基于双神经网络的微孔钻削在线监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高新机电产品的发展使微孔应用范围越来越广泛,需要微孔加工的场合越来越多,对微孔加工的表面质量、尺寸精度、位置精度和微孔加工的效率等也提出了更高的要求,微孔的加工面临着巨大的挑战。使用麻花钻的机械钻孔作为传统的孔加工方法,因为其设备简单、操作方便、价格合理而受到大多数加工企业的青睐,并且机械钻孔具有加工效率高、微孔表面质量好、精度高,加工不受材料导电性能的限制和影响等诸多优点,成为在众多微孔加工方法中,生产成本最低、最经济实用的方法。
     微钻头直径小,长径比大的结构特点决定了微钻头强度低、刚性差、易折断、入钻困难、易产生入钻偏移、易切屑堵塞等加工缺陷,往往造成微钻头的折断,给生产带来不利影响。微孔钻削加工难度大,微钻头易折断又难以预测,因此在钻削过程中,如何避免微钻头的折断,提高微钻头的使用寿命成为国内外学者普遍关注和致力于解决的问题之一。本文研究旨在通过对微孔钻削在线监测,有效预防和避免微钻头折断,提高微钻头的利用率和加工效率。
     钻削力是表征微钻头工作状态的基本信息,通过实时监测钻削轴向力和钻削扭矩两种力信号可实现对微钻头工作状态的在线监测,从而有效预防和避免微钻头的折断。
     本文提出了将微钻头接近折断时的钻削力信号归结为两种模式:一种是渐进型的磨损折断模式,另一种是突变型的异常折断模式。构建了监测两种折断模式的双神经网络模型,以微钻头钻削轴向力和扭矩时域最大幅值及其对时间一阶导数作为特征量,构成神经网络的输入层向量,利用实验数据构成训练样本集对双神经网络模型进行网络训练,得到两组监测阈值的参考数据,用于微孔钻削的在线监测。
     本文充分发挥LabVIEW软件图形化的编程语言的优势,将其强大的编程功能与钻削力检测的硬件实验装置有机结合,设计了基于虚拟仪器技术的微孔钻削力在线监测系统,该系统由应变式传感器、电荷放大器、A/D数采卡、计算机软件监测系统、单片机控制单元、功率放大器、驱动电源、步进电机、减速传动链、精密钻床等几大部分构成,通过监测软件系统实现对钻削力信号的实时采集和处理、实时显示和历史数据重现、神经网络决策与报警退刀等功能,并实时发出控制信号通过单片机实现对主轴进给运动的伺服控制,执行报警退刀或正常钻削等控制指令。
     通过监测系统进行了微孔钻削力在线监测实验,其监测过程为:将实时检测的钻削力信号与预先设定的钻削力监测数值作比较,根据钻削力取值情况来选择双神经网络之一进行计算;将双神经网络输出与预先设置的监测阈值做比较,若双神经网络输出小于监测阈值,意味着微钻头工作正常,工作状态安全,单片机发出控制指令,微钻头继续钻削加工;若网络输出大于或等于监测阈值,则预示微钻头磨损严重或遭遇异常状况,出现工作异常,无法保证正常工作,单片机控制单元发出报警指令,要求步进电机停止工作,不再进给,微钻头退刀。监测实验结果表明,用双神经网络来进行微孔钻削在线监测效果较好,该监测策略具有可行性。
     本论文主要创新点如下:
     (1)组建了微孔钻削力实验系统,对微孔钻削轴向力和钻削扭矩进行实验研究。结果表明,随着钻孔数量的增多,微钻头磨损程度不断加剧,钻削轴向力和钻削扭矩两种信号幅值也随之增大,其变化趋势与微钻头磨损状况具有关联性,表明钻削力信号的幅值变化对微钻头磨损程度非常敏感,将钻削力信号作为表征微钻头工作状态的特征量是可行的,为微孔钻削在线监测确定了特征参数。实验还表明,微钻头接近折断时钻削力信号呈现出渐变型和突变型两种不同的幅值增长模式,为双神经网络监测模型设计提供依据。
     (2)构建了对微钻头接近折断时钻削力信号渐变型和突变型两种模式进行监测的双神经网络模型,并对两种不同折断模式进行网络训练,得到了相对稳定的神经网络,为微孔钻削过程的智能化在线监测提供了一种有效的方法。
     (3)采用LabVIEW软件与硬件相结合,设计了基于双神经网络的微孔钻削在线监测系统,进行了单、双神经网络微孔钻削在线监测对比实验,验证了双神经网络比单神经网络更能准确地预报微钻头的工作状态,预防微钻头折断的效果更好。
The development of high-tech products continuously increases the number of microholes and impels more and more wide application of micro holes. Processing quality ofmicro holes, example surface quality, dimensional accuracy, positional accuracy and workingefficiency are taken more and more high requests. Micro holes processing faces enormouschallenge. Drilling process by twist drills, as a traditional holes processing method, ispopular with the major businesses, because of simple equipments, convenient operation,reasonable price. And it has many advantages such as high processing efficiency, goodsurface quality, high precision and processing of no restriction from conductive properties ofmaterials. Micro drilling becomes the method with the lowest production cost and the mosteconomical and practical among many micro holes processing methods.
