不同材料总义齿基托菌斑与义齿性口炎的临床分析[J].现代口腔医学杂志,2004,18(6):557559.
    [23]张富强,胡滨,朱敏.刷牙时间对可摘局部义齿基牙菌斑菌丛的影响[J].口腔医学,1999,19(1):1315.
    [24]杨家瑞,杨向东,梁悦,等.义齿性口炎患者腭粘膜微生物丛及义齿菌斑的真菌学研究[J],口腔医学纵横,1998,14(2):110113.
    [25]张惠民,刘延考,许美莲,260例可摘局部义齿基牙菌斑临床观察[J].山东医药,2001,41(17):41.
    [26] KHASAENEH S, AL-WAHADNI A. Control of denture plaque and mucosalinflammation in denture wearers [J]. Journal of the Irish Dental Association,2002,48(4):132138.
    [27] BARBEAU J, SEQUIN J, GOULET J P, et al. Reassessing the presence ofCandida albicans in denture-related stomatitis [J]. Oral Surgery, Oral Medicine,Oral Pathology,2003,95(1):5159.
    [28] PIRES F R, SANTOS E B, BONAN P R, et al. Denture stomatitis and salivaryCandida in Brazilian edentulous patients [J]. Journal of Oral Rehabilitation,2002,29(11):11151119.
    [29] DAVENPORT J C, BASKER R M, HEATH J R, et al. The removable partialdenture equation [J]. British Dental Journal,2000,189(8):414424.
    [30] RADFORD D R, CHALLACOMBE S J, WALTER J D. Denture plaque andadherence of Candida albicans to denture-base materials in vivo and in vitro [J].Critical Reviews in Oral Biology&Medicine,1999,10(1):99116.
    [31] NIKAWA H, HAMADA T, YAMAMOTO T. Denture plaque--past and recentconcerns [J]. Journal of Dentistry,1998,26(4):299304.
    [32] LOMBARDI T, BUDTZ-JORGENSEN E. Treatment of denture-inducedstomatitis: a review [J]. European Journal of Prosthodontics and RestorativeDentistry,1993,2(1):1722.
    [33] RICHMOND R, MACFARLANE T V, MCCORD J F. An evaluation of thesurface changes in PMMA biomaterial formulations as a result oftoothbrush/dentifrice abrasion [J]. Dental Materials,2004,20(2):124132.
    [34] BUDTZ-JORGENSEN E. Materials and methods for cleaning dentures [J].Journal of Prosthetic Dentistry,1979,42(6):619623.
    [35] JAGGER D C, HARRISON A. Denture cleansing--the best approach [J]. BritishDental Journal,1995,178(11):413417.
    [36] NIKAWA H, HAMADA T, YAMESHIRO H. A review of in vitro and in vivomethods to evaluate the efficacy of denture cleansers [J]. International Journalof Prosthodontics,1999,12(2):153159.
    [37] UNLU A, ALTAY O T, SAHMALI S. The role of denture cleansers on thewhitening of acrylic resins [J]. International Journal of Prosthodontics,1996,9(3):266270.
    [38] NIKAWA H, YAMAMOTO T, HAMADA T. Cleansing efficacy of commercialdenture cleansers: ability to reduce Candida albicans biofilm activity [J].International Journal of Prosthodontics,1995,8(6):527534.
    [39] GHALICHEBAF M, GRESER G N, ZANDER H A. The efficacy ofdenture-cleansing agents [J]. Journal of Prosthetic Dentistry,1982,48(5):515520.
    [40] WEBB B C, THOMAS C J, HARTY D W, et al. Effectiveness of two methodsof denture sterilization [J]. Journal of Oral Rehabilitation,1998,25(6):416423.
    [41] WEBB B C, WILCOX M D, THOMAS C J. The effect of sodium hypochloriteon potential pathogenic traits of Candida albicans and other Candida species [J].Oral Microbiology and Immunology,1995,10(6):334341.
    [42] KULAK Y, ARIKAN A, ALBAK S. Scanning electron microscopicexamination of different cleaners: surface contaminant removal from dentures[J]. Journal of Oral Rehabilitation,1997,24(3):209215.
    [43] PARK S E, BLISSETT R, SUSARLA S M, et al. Candida albicans adherence tosurface-modified denture resin surfaces [J]. Journal of Prosthodontics,2008,17(5):365369.
    [44] ETIENNE O, PICART C, TADDEI C, t al. Polyelectrolyte multilayer filmcoating and stability at the surfaces of oral prosthesis base polymers: an in vitroand in vivo study [J]. Journal of Dental Research,2006,85(1):4448.
    [45] ETIENNE O, GASNIER C, TADDEI C, et al. Antifungal coating bybiofunctionalized polyelectrolyte multilayered films [J]. Biomaterials,2005,26(33):67046712.
    [46] SESMA N, LAGAN D C, MORIMOTO S, et al. Effect of denture surfaceglazing on denture plaque formation [J]. Brazilian Dental Journal,2005,16(2):129134.
    [47]李斌,姚月玲,安银东,等.口腔颌面修复学杂志[J].2005,6(2):153155.
    [48]贾春丽.纳米载银无机抗菌剂对室温固化PMMA材料抗菌及机械性能影响的研究[D].长春:吉林大学口腔临床医学,2011.
    [49]王维清,冯启明,董发勤.银系抗菌材料及其研发应用现状[J].应用化工,2004,33(4):13.
    [50]马振亚.中药抗病毒抗菌作用研究[M].中国医药科技出版社,2005.
    [51] RABEA E L, BADAWY M E T, STEVENS C V, et al. Chitosan asantimicrobial agent applications and mode of action [J]. Biomacromolecules,2003,6:14571466.
    [52]季莉,施亦东.水溶性壳聚糖在涤纶后织物整理上的应用研究[J].纺织科技进展,2005,(3):2829.
    [53] HUANG R H, DU Y M, ZHENG L S. A new approach to chemically modifiedchitosan sulfates and study of their influences on the inhibition of Escherichiacoli and Staphylococcus aureus growth [J]. Reactive and Functional Polymers,2004,59:4151.
    [54] CHUNG Y C, WANG H L, CHEN Y M, et al. Effect of abiotic factors on theantibacterial activity of chitosan against waterborne pathogens [J]. BioresourceTechnology,2003,88(3):179184.
    [55] BODOR N, BUCHWALD P. Soft drug design: general principles and recentapplications [J]. Medicinal Research Reviews,2000,(20):58101.
    [56] BODOR N. Soft drugs: principles and methods for the design of safe drugs [J].Medicinal Research Reviews,1984,(3):449469.
    [57] THORSTEINSSON T, MAPPSSON M, KRISTINSSON K G, et al. Softantimicrobial agents: synthesis and activity of labile env-ironmentally friendlylong chain quaternary ammonium compounds [J]. Journal of MedicinalChemistry,2003,(46):4173-4181.
    [58] KAMAZAWA A, IKEDA T, ENDO T. Polymeric phosphonium salts as a novelclass of cationic biocides V: Synthesis and antibacterial activity of polymersreleasing phoaphonium biocides [J]. Journal of Polymer Science Part A:Polymer Chemistry,1993,(31):30033011.
    [59] KAMAZAWA A, IKEDA T, ENDO T. Novel polycationic biocides: synthesisand antibacterial activity of polymeric phosphonium Salts [J]. Journal ofPolymer Science Part A: Polymer Chemistry,1993,(31):335343.
    [60] KAMAZAWA A, IKEDA T, ENDO T. Polymeric phosphonium salts as an novelclass of cationic biocides II: effects of counteranion and mo lecular weight onantibacterial activity of polymeric phosphonium salts [J]. Journal of PolymerScience Part A: Polymer Chemistry,1993,(31):14411447.
    [61]梁泽生.油田杀菌剂的研制和开发[J].精细专用化学品,2000,(21):34.
    [62] LEE S B, KEPSEL R R, MORLEY S W, et al. Permanent, nonleachingantibacterial surfaces.1. synthesis by atom transfer radical polymerization [J].Biomacromolecules,2004,5:87782.
    [63] LIN J, QIU S, LEWIS K, et al. Bactericidal Properties of flat surfaces andnanoparticles derivatized with alkylated polyethylenimines [J]. Biotechnology,2002,18:10821086.
    [64] LIN J, TILLER J, LEE S, et al. Insights into bactericidal action ofsurface-attached poly(vinyl-N-hexylpyridinium) chains [J]. BiotechnologyLetters,2002,24:801805.
    [65] DIZMAN B, ELASRI M O, MATHIAS L J. Synthesis, characterization, andantibacterial activities of novel methacrylate polymers containing norfloxacin[J]. Biomacromolecules,2004,6:514520.
    [66] LIN J, MURTHY S, OLSEN B, et al. Making thin polymeric materials,including fabrics, microbicidal and also water-repellent [J]. BiotechnologyLetters,2003,25:16611665.
    [67] RABEA E I, BADAWY M E T, STEVENS C V, et al. Chitosan as antimicrobialagent: applications and mode of action [J]. Biomacromolecules,2003,4:14571465.
    [68] SARASAM A R, KRISHNASWAMY R K, MADIHALLY S V. Blendingchitosan with polycaprolactone: effects on physicochemical and antibacterialproperties [J]. Biomacromolecules,2006,7:11311138.
    [69] LENOIR S, PAGNOULLE C, GALLENI M, et al. Polyolefin matrixes withpermanent antibacterial activity: preparation, antibacterial activity, and actionmode of the active species [J]. Biomacromolecules,2006,7:22912296.
    [70]张葵花,林松柏,谭绍早.有机抗菌剂研究现状及发展趋势[J].涂料工业,2005,35(5):4548.
    [71] KAMAZAWA A, IKEDA T, ENDO T. Phosphonium salts as a novel class ofcationic biocides. VIII: synergistic effect on antibacterial activity of polymericphosphonium and ammonium salts [J]. Journal of Applied Polymer Science,1994,(53):12451249.
    [72] SAUVET G, DUPOND S, KAZMIERSKI K, et al. Biocidal polymers activebycontact. V: synthesis of polysiloxanes with biocida activity [J]. Journal ofApplied Polymer Science,2000,(75):10051012.
    [73]谭绍早,李光吉,沈家瑞,等.PP无纺布预辐射接枝4-乙烯基吡啶的研究[J].高分子材料科学与工程,2000,(3):112114.
    [74]谭绍早,李光吉,沈家瑞,等.改性PP非织造布的抗菌机理探讨[J].华南理工大学学报(自然科学版),2000,(9):6268.
    [75]曾蕾.无机氧化物载银纳米抗菌材料的制备及抑菌性能研究[J].湖南工业大学生物医学工程,2010.
    [76] MINERO C. Kinetic analysis of photoinduced reactions at the watersemiconductor interface [J]. Catalysis Today,1999,54(23):205216.
    [77]曹德光,苏达根,杨占印.无机抗菌材料的制备技术及其新途径[J].中国非金属矿工业导刊,2004,2(39):610.
    [78]张文钲.载银抗菌材料研究与发展[J].化工新型材料,1997,(6):2022.
    [79] NECULA B S, FRATILA-APACHITEI L E, et al. In vitro antibacterial activityof porous TiO2-Ag composite layers against methicillin-resistantStaphylococcus aureus [J]. Acta Biomaterialia,2009,5(9):35733580.
    [80] HYUNG-JUN J, SUNG-CHUL Y, SEONG-GEUN O. Preparation andantibacterial effects of Ag-SiO2thin films by sol-gel method [J]. Biomaterials,2003,24(27):49214928.
    [81] SUN L, LI J, WANG C L, et al. Ultrasound aided photochemical synthesis ofAg loaded TiO2nanotube arrays to enhance photocatalytic activity [J]. Journalof Hazardous Materials,2009,171(13):10451050.
    [82] SU W, WEI S S, HU S Q, et al. Preparation of TiO2/Ag colloids with ultravioletresistance and antibacterial property using short chain polyethylene glycol [J].Journal of Hazardous Materials,2009,172(23):716720.
    [83] FERRARIS M, PERERO S, MIOLA M, et al. Silver nanocluster-silicacomposite coatings with antibacterial properties [J]. Materials Chemistry andPhysics,2010,120(1):123126.
    [84] MIYPSHI H, IEYASU M, YOSHINO T, et al. Photochemical property andsurface characterization of silver-loaded zirconium phosphate [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,1998,112(23):239244.
    [85] CASTELLANO J J, SHAFII S M, KO F, et al. Comparative evaluation ofsilver-containing antimicrobial dressings and drugs [J]. International WoundJournal,2007,4(2):11422.
    [86] HENGLEIN A. Small-particle pesearch-physicochemical properties ofextremely small colloidal metal and demiconductor particles [J]. ChemicalReviews,1989,89(8):18611873.
    [87]王洪水.纳米银及载银纳米抗菌材料的研究[D].华中科技大学.2006.
    [88] RIVERA-GARZA M, OLGUIN M T, GARCIA-SOSA I, et al. Silver supportedon natural Mexican zeolite as an antibacterial material [J]. microporous andmesoporous materials,2000,39(3):431444.
    [89] TOP A, üLKü S. Silver, zinc, and copper exchange in a Na-clinoptilolite andresulting effect on antibacterial activity [J]. Applied Clay Science,2004,27:13–19.
    [90] BUCKLEY J J, LEE A F, OLIVI L, et al. Hydroxyapatite supportedantibacterial Ag3PO4nanoparticles [J]. Journal of Materials Chemistry,2010,20:8056–8063.
    [91] RUSSELL A D, PATH F R C, PHARM S, et al. Antimicrobial activity andacting of silver [J]. Progress in Medicine Chemistry,1994,351357.
    [92] OYA A, YOSHIDA S, ABE Y, et al. Antibacterial activated carbon-fiber derivedfrom phenolic resin containing s-nitrate [J]. Carbon,1993,31(1):7173.
    [93] FENG Q L, WU J, CHEN G Q, et al. A mechanistic study of the antibacterialeffect of silver ions on Escherichia coli and Staphylococcus aureus [J]. Journalof Biomedical Materials Research,2000,52(4):662668.
    [94] SONDI I, SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent: acase study on E.coli as a model for gram-negative bacteria [J]. Journal ofColloid and Interface Science,2007,275:177182.
    [95] MORONES J R, ELECHIGUERRA J L, CAMACHO A, et al. The bactericidaleffect of silver nanoparticles [J]. Nanotechnology,2005,16:23462353.
    [96] SONG H Y, KO K K, OH L H, et al. Fabrication of silver nanoparticles andtheir antimicrobial mechanisms [J]. European Cells and Materials,2006,11:58.
    [97] MAHENDRA R, ALKA Y, GADE A. Silver nanoparticles as a new generationof antimicrobials [J]. Biotechnology Advances,2009,27:7683.
    [98] WANG J H, CAI Z S. Incorporation of the antibacterial agent, miconazolenitrate into a cellulosic fabric grafted with β-cyclodextrin [J]. CarbohydratePolymers,2008,72(4):695700.
    [99] YEO S Y, LEE H J, JEONG S H. Preparation of nanocomposite fibers forpermanent antibacterial effect [J]. Journal of Materials Science,2003,38(10):21432147.
    [100]石宏亮.利用纳米技术开发抗菌纤维的探讨[J].产业用纺织品,2001,12(6):1315.
    [101]沈春银.抗菌纤维的研究进展及发展趋势[J].南通工学院学报,1999,15(3):3337.
    [102]王建平.抗菌纤维与抗菌剂体系(一)[J].合成纤维,2003,14(2):1015.
    [103]王开利.纳米抗菌纤维的发展及产业化[J].新材料产业,2002,10(9):6566.
    [104]何秀玲,郭腊梅.纳米载银无机抗菌剂及其在纺织品上的应用[J].上海纺织科技,2003,31(3):5456.
    [105]王永忠,钟明强,杨晋涛等.纳米Ag+TiO2/聚氯乙烯抗菌塑料制备及其性能[J].材料科学与工程学报.2009,27(6):862864.
    [106] SANCHIEZ-PRADO L, BARRO R, GARCIA-JARES C, et al. Sonochemicaldegradation of triclosan in water and wastewater [J]. Ultrasonics Sonochemistry,2008,15(5):689694.
    [107] KIM S, KIM H J. Anti-bacterial performance of colloidal silver-treated laminatewood flooring [J]. International Biodeterioration&Biodegradation,2006,57(3):155162.
    [108] PEI A H, SHEN Z W, YANG G S. Preparation of TiO2nanocapsules for loadingand release of antimicrobial triclosan molecules [J]. Materials Letters,2007,61(13):27572760.
    [109]姜会庆.纳米银敷料在烧伤创面的应用[J].医学研究生学报,2001,10(5):439440.
    [110]余旭明.纳米银抗菌敷料在烧伤植皮中的嘘用观察[J].河南职工医学院学报,2002,18(14);199201.
    [111]陈壁.纳米烧(烫)伤敷料对兔肢体火器伤势局部海水浸泡后伤道的影响[J].中华创伤杂志,2002,18(6):371.
    [112]胡骁骅.纳米银抗菌医用敷料银离子吸收和临床应用[J].中华医学杂志,2003,83(24):21782179.
    [113] ADAMS A P, SANTSCHI E M, MELLENCAMP M A. Antibacterial propertiesof a silver chloride-coated nylon wound dressing [J]. Veterinary Surgery,1999,28(4):219225.
    [114]佘文君,张富强.6种纳米级载银无机抗菌剂对口腔病原菌的抗菌活性比较[J].上海口腔医学,2003,12(5):356358.
    [115]张林祺,高勃,杨聚才,等.三种无机抗菌剂对常见牙体牙周致病菌的抗菌效果[J].现代口腔医学杂志,2007,21:1315.
    [116]余日月,周永胜,冯海兰,等.纳米载银树脂基托体外抗菌效果的持久性[J].实用口腔医学杂志,2007,23(6):805807.
    [117] SYAFIUDDIN T, HISAMITSU H, TOKO T. In vitro inhibition of caries arounda resin composite restoration containing antibacterial filler [J]. Biomaterials,1997;18(15):10511057.
    [118] YOSHIIDA K, TANAGAWA M, ATAUTA M. Characterization and inhibitoryeffect of antibacterial dental resin composites incorporating silver-supportedmaterials [J]. Journal of Biomedical Materials Research,1999,47:516522.
    [119] NIKAWA H, YAMAMOTO T, HAMADA M B, et al. Antifungal effect ofzeolite-inorporated tissue conditioner against Candida albicans growth and/oracid production [J]. Journal of Oral Rehabilitation,1997,24:350357.
    [120] GUIN D, MANORAMA S V, LATHA J N L, et al. Photoreduction of silver onbare and colloidal TiO2nanoparticles/nanotubes: synthesis, characterization,and tested for antibacterial outcome [J]. The Journal of Physical Chemistry C,2007,111:1339313397.
    [121] Song Y, Zhang T, Yang W, et al. Correlating plasmon resonance spectra withthree-dimensional morphology of single silver nanoparticles [J]. The Journal ofPhysical Chemistry C,2008,112:18286.
    [122] LEE K S, EL-SAYED M A. Gold and silver nanoparticles in sensing andimaging: sensitivity of plasmon response to size, shape, and metal composition[J]. The Journal of Physical Chemistry B,2006,110:1922019225.
    [123] MIN S H, YANG J H, KIM J Y, et al. Development of white antibacterialpigment based on silver chloride nanoparticles and mesoporous silica and itspolymer composite [J]. Microporous and Mesoporous Materials,2010,128:1925.
    [124] MARINI M, DE NIEDERHAUSERN S, ISEPPI R, et al. Antibacterial activityof plastics coated with silver-doped organic inorganic hybrid coatings preparedby sol gel processes [J]. Biomacromolecules,2007,8:12461254.
    [125] TAYLOR P L, USSHER A L, BURRELL R E. Impact of heat onnanocrystalline silver dressings: Part I: chemical and biological properties [J].Biomaterials,2005,26:72217229.
    [126] KUMAR R, MüNSTEDT H. Silver ion release from antimicrobialpolyamide/silver composites [J]. Biomaterials,2005,26:20812088.
    [127] KUMAR R, HOWDLE S, MüNSTEDT H. Polyamide/silver antimicrobials:effect of filler types on the silver ion release [J]. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials,2005,75B:311319.
    [128] SANT S B, GILL K S, BURRELL R E. Morphology of novel antimicrobialsilver films deposited by magnetron sputtering [J]. Scripta Materialia,1999,41:13331339.
    [129] SANT S B, GILLl K S, BURRELL R E. Novel duplex antimicrobial silver filmsdeposited by magnetron sputtering [J]. Philosophical Magazine Letters,2000,80:249256.
    [130] GRAY J E, NORTON P R, ALNOUNO R, et al. Biological efficacy ofelectroless-deposited silver on plasma activated polyurethane [J]. Biomaterials,2003,24:27592765.
    [131] DOWLING D P, DONNELLY K, MCCONNELL M L, et al. Deposition ofanti-bacterial silver coatings on polymeric substrates [J]. Thin Solid Films,2001,398–399:602606.
    [132] DJOKIC S S, BURRELL R E, LE N, et al. An electrochemical analysis of thinsilver films produced by reactive sputtering [J]. Journal of The ElectrochemicalSociety,2001,148: C191C196.
    [133] FAN F R, BARD A J. Chemical, electrochemical, gravimetric, and microscopicstudies on antimicrobial silver films [J]. The Journal of Physical Chemistry B,2001,106:279287.
    [134] WRIGHT J B, LAM K, HANSEN D, et al. Efficacy of topical silver againstfungal burn wound pathogens [J]. American Journal of Infection Control,1999,27:344350.
    [135] SAINT S, ELMORE J G, SULLIVAN S D, et al. The efficacy of silveralloy-coated urinary catheters in preventing urinary tract infection: ameta-analysis [J]. The American Journal of Medicine,1998,105:236241.
    [136] DOWLING D P, BETTS A J, POPE C, et al. Anti-bacterial silver coatingsexhibiting enhanced activity through the addition of platinum [J]. Surface andCoatings Technology,2003,163–164:637640.
    [137] KLUEH U, WAGNER V, KELLY S, et al. Efficacy of silver-coated fabric toprevent bacterial colonization and subsequent device-based biofilm formation[J]. Journal of Biomedical Materials Research,2000,53:621631.下面开始四川那个综述的内容
    [138] EBY D M, LUCKARIFT H R, JOHNSON G R. Hybrid antimicrobial enzymeand silver nanoparticle coatings for medical instruments [J]. ACS AppliedMaterials&Interfaces,2009,1:15531560.
    [139] ILKNUR S, DILEK C, MENMET K, et al. Interaction of multi-functional silvernanoparticles with living cells [J]. Nanotechnology,2010,21:175104.
    [140] LISCHER S, K RNER E, BALAZS D J, et al. Antibacterial burst-release fromminimal Ag-containing plasma polymer coatings [J]. Journal of The RoyalSociety Interface,2011,8:10191030.
    [141] OEI J D, ZHAO W W, CHU L, et al. Antimicrobial acrylic materials with in situgenerated silver nanoparticles [J]. Journal of Biomedical Materials ResearchPart B: Applied Biomaterials,2012,100B:409415.
    [142] FULLENKAMP D E, RIVERA J G, GONG Y K, et al. Mussel-inspiredsilver-releasing antibacterial hydrogels [J]. Biomaterials,2012,33:37833791.
    [143] TRAVAN A, MARSICH E, DONATI I, et al. Silver–polysaccharidenanocomposite antimicrobial coatings for methacrylic thermosets [J]. ActaBiomaterialia,2011,7:337346.
    [144] ZAN X, KOZLOV M, MCCARTHY T J, et al. Covalently attached,silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid)[J].Biomacromolecules,2010,11:10821088.
    [145] KRASIMIR V, VASU R S, RENEE V G, et al. Antibacterial surfaces byadsorptive binding of polyvinyl-sulphonate-stabilized silver nanoparticles [J].Nanotechnology,2010,21:215102.
    [146] YOO H S, KIM T G, PARK T G. Surface-functionalized electrospun nanofibersfor tissue engineering and drug delivery [J]. Advanced Drug Delivery Reviews,2009,61:10331042.
    [147] FU J, JI J, YUAN W, et al. Construction of anti-adhesive and antibacterialmultilayer films via layer-by-layer assembly of heparin and chitosan [J].Biomaterials,2005,26:66846692.
    [148] DACARRO G, CUCCA L, GRISOLI P, et al. Monolayers of polyethilenimineon flat glass: a versatile platform for cations coordination and nanoparticlesgrafting in the preparation of antibacterial surfaces [J]. Dalton Transactions,2012,41:24562463.
    [149] WAN D, YUAN S, NEOH K G, et al. Surface functionalization of copper viaoxidative graft polymerization of2,2′-bithiophene and immobilization of silvernanoparticles for combating biocorrosion [J]. ACS Applied Materials&Interfaces,2010,2:16531662.
    [150] RAMSTEDT M, EKSTRAND-HAMMARSTR M B, SHCHUKAREV A V, etal. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate)brushes loaded with silver halide salts [J]. Biomaterials,2009,30:15241531.
    [151] YUAN W, FU J, SU K, et al. Self-assembled chitosan/heparin multilayer film asa novel template for in situ synthesis of silver nanoparticles [J]. Colloids andSurfaces B: Biointerfaces,2010,76:549555.
    [152] HO C H, TOBIS J, SPRICH C, et al. Nanoseparated polymeric networks withmultiple antimicrobial properties [J]. Advanced Materials,2004,16:957961.
    [153] LI Z, LEE D, SHENG X, et al. Two-level antibacterial coating with bothrelease-killing and contact-killing capabilities [J]. Langmuir,2006,22:98209823.
    [154] WANG Q, YU H, ZHONG L, et al. Incorporation of silver ions into ultrathintitanium phosphate films: in situ reduction to prepare silver nanoparticles andtheir antibacterial activity [J]. Chemistry of Materials,2006,18:19881994.
    [155] NABLO B J, SCHOENFISCH M H. Poly(vinyl chloride)-coated sol gels forstudying the effects of nitric oxide release on bacterial adhesion [J].Biomacromolecules,2004,5:20342041.
    [156] KAWASHITA M, TSUNEYAMA S, MIYAJI F, et al. Antibacterialsilver-containing silica glass prepared by sol–gel method [J]. Biomaterials,2000,21:393398.
    [157] LEE S M, LEE B S, BYUN TG, SONG KC. Preparation and antibacterialactivity of silver-doped organic–inorganic hybrid coatings on glass substrates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2010,355:167-171.
    [158] EVERETT D H, IUPAC manual of symbols and terminology [J], Pure andApplied Chemistry,1972,31:578638.
    [159] ZHAO X S, LU G Q, WHITTAKER A K, et al. Comprehensive study of surfacechemistry of MCM-41Using29Si CP/MAS NMR, FTIR, Pyridine-TPD, andTGA[J]. Journal of Physical Chemistry B,1997,101:65256531.
    [160] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporousmolecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710712.
    [161] DIRENZO F, CAMBON H, DUTARTRE R. A28-year-old synthesis ofmicelle-templated mesoporous silica [J]. Microporous Materials,1997,10:283286.
    [162] BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporousmolecular sieves prepared with liquid crystal templates [J]. Journal of theAmerican Chemical Society,1992,114:1083410843.
    [163] WAN Y, SHI Y F, ZHAO D Y. Designed synthesis of mesoporous solids vianonionic-surfactant-Templating approach [J]. Chemical Communications,2007,897926.
    [164] WAN Y, ZHAO D. On the controllable soft-templating approach to mesoporoussilicates [J]. Chemical Reviews,2007,107:28212860.
    [165] TANEV P T, CHIBWE M, PINNAVAIA T J. Titanium-containing mesoperousmolecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994,368:321323.
    [166] CHEN C Y, LI H X. Study on mesoporous materials [J]. Microporous Materials,1993,2:1726.
    [167] ZHAO D Y, HUO Q S, FENG J L, et al. Nonionic triblock and star diblockcopolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable, mesoporous silica structures [J]. Journal of the AmericanChemical Society,1998,120(24):60246036.
    [168] KIM Y, KIM P, KIM C, et al. A novel method for synthesis of a Ni/Al2O3catalyst with a mesoporous structure using stearic acid salts [J]. Journal ofMaterials Chemistry,2003,13(9):23532358.
    [169] YUAN Q, YIN A X, ZHANG Y W, et al, Synthesis for ordered mesoporousgamma-aluminas with high thermal stability [J]. Journal of the AmericanChemical Society,2008,130(11):34653472.
    [170] NOWAK I, JARONIEC M.“Hard” vs.“Soft” templating synthesis ofmesoporous Nb2O5catalysts for oxidation reactions [J]. Topics in Catalysis,2008,49(34):193203.
    [171] GAITAN M, GONCALES V R, BARALD L M, et al. Structure effects ofself-assembled prussian blue confined in highly organized mesoporous TiO2onthe electrocatalytic properties towards H2O2detection [J]. Biosensors andBioelectronics,2010,26:890893.
    [172] WROBLEWSKA A, WAJZBERG J. Epoxidation of allyl alcohol overmesoporous Ti-MCM-41catalyst [J]. Journal of Hazardous Materials,2009,170:405410.
    [173] JIANG H Y, DAI H X, XIA Y S. Synthesis and characterization ofwormhole-like mesoporous SnO2with high surface area [J]. Chinese Journal ofCatalysis,2010,31(3):295301.
    [174] WEST C, MOKAYA R. Nanocasting of high surface area mesoporous Ga2O3and GaN semiconductor materials [J]. Chemistry of Materials,2009,21(17):40804086.
    [175]程虎民,马玉荣,廖复辉等.水热均匀沉淀法合成中孔氧化锆[J].物理化学学报,2003,19(4):326328.
    [176] GUO X F, DENG W P. Synthesis of a novel mesoporous iron phosphate [J].Chemical Communications,2001,5:709710.
    [177] NENOFF T M, THOMA S G, PROVENCIO P, et al. Novel zinc phosphatephases formed with chiral d-glucosamine molecules [J]. Chemistry of Materials,1998,10:30773080.
    [178] MAL N K, ICHIKAWA S, FUJIWARA M. Synthesis of a novel mesoporous tinphosphate [J]. Chemical Communications,2002:112113.
    [179] BHAUMILK A, INAGAKI S. Mesoporous titanium phosphate molecular sieveswith ion-exchange capacity [J]. Journal of the American Chemical Society,2001,123:691696.
    [180]蔡超.功能化MCM-41介孔材料的合成与催化性能研究[D].天津:天津大学化工学院,2010.
    [181] HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-based mesoporousorganic–inorganic hybrid materials [J]. Angewandte Chemie InternationalEdition,2006,45:32163251.
    [182] WALCARIUS A, ETIENNE M, LEBEAU B. Rate of access to the binding sitesin organically modified silicates.2. ordered mesoporous silicas grafted withamine or thiol groups [J]. Chemistry of Materials,2003,15:21612173.
    [183] MATSUMOTO A, TSUTSUMI K, SCHUMACHER K, et al. Surfacefunctionalization and stabilization of mesoporous silica spheres by silanizationand their adsorption characteristics [J]. Langmuir,2002,18:40144019.
    [184] HO K Y, MCKAY G, YEUNG K L. Selective adsorbents from orderedmesoporous silica [J]. Langmuir,2003,19:301924.
    [185] YOSHITAKE H, YOKOI T, TATSUMI T. Adsorption of chromate and arsenateby amino-functionalized MCM-41and SBA-1[J]. Chemistry of Materials,2002,14:46034610.
    [186] LIU A M, HIDAJAT K, KAWI S, et al. A new class of hybrid mesoporousmaterials with functionalized organic monolayers for selective adsorption ofheavy metal ions [J]. Chemical Communications,2000,0:11451146.
    [187] LEI C, SHIN Y, LIU J, et al. Entrapping enzyme in a functionalized nanoporoussupport [J]. Journal of the American Chemical Society,2002,124:1124211243.
    [188] HUANG H Y, YANG R T, CHINN D, et al. Amine-grafted MCM-48and silicaxerogel as superior sorbents for acidic gas removal from natural gas [J].Industrial&Engineering Chemistry Research,2002,42:24272433.
    [189] KHATRI R A, CHUANG S S C, SOONG Y, et al. Carbon dioxide capture bydiamine-grafted SBA-15: a combined fourier transform infrared and massspectrometry study [J]. Industrial&Engineering Chemistry Research,2005,44:37023708.
    [190] YOKOI T, YOSHITAKE H, TATSUMI T. Synthesis of amino-functionalizedMCM-41via direct co-condensation and post-synthesis grafting methods usingmono-, di-and tri-amino-organoalkoxysilanes [J]. Journal of MaterialsChemistry,2004,14:951957.
    [191] TRENS P, RUSSELL M L, SPJUTH L, et al. Preparation ofmalonamide MCM-41materials for the heterogeneous extraction ofradionuclides [J]. Industrial&Engineering Chemistry Research,2002,41:52205225.
    [192] ANTOCHSHUK V, JARONIEC M.1-Allyl-3-propylthiourea modifiedmesoporous silica for mercury removal [J]. Chemical Communications,2002,0:258259.
    [193] KANG T, PARK Y, CHIO K, et al. Ordered mesoporous silica (SBA-15)derivatized with imidazole-containing functionalities as a selective adsorbent ofprecious metal ions [J]. Journal of Materials Chemistry,2004,14:10431049.
    [194] KANG T, PARK Y, YI J. Highly selective adsorption of Pt2+and Pd2+usingthiol-functionalized mesoporous silica [J]. Industrial&Engineering ChemistryResearch,2004,43:14781484.
    [195] ARMATAS G S, SALMAS C E, LOULOUDI M, et al. Relationships amongpore size, connectivity, dimensionality of capillary condensation, and porestructure tortuosity of functionalized mesoporous silica [J]. Langmuir,2003,19:31283136.
    [196] RODRIGUEZ-LOPEZ G, DOLORES M M, MARTINEZ-MANEZ R, et al.Efficient boron removal by using mesoporous matrices grafted with saccharides[J]. Chemical Communications,2004,0:21982199.
    [197] Mal NK, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guestmolecules from coumarin-modified mesoporous silica. Nature.2003;421:350-3.
    [198] Mal NK, Fujiwara M, Tanaka Y, Taguchi T, Matsukata M. Photo-SwitchedStorage and Release of Guest Molecules in the Pore Void ofCoumarin-Modified MCM-41. Chemistry of Materials.2003;15:3385-94.
    [199] MERCIER L, PINNAVAIA T J. Heavy metal ion adsorbents formed by thegrafting of a thiol functionality to mesoporous silica molecular sieves: factorsaffecting Hg(II) uptake [J]. Environmental Science&Technology,1998,32:27492754.
    [200] LIU A M, HIDAJAT K, KAWI S, et al. A new class of hybrid mesoporousmaterials with functionalized organic monolayers for selective adsorption ofheavy metal ions [J]. Chemical Communications,2000,0:1145-1146.
    [201] MARTIN T, GALARNEAU A, DI RENZO F, et al. Great improvement ofchromatographic performance using MCM-41spheres as stationary phase inHPLC [J]. Chemistry of Materials,2004,16:17251731.
    [202] DAS D, LEE J-F, CHENG S. Sulfonic acid functionalized mesoporousMCM-41silica as a convenient catalyst for Bisphenol-A synthesis [J]. ChemicalCommunications,2001,0:21782179.
    [203] DAS D, LEE J-F, CHENG S. Selective synthesis of Bisphenol-A overmesoporous MCM silica catalysts functionalized with sulfonic acid groups [J].Journal of Catalysis,2004,223:152160.
    [204] SHIMIZU K-I, HAYASHI E, HATAMACHI T, et al. Acidic properties ofsulfonic acid-functionalized FSM-16mesoporous silica and its catalyticefficiency for acetalization of carbonyl compounds [J]. Journal of Catalysis,2005,231:131138.
    [205] SOW B, HAMOUDI S, HASSAN ZAHEDI-NIAKI M, et al.1-Butanoletherification over sulfonated mesostructured silica and organo-silica [J].Microporous and Mesoporous Materials,2005,79:129136.
    [206] BURKETT S L, SIMS S D, MANN S. Synthesis of hybrid inorganic-organicmesoporous silica by co-condensation of siloxane and organosiloxaneprecursors [J]. Chemical Communications,1996,0:13671368.
    [207] MACQUARRIE D J, JACKSON D B, TAILLAND S, et al. Organicallymodified hexagonal mesoporous silicas (HMS)-remarkable effect of preparationsolvent on physical and chemical properties [J]. Journal of Materials Chemistry,2001,11:18431849.
    [208] CORRIU R J P, HOARAU C, MEHDI A, et al. Study of the accessibility ofphosphorus centres incorporated within ordered mesoporous organic-inorganichybrid materials [J]. Chemical Communications,2000,0:7172.
    [209] CORRIU R J P, EMBERT F, GUARI Y, et al. A simple route toorganic-inorganic hybrid materials containing Eu complexes [J]. ChemicalCommunications,2001,0:11161117.
    [210] MORI Y, PINNAVAIA T J. Optimizing organic functionality in mesostructuredsilica: direct assembly of mercaptopropyl groups in wormhole frameworkstructures [J]. Chemistry of Materials,2001,13:21732178.
    [211] BURKETT S L, SIMS S D, MANN S. Synthesis of hybrid inorganic-organicmesoporous silica by co-condensation of siloxane and organosiloxaneprecursors [J]. Chemical Communications,1996,0:13671368.
    [212] MACQUARRIE D J. Direct preparation of organically modified MCM-typematerials. preparation and characterisation of aminopropyl-MCM and2-cyanoethyl-MCM [J]. Chemical Communications,1996,0:19611962.
    [213] LIM M H, BLANFORD C F, STEIN A. Synthesis and characterization of areactive vinyl-functionalized MCM-41: probing the internal pore structure by abromination reaction [J]. Journal of the American Chemical Society,1997,119:40904091.
    [214] MERCIER L, PINNAVAIA T J. Direct synthesis of hybrid organic inorganicnanoporous silica by a neutral amine assembly route: structure function controlby stoichiometric incorporation of organosiloxane molecules [J]. Chemistry ofMaterials,1999,12:188196.
    [215] FOWLER C E, BURKETT S L, MANN S. Synthesis and characterization ofordered organo-silica-surfactant mesophases with functionalized MCM-41-typearchitecture [J]. Chemical Communications,1997,0:17691770.
    [216] RICHER R. Direct synthesis of functionalized mesoporous silica by non-ionicalkylpolyethyleneoxide surfactant assembly [J]. Chemical Communications,1998,0:17751777.
    [217] WALCARIUS A, DELAC TE C. Rate of access to the binding sites inorganically modified silicates.3. effect of structure and density of functionalgroups in mesoporous solids obtained by the co-condensation route [J].Chemistry of Materials,2003,15:41814192.
    [218] MARIA CHONG A S, ZHAO X S. Functionalization of SBA-15with APTESand characterization of functionalized materials [J]. The Journal of PhysicalChemistry B,2003,107:1265012657.
    [219] HUH S, WIENCH J W, YOO J-C, et al. Organic functionalization andmorphology control of mesoporous silicas via a co-condensation synthesismethod [J]. Chemistry of Materials,2003,15:424756.
    [220] J. MACQUARRIE D, B. JACKSON D, E. G. MDOE J, et al. Organomodifiedhexagonal mesoporous silicates [J]. New Journal of Chemistry,1999,23:53944.
    [221] YOKOI T, YOSHITAKE H, TATSUMI T. Synthesis ofanionic-surfactant-templated mesoporous silica usingorganoalkoxysilane-containing amino groups [J]. Chemistry of Materials,2003,15:45364538.
    [222] CHE S, GARCIA-BENNETT A E, YOKOI T, et al. A novel anionic surfactanttemplating route for synthesizing mesoporous silica with unique structure.Nature Matererials,2003,2:801805.
    [223] LIU N, ASSINK R A, SMARSLY B, et al. Synthesis and characterization ofhighly ordered functional mesoporous silica thin films with positivelychargeable-NH2groups [J]. Chemical Communications,2003,0:11461147.
    [224] CAGNOL F, GROSSO D, SANCHEZ C. A general one-pot process leading tohighly functionalised ordered mesoporous silica films [J]. ChemicalCommunications,2004,0:17421743.
    [225] HALL S R, FOELER C E, MANN S, et al. Template-directed synthesis ofbi-functionalized organo-MCM-41and phenyl-MCM-48silica mesophases [J].Chemical Communications,1999,0:201202.
    [226] LIM M H, STEIN A. Comparative studies of grafting and direct syntheses ofinorganic organic hybrid mesoporous materials [J]. Chemistry of Materials,1999,11:32853295.
    [227] WANG Y Q, YANG C M, ZIBROWIUS B, et al. Directing the formation ofvinyl-functionalized silica to the hexagonal SBA-15or large-pore Ia3d structure[J]. Chemistry of Materials,2003,15:50295035.
    [228] WANG Y, ZIBROWIUS B, YANG C-M, et al. Synthesis and characterization oflarge-pore vinyl-functionalized mesoporous silica SBA-15[J]. ChemicalCommunications,2004,0:4647.
    [229] CORRIU R J P, HOARAU C, MEHDI A, et al. Study of the accessibility ofphosphorus centres incorporated within ordered mesoporous organic-inorganichybrid materials [J]. Chemical Communications,2000,0:7172.
    [230] BAMBROUGH C M, SLADE R C T, WILLIAMS R T. Synthesis of a largepore phenyl-modified mesoporous silica and its characterization by nitrogen andbenzene sorption [J]. Journal of Materials Chemistry,1998,8:569571.
    [231] SLADE R C T, BAMBROUGH C M, WILLIAMS R T. An incoherent inelasticneutron scattering investigation of the vibrational spectrum of phenyl-modified(C6H5-) mesoporous silica and its variations in the presence of sorbed benzene(C6H6) and of sorbed deuteriobenzene (C6D6)[J]. Physical Chemistry ChemicalPhysics,2002,4:53945399.
    [232] MACQUARRIE D J, JACKSON D B. Aminopropylated MCMs as basecatalysts: a comparison with aminopropylated silica [J]. ChemicalCommunications,1997,0:17811782.
    [233] MACQUARRIE D J, JACKSON D B, TAILLAND S, et al. Organicallymodified hexagonal mesoporous silicas (HMS)-remarkable effect of preparationsolvent on physical and chemical properties [J]. Journal of Materials Chemistry,2001,11:18431849.
    [234] MARGOLESE D, MELERO J, CHRISTIANSEN S C, et al. Direct synthesesof ordered SBA-15mesoporous silica containing sulfonic acid groups [J].Chemistry of Materials,2000,12:24482459.
    [235] CORRIU R J P, MEHDI A, REYé C, et al. Direct synthesis of functionalizedmesoporous silica by non-ionic assembly routes. quantitative chemicaltransformations within the materials leading to strongly chelated transition,metal ions [J]. Chemistry of Materials,2003,16:159166.
    [236] HUQ R, MERCIER L, KOOYMAN P J. Incorporation of cyclodextrin intomesostructured silica [J]. Chemistry of Materials,2001,13:45124519.
    [237] LIU C, NAISMITH N, FU L, et al. Ordered mesoporous organic-inorganichybrid materials containing microporous functional calix [8] arene amides [J].Chemical Communications,2003,0:24722473.
    [238] GANSCHOW M, WARK M, W HRLE D, et al, Verankerung vonFunktionsfarbstoffen in MCM-41durch mikrowellenunterstützte hydrothermaleCokondensation.[J].Angewandte Chemie International Edition,2000,39:161–163.
    [239]张任远.功能性介孔材料的合成及其在催化中的应用[D].上海:复旦大学化学学院,2010.
    [240] LIU J, LIU F, GAO K, et al. Recent developments in the chemical synthesis ofinorganic porous capsules [J]. Journal of Materials Chemistry,2009,19:60736084.
    [241] KIM S S, ZHANG W, PINNAVAIA T J. Ultrastable mesostructured silicavesicles [J]. Science,1998,282:13021305.
    [242] TAN B, VYAS S M, LEHMLER H J, et al. Synthesis of inorganic andorganic–inorganic hybrid hollow particles using a cationic surfactant with apartially fluorinated tail [J]. Advanced Functional Materials,2007,17:25002508.
    [243] HENTZE H P, RAGHJAVAN S R, MCKELVEY C A, et al. Silica hollowspheres by templating of catanionic vesicles [J]. Langmuir,2003,19:10691074.
    [244] YEH Y Q, CHEN B C, LIN H P, et al. Synthesis of hollow silica spheres withmesostructured shell using cationic anionic-neutral block copolymer ternarysurfactants [J]. Langmuir,2006,22:69.
    [245] FOWLER C E, KHUSHALANI D, MANN S. Interfacial synthesis of hollowmicrospheres of mesostructured silica [J]. Chemical Communications,2001,0:20282029.
    [246] SHIOMI T, TSUNODA T, KAWAI A, et al. Formation of cage-like hollowspherical silica via a mesoporous structure by calcination of lysozyme-silicahybrid particles [J]. Chemical Communications,2007,0:44044406.
    [247] FENG Z, LI Y, NIU D, et al. A facile route to hollow nanospheres ofmesoporous silica with tunable size [J]. Chemical Communications,2008,0:26292631.
    [248] YU M, WANG H, ZHOU X, et al. One template synthesis of raspberry-likehierarchical siliceous hollow spheres [J]. Journal of the American ChemicalSociety,2007,129:1457614577.
    [249] LI W, SHA X, DONG W, et al. Synthesis of stable hollow silica microsphereswith mesoporous shell in nonionic W/O emulsion [J]. ChemicalCommunications,2002,0:24342435.
    [250] WANG J, XIA Y, WANG W, et al. Synthesis of mesoporous silica hollowspheres in supercritical CO2/water systems [J]. Journal of Materials Chemistry,2006,16:17511756.
    [251] LI Y, SHI J, HUA Z, et al. Hollow spheres of mesoporous aluminosilicate with athree-dimensional pore network and extraordinarily high hydrothermal stability[J]. Nano Letters,2003,3:609612.
    [252] WANG J, XIAO Q, ZHOU H, et al. Budded, mesoporous silica hollow spheres:hierarchical structure controlled by kinetic self-assembly [J]. AdvancedMaterials,2006,18:32843288.
    [253] RANA R K, MASTAI Y, GEDANKEN A. Acoustic cavitation leading to themorphosynthesis of mesoporous silica vesicles [J]. Advanced Materials,2002,14:14141418.
    [254] OGAWA M, YAMAMOTO N. Preparation of blow-molded macroscopicbubbles of mesoporous silica by a supramolecular templating approach [J].Langmuir,1999,15:22272229.
    [255] WANG J G, LI F, ZHOU H J, et al. Silica hollow spheres with ordered andradially oriented amino-functionalized mesochannels [J]. Chemistry ofMaterials,2009,21:612620.
    [256] QI G, WANG Y, ESTEVEZ L, et al. Facile and scalable synthesis ofmonodispersed spherical capsules with a mesoporous shell [J]. Chemistry ofMaterials,2010,22:26932695.
    [257] TAN B, RANKIN S E. Dual Latex/surfactant templating of hollow sphericalsilica particles with ordered mesoporous shells [J]. Langmuir,2005,21:81808187.
    [258] WU X, TIAN Y, CUI Y, et al. Raspberry-like Silica Hollow Spheres:hierarchical structures by dual latex surfactant templating route [J]. The Journalof Physical Chemistry C,2007,111:97049708.
    [259] YANG J, LEE J, KANG J, et al. Hollow silica nanocontainers as drug deliveryvehicles [J]. Langmuir,2008,24:34173421.
    [260] ZHAO Y, WANG H, LIU Y, et al. Hollow MCM-41microspheres derived fromP(St-MMA)/MCM-41core/shell composite particles [J]. Materials Letters,2008,62:42544256.
    [261] ZHAO W, LANG M, LI Y, et al. Fabrication of uniform hollow mesoporoussilica spheres and ellipsoids of tunable size through a facile hard-templatingroute [J]. Journal of Materials Chemistry,2009,19:27782783.
    [262] BLAS HLN, SAVE M, PASTTO P, et al. Elaboration of monodisperse sphericalhollow particles with ordered mesoporous silica shells via dual Latex/Surfactanttemplating: radial orientation of mesopore channels [J]. Langmuir,2008,24:1313213137.
    [263] FANG X, LIU Z, HSIEH M F, et al. Hollow mesoporous aluminosilica sphereswith perpendicular pore channels as catalytic nanoreactors [J]. ACS Nano,2012,6:44344444.
    [264] CHEN Y, CHEN H, GUO L, et al. Hollow/rattle-type mesoporousnanostructures by a structural difference-based selective etching strategy [J].ACS Nano,2009,4:529539.
    [265] CHEN Y, CHEN H, ZENG D, et al. Core/shell structured hollow mesoporousnanocapsules: a potential platform for simultaneous cell imaging and anticancerDrug delivery [J]. ACS Nano,2010,4:60016013.
    [266] WONG Y J, ZHU L, TEO W S, et al. Revisiting the St ber Method:Inhomogeneity in Silica Shells [J]. Journal of the American Chemical Society,2011,133:1142211425.
    [267] FANG X, CHEN C, LIU Z, et al. A cationic surfactant assisted selective etchingstrategy to hollow mesoporous silica spheres [J]. Nanoscale,2011,3:16321639.
    [268] ZHANG Q, LEE I, GE J, et al. Surface-protected etching of mesoporous oxideshells for the stabilization of metal nanocatalysts [J]. Advanced FunctionalMaterials,2010,20:22012214.
    [269] LIU Y, WANG X, YANG F, et al. Excellent antimicrobial properties ofmesoporous anatase TiO2and Ag/TiO2composite films [J]. Microporous andMesoporous Materials,2008,114:431439.
    [270] SEO Y I, LEE Y J, KIM D G, et al. Fabrication of Ag/Al(OH)3mesoporousnanocomposite film [J]. Microporous and Mesoporous Materials,2011,139:211215.
    [271]沙鹏宇.亲水性防雾耐磨杂化涂料的设计、制备与性能研究[D].长春:吉林大学化学学院,2008.
    [272] DING J F, KUBOTA H, OGIWARA Y. Effects of diphenylamine and binarysensitizers on photografting of methacrylic acid on low-intensity polyethylenefilm [J]. European Polymer Journal,1992,28:49-52.
    [273] SUN X F, LIU J K, LEE M L. Surface modification of glycidyl-containingpoly(methyl methacrylate) microchips using surface-initiated atom-transferradical polymerization [J]. Analytical Chemistry,2008,80:856-863.
    [274]李希明等.大孔交联聚苯乙烯吸附树脂的接枝改性[J].离子交换与吸附,1988,4,432-437.
    [275] NIE F Q, XU Z K, HUANG X J, et al. Acrylonitrile-based copolymermembranes containing reactive groups: surface modification by theimmobilization of poly(ethylene glycol) for improving antifouling property andbiocompatibility [J]. Langmuir,2003,19:9889-9895.
    [276] ZDYRKO B, VARSHNEY S K, LUZINOV I. Effect of molecular weight onsynthesis and surface morphology of high density poly(ethylene glycol) graftedlayers [J]. Langmuir,2004,20:6727-6735.
    [277] LI G L, WAN D, NEOH K G, KANG E T. Binary polymer brushs onsilica@polymer hybrid nanospheres and hollow polymer nanospheres bycombined alkyne-azide and thiol-ene surface click reactions [J].Macromolecules,2010,43:10275-10282.
    [278] YANO K, FUKUSHIMA Y. Particle size control of mono-dispersedsuper-microporous silica spheres [J]. Journal of Materials Chemistry,2003,13:2577-2581.
    [279] YANO K, FUKUSHIMA Y. Synthesis of mono-dispersed mesoporous silicaspheres with highly ordered hexagonal regularity using conventionalalkyltrimethylammonium halide as a surfactant [J]. Journal of MaterialsChemistry,2004,14:1579-1584.
    [280] NAKAMURA T, MIZUTANI M, NOZAKI H. Formation mechanism formonodispersed mesoporous silica spheres and its application to the synthesis ofcore/shell particles [J]. The Journal of Physical Chemistry C,2007,111:1093-1100.
    [281] CAI Q, LUO Z S, PANG W Q, et al. Dilute solution routes to variouscontrollable morphologies of MCM-41silica with basic medium [J]. Chemistryof Materials,2001,13:528-263.
    [282] QIAO Z A, ZHANG L, GUO M, et al. Synthesis of mesoporous silicananoparticles via controlled hydrolysis and condensation of silicon alkoxide [J].Chemistry of Materials,2009,21:3823-3829.
    [283] GU J, FAN W, OKUBO T. Organic–inorganic mesoporous nanocarriersintegrated with biogenic ligands [J]. Small,2007,3:1740-1744.