超细金属分离膜的性质及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜是重要的化工产品,在工业上主要应用于浓缩、纯化和分离。超滤则是目前应用最广、研究成果最多的膜过程。本文研究的对象为镍材料金属管状超滤膜。该膜曾在核技术领域大规模应用于气体扩散法分离铀同位素,集超滤膜、金属膜和管状膜的优点于一身。
     对超细金属分离膜的研究主要包括膜的性质和推广应用两方面。本文的目的是结合调研、理论推导和实验验证等方法,提出该膜在现代生活中推广应用是否实际可行的参考结论。
     膜孔是超滤膜性能的决定性参数,具体表现为平均孔径、孔径分布、孔隙率和孔表面积等。膜材料的纯度也对膜在实际应用中的表现有重要影响。本文针对膜孔和膜材料进行了多种途径的实验检测,得到了理想的实验结果。从而在原理上推断该膜除了原定用途之外,还可以扩展至目前的工业过滤分离领域。
     基于对膜性质研究的结果,本文展开了对膜的扩展应用的进一步实验研究。为保证应用实验能在最佳的环境下进行,使实验的结果对日后的工业应用具有参考价值,本文设计并采用有机玻璃材料制作了专门的实验组件,同时对原有的配套实验装置进行了改造。由于超滤膜主要应用于气体和液体分离,因而挑选了若干种典型的气体和液体样品进行了膜的扩展应用实验,并将实验结果送交权威机构进行检测。所有的实验结果都表明,此膜可以胜任目前绝大部分超滤膜在工业过滤分离领域的应用,且效果更好,经济性更高。此外,调研结果和对膜的改进试验显示,此膜还可能扩展至催化有机物转化制氢和纳米材料生产等用途。
As an important chemical industrial product, membrane is used for concentration, purification and separation mainly. There are many kinds of membrane filtrations, and ultrafiltration is the most popular one. The objective of this thesis is nickel-base tubular ultrafiltration membrane, which was used for the gaseous diffusion process only in nuclear industry years ago.
     The research on the membrane is based on theoretical derivation and experiment. The purpose is to search other possible applications except for UF6 gas separation of the membrane.
     Pore is one of the most important parameters of membrane, and the material is another.“Pore”means the average pore size, the pore size distribution, the effective porosity and the specific surface area, pore volume, and so on.“Material”means the material and its purity of the membrane. This thesis carried out experiments for all of them and got good results. That meant the membrane could be used for many purposes, such as air filtration, pure water production, waste water treatment, juice filtration, and so on. Some of them are profitable.
     Based on the research results of properties above, the research on applications of the membrane were carried out. First of all, a set of device was designed and constructed. And then, a lot of gas and liquid specimens were filtered with the membrane and the device. Experiment results supported the conclusion above strongly. Further more, the membrane might be processed to use for hydrogen gas and nano-materials production.
引文
[1] Marcel Mulder,李琳译.膜技术基本原理.北京:清华大学出版社,1999 年.
    [2] 刘茉娥.膜分离技术.化学工程出版社,1998.08
    [3] 华耀祖.超滤技术与应用.北京:化学工程出版社,2004.03
    [4] 邢卫红,徐南平,等.无机膜分离技术在食品发酵行业中的应用.膜科学与技术,1997年,卷 17:32~35
    [5] 郑领英,王学松.膜技术.北京:化学工业出版社,2000
    [6] 霍汉镇.膜分离技术及其在制糖工业中的研究应用.甘蔗糖业,2001 年,卷 6:23~25.
    [7] 柴红,张学民.互联网上的膜信息资源.膜科学与技术,2001 年 6 月,第 21 卷第 3 期
    [8] 汪洪生,陆雍森.国外膜技术进展及其在水处理中的应用.膜科学与技术,1999 年 8月,第 19 卷第 4 期
    [9] 王沛,徐南平,等.管式陶瓷微滤膜的制备研究.膜科学与技术,1996 年 9 月,第 16卷第 3 期
    [10] 刘广龙.过滤设备研发现状与展望.过滤与分离,2004 年第 3 期
    [11] 王从厚,吴鸣.国外膜工业发展概况.膜科学与技术,2002 年 2 月,第 22 卷第 1 期
    [12] 王从厚,陈勇.新世纪膜分离技术市场展望.膜科学与技术,2003 年 8 月,第 23卷第 4 期
    [13] 陈观文.我国分离膜市场的现状与展望.膜科学与技术,1999 年 12 月,第 19 卷第 6 期
    [14] 王保国.国际上膜科学与技术的研究发展趋势,清华大学,2004
    [15] 黄维菊,陈文梅.膜微滤强化技术国内研究进展.过滤与分离,2003 年第 1 期
    [16] 付海明,沈恒根.空气过滤理论研究与发展.过滤与分离,2003 年第 3 期
    [17] 张国俊,刘忠洲.膜过程中超滤膜污染机制的研究及其防治技术进展.膜科学与技术,2001 年 8 月,第 21 卷第 4 期
    [18] REN Jianxin, ZHANG Baocheng. Membrane technology and water treatment in environmental protection. 膜科学与技术,2001 年 2 月,第 21 卷第 1 期
    [19] C.S.Slater. Membrane technology for energy conservation in traditional and emerging engineering fields. USA: Energy Conversion Engineering Conference, 1989.IECEC-89.Proceedings of the 24th Intersociety, Aug. 1989.
    [20] Armando Colorado, Kareem Vakhshoori. Is your gas filter as clean as you think?. USA: IEEE/SCMI Advanced Semiconductor Manufacturing Conference, 2001.
    [21] J.M. Arnal Arnal, M. Sancho Fernindez, et al. Design of a membrane facility for water potabilization and its application to Third World countries, Desalination 137 (2001) 63~69
    [22] Harry Futselaar, Henk Schonewille,et al. Ultrafiltration technology for potable, process and waste water treatment. 膜科学与技术,2003 年 8 月,第 23 卷第 4 期
    [23] 孙德栋,张启修.UF 处理生活污水过程中的膜污染和膜清洗研究.膜科学与技术,2004 年 6 月,第 24 卷第 3 期
    [24] 蒋绍阶,石长恩,江志贤.膜过滤技术用于饮用水消毒可行性探讨. 重庆环境科学,2003 年 4 月,第 25 卷第 4 期
    [25] 黄瑾辉,曾光明,等.超滤分离技术在污水处理中的研究与应用.过滤与分离,2005 年第 1 期
    [26] 武江津,刘桂中,等.超滤技术在水污染控制和水回用中的应用.膜科学与技术,2003 年 8 月,第 23 卷第 4 期
    [27] 陆晓峰,卞晓锴.超滤膜的改性研究及应用.膜科学与技术,2003 年 8 月,第 23卷第 4 期
    [28] 陈良刚,陈清.超滤膜用于反渗透的前置处理.膜科学与技术,2003 年 8 月,第23 卷第 4 期
    [29] 陆晓峰,陈仕意,等.超滤膜的吸附污染研究.膜科学与技术,1997 年 2 月,第17 卷第 1 期
    [30] 祝生杰.超滤器的膜污染控制与处理.膜科学与技术,1997 年 4 月,第 17 卷第 4期
    [31] Tung-Wen Cheng. Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane, Journal of Membrane Science 196 (2002) 103~110
    [32] H.M. Yeh, T.C. Liu, P.C. Huang. Effect of varying incidental angles of a wire-rod insert on the performance of tubular ultrafiltration membranes, Desalination 170 (2004) 15~25
    [33] H.M. Yeh, H.Y. Chen, et al. Membrane ultrafiltration in a tubular module with a steel rod inserted concentrically for improved performance, Journal of Membrane Science 168 (2000) 121~133
    [34] T. Bilstad, E. Espedal. Membrane separation of produced water. Wat. Sci. Tech Vol. 34, No. 9, pp. 239~246, 1996
    [35] T. Taha, Z. F. Cui. Hydrodynamic analysis of upwards slug flow in tubular membranes. Desalination 145 (2002) 179~182
    [36] Ho-Ming Yeh, Jin-Hong Dong. Further Analysis of Permeate Flux for Membrane Ultrafiltration along a Solid-Rod Tubular Module. Tamkang Journal of Science and Engineering, Vol. 6, No. 1, pp. 1~7 (2003)
    [37] Kamel Damak, Abdelmoneim Ayadi, Philippe Schmitz, et al. Modeling of crossflow membrane separation processes under laminar flow conditions in tubular membrane. Desalination 168 (2004) 231~239
    [38] M. Héran, S. Elmaleh. Microfiltration through an inorganic tubular membrane with high frequency retrofiltration. Journal of Membrane Science 188 (2001) 181~188
    [39] H.M. Yeh, J.H. Dong, M.Y. Shi. Momentum balance analysis of flux and pressure declines in membrane ultrafiltration along tubular modules. Journal of Membrane Science 241 (2004) 335~345
    [40] G.T. Vladisavljevic, P. Vukosavljevic, B. Bukvic. Permeate flux and fouling resistance in ultrafiltration of depectinized apple juice using ceramic membranes. Journal of Food Engineering 60 (2003) 241~247
    [41] Antonio Guadix, Eva S?rensen. Optimal design and operation of continuous ultrafiltration plants. Journal of Membrane Science 235 (2004) 131~138
    [42] Miaomiao Zhang, Lianfa Song. Pressure-dependent permeate flux in ultra-and microfiltration. Journal of environmental engineering, July 2000. 667~674
    [43] Young-Seok Kim, Katsuki Kusakabe, Shigeharu Morooka, et al. Preparation of Microporous Silica Membranes for Gas Separation. orean J. Chem. Eng., 18(1), 106~112 (2001)
    [44] Robert A. Cross. Optimum process designs for ultrafiltration and crossflow microfiltration systems. Desalination 145 (2002) 159~163
    [45] H.M. Yeh, J.F. Dong, M.J. Hsieh, et al. Prediction of permeate flux for ultra-filtration in wire–rod tubular-membrane modules. Journal of Membrane Science 209 (2002) 19~26
    [46] K. Karakulski, W.A. Morawski. Purification of copper wire drawing emulsion by application of UF and RO. Desalination 131 (2000) 87~95
    [47] Hyeok Choi, Hyung-Soo Klm , Ick-Tae Yeom, et al. Pilot plant study of an ultrafiltration membrane system for drinking water treatment operated in the feed-and-bleed mode. Desalination 172 (2005) 281~291
    [48] Je. A. Roberts, Paul M. Sutton, Prakash N. Mishra. Application of the membrane biological reactor system for combined sanitary and industrial wastewater treatment. International Biodeterioration & Biodegradation 46 (2000) 37~42
    [49] Eric M. V., Menachem Elimelech. Cake-Enhanced Concentration Polarization: A New Fouling Mechanism for Salt-Rejecting Membranes. Environ. Sci. Technol.2003, 37, 5581~5588
    [50] Subir Bhattacharjee, Albert S. Kim, et al. Concentration Polarization of Interacting Solute Particlesin Cross-Flow Membrane Filtration. Journal of Colloid and Interface Science 212, 81~99 (1999)
    [51] Bernt Ericsson, bengt hallmans. Membrane applications in raw water treatment with and without reverse osmosis desalination. Desalination 98 (1994) 3~16
    [52] 赵宗艾,姜涛.附加湍流器强化陶瓷膜微滤过程的研究.化工机械,1997,第 24卷,第 6 期
    [53] 赵宗艾,姜涛,等.流体不稳定流动强化膜滤过程的研究.过滤与分离,1997 年第 2 期
    [54] 赵扬,席莹本,许莉.纳米过滤技术及其在我国的发展与展望.流体机械,2003年,第 31 卷第 5 期
    [55] 于建香,师奇松,等.纳米空气净化材料.北京石油化工学院学报,2004.03,第12 卷第 1 期
    [56] 高立新,陆亚俊.室内空气净化器的现状及改进措施.哈尔滨工业大学学报,2004.02,第 36 卷第 2 期
    [57] 童金忠,邢卫红.陶瓷微滤膜强化过程的工在艺条件研究.膜科学与技术,1999年 6 月,第 19 卷第 3 期
    [58] 吴章平,李桂水,等.无机膜错流微滤技术在菠萝汁澄清中的实验研究.过滤与分离,2004 年第 4 期
    [59] Tung-Wen Cheng, Ho-Ming Yeh, Jun-Hsiung Wu. Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module. Journal of Membrane Science 158 (1999) 223~234
    [60] D. dobrev, R. Neumann, et al. Formation of metal membranes by direct duplication of etched ion-track templates. Applied Physics A Materials Science & Processing. 76, 787~790 (2003)
    [61] Sabeur Khemakhem, R. Ben Amar. New ceramic membranes for tangential waste-water filtration. Desalination 167(2004) 19~22
    [62] V. N. Mynin, G. V. Terpugov. Purification of waste water from heavy metals by using ceramic membranes and natural polyelectrolytes. Desalination 119(1998) 361~362
    [63] S.T.D. de Barros, C.M.G. Andrade, et al. Study of fouling mechanism in pineapple juice clarification by ultrafiltration. Journal of Membrane Science 215 (2003) 213~224
    [64] Harry Futselaar, Dick C. Weijenberg. System design for large-scale ultrafiltration applications. Desalination 119(1998) 217~224
    [65] S.C.J.M. van Hoof, A. Hashimb, A.J. Kordes. The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications. Desalination 124 (1999) 231~242
    [66] M. Marcuccia*, G. Nosenzob, et al. Treatment and reuse of textile effluents based on newultrafiltration and other membrane technologies. Desalination 138 (2001) 75~82
    [67] Nader Al-Bastaki, Abderrahim Abbas. Use of fluid instabilities to enhance membrane performance. Desalination 136 (2001) 255~262
    [68] 毛建卫,崔艳丽.高效膜分离技术在啤酒工业中的应用工艺.食品科学,2002 年,第 23 卷第 9 期
    [69] 刘泽融.工业废水污泥灰渣特性及其再利用于水泥砂浆之研究:[硕士学位论文].台湾:国立中央大学,2000 年
    [70] 张智顺.自由体积大小对气体吸附及气体传送行为之影响:[硕士学位论文].台湾:私立中原大学,2002 年
    [71] 曹学武,张旭,江锐鹏. 以钠冷快堆为热源催化热解甲烷制氢储氢系统.中国,发明专利申请公布,03141662.4,20040407
    [72] 李先庭,杨建荣.室内空气品质研究现状与发展.暖通空调,2000 年,第 30 卷第 3 期,36~40
    [73] 张洪雁.高洁净度压缩空气/气体净化、过滤.洁净与空调技术. 2004 年第 4 期
    [74] 常东宏. 超细金属膜空气过滤装置性能研究:[学士学位论文].北京:清华大学,2005 年
    [75] 杨小松. 超细金属膜空气过滤装置性能研究:[学士学位论文].北京:清华大学,2005 年