     The structural characteristics of small diameters, large length-diameter ratio of microdrills determines some fatal weaknesses, including low strength, poor rigidity, easy breakagedifficultly drilling, drilling offsetting, chip plugging, and so on. These usually cause microdrills breakage or damage, bring adverse effects in practice. Micro drill is easy to break anddifficult to predict, therefore in the drilling process, in order to prevent their breakage ordamage and improve their life, many experts and scholars have been committed to studymicro drilling. They hope to find some better methods to solve the outstanding problems onmicro drilling. So the focus of this paper are how to safeguard micro drills, give full play tothe function of micro drills, improve micro drilling capacity, productivity and toolsutilization rate.
     Force signals are the necessary conditions to represent continuously cutting and thenecessary factors to character working state of micro drills. Real-time monitoring forcesignals can realize on-line monitoring the state of micro drills, so that effectively prevent andavoid their breakage.
     Because drilling force signals showed two changes under normal working and microdrills breakage, the drilling force signals are summed up two kinds of modes, one isprogressive type wear broken mode, another is mutant abnormal failure mode. Taking theseas the premise, the double neural network models are constructed, some characteristics of thesignal amplitudes of drilling thrust and torque signals and their first time derivative composes the input layer vectors of the neural network. The networks are trained by usingthe experimental data, two groups of monitoring threshold are obtained and used to on-linemonitor micro drilling.
     The paper gives full play to LabVIEW software advantages, combines the G-languageprogramming function and experimental device, a kind of micro drilling force signals on-linemonitoring system is designed based on VI technology. The system is composed of severalparts including train sensors, the charge amplifier, the A/D PCI, the computer softwaremonitoring system, the microprocessor control unit, the power amplifier, the drive power, thestep motor, the drive chain and the precision drilling machine. The system working steps areacquisition of signals, real-time displaying and historical data reproduction, data handling,signal analysis, neural network decision, servo control to the step motor and alarm backcutting tools.
     Drilling force monitoring experiments are done by using this system. Specific process isas follows, the first step is to comparing the real-time drilling force signals and thepredetermined values in order to choose the neural network model, second is that thereal-time data are input into the trained network model and train or calculate, third is tocontrast the network output to the given monitoring threshold, micro-drills will continue todrill while the output is less than the threshold, or else micro-drills will been alerted to drawback while the output is greater than or equal the threshold. The results showed that selectingappropriate monitoring threshold could effectively avoid micro-drills breakage. Somonitoring micro-drilling using the double neural network is feasible and available.
     In this paper, the main innovations are as follows:
     (1) A kind of experiment system is built to collect the drilling thrust and torque signalsby sensors. A lot of experimental results show that the more drilling holes, the more seriousmicro drills wear, the greater the drilling forces are. They also show that the amplitudes ofdrilling forces are sensitive to micro drills’ wear, so drilling forces may represent the wearingstate and cutting state of micro drills, drilling forces are usual as the character parameters. Inthe experiments, the two changes under normal working and micro drills breakage, thedrilling force signals are summed up two kinds of modes, one is progressive type wearbroken mode, another one is mutant abnormal failure mode.
     (2) The double neural network model, including the progressive type and the mutantabnormal failure mode, is set up to on-line monitoring micro drilling. The double neuralnetwork is trained by lots of experimental samples, the two stable networks are obtained. Aeffective method is get to intelligent on-line monitoring micro drilling.
     (3) A kind of micro drilling force signals on-line monitoring system is designed basedon the combination of the LabVIEW software and lots of hardware. Some contrast tests aredesigned based on between the single neural network and the double neural network, resultsshow that the effect on the double neural network is better than its effect on the single neuralnetwork during micro drilling on-line monitoring.
引文
[1] Yang Zhaojun, Chen Yanhong,Yang Yonghai. Study on the life distribution of micro-drill [J]. Journal of Engineering Manufacture Proceedings PartB,2002,216(B3):301-305
    [2]张华.基于虚拟仪器微孔钻削在线监测系统的研究[D].长春:吉林大学,2004
    [3]孙艳红.微钻头折断机理及钻削力在线监测研究[D].长春:吉林大学,2009
    [4]石建军.孔的切削加工(孔的钻削)[M].西安:西安交通大学出版社,1988
    [5]王爱民.喷油器喷孔加工及测量技术[J].现代制造工程,2011(10):103-108
    [6]李锡峰.印刷电路板微孔加工的问题及发展[J].工具技术,1993,27(5):1-5
    [7]马星辉,高国富,赵波.精密微小孔加工技术进展[J].电加工与模具,2008(5):13-18
    [8]吴希让,王彦峰,姬鸿飞.微加工的工艺研究现状[J].精密制造与自动化,2001,(4):11-1
    [9]曾忠,黎永明.微孔加工技术的现状[J].磨床与磨削,1997(4):20-23
    [10]应人龙.曾莉群微小孔加工技术综述[J].机床与液压,2008(6):144-147
    [11]宋永伟,姚建丽.微小孔钻削方法研究[J].航空制造技术,2012(14):96-98
    [12]贾宝贤,王振龙,赵才生.基于特种加工的微小孔加工技术[J].电加工与模具,2005(2):1-5
    [13]杨彦波,李自鹏,黄志伟.特种加工技术在微小孔加工中的应用[J].黄河水利职业技术学院学报,2010(1):49-51
    [14]宋小中,刘正埙.电火花微细加工的工艺研究.电加工,1995(2):14-18
    [15]米曾榜.小孔加工[M].北京:机械工业出版社,1988
    [16] Tonshoff H K. Machining of Holes Developments in Drilling Technology[C]. Annals ofthe CIRP,1994,43(2):551-561
    [17] B.K.Hinds, G.M.Treanor. Analysis of stresses in micro-drills using the finite elementmethod[J]. International Journal of Machine Tools&Manufacture,2000,40(10):1443-1456
    [18] Sprow, E.E. Worle-class micro-drilling[J]. Tooling&production,1998,54(1):54-58
    [19] Y.Gong, K.F.Ehmann, C.Lin. Analysis of dynamic characteristic of micro-drills[J].Journal of Materials Processing Technology,2003,141(1):6-28
    [20] Wang Liping, Yang Zhaojun, Wang Lijiang, etc. Investigations on the Transverse Micro-Drill Deflection of the Drill Point at the Entrance in Low Frequency VibrationDrilling[J]. China Mechanical Engineering,1998(12):156-158
    [21] Yang Zhaojun, Yang Yonghai, JIA Qingxiang, etc. Prediction of micro drill breakthrough thrust monitoring[J]. Optics and Precision Engineering,2003(10:477-481
    [22]袁哲俊.金属切削刀具[M].上海:上海科学技术出版社,1984
    [23] Rodolfo Haber-Haber, Rodolfo Haber. A classic solution for the control of ahigh-performance drilling process[J]. International Journal of Machine Tools andManufacture,2007,47(15):2290-2297
    [24]杨兆军,罗艳春,孙航.基于神经网络微孔钻削在线实时监测[J].机械制造,2005(5):40-42
    [25]梁洁萍,周知进.微小孔加工与微细钻头[J].湘潭师范学院学报(自然科学版),2004,26(4):65-67
    [26] Sabate N,Vogel D,Golhardt,etc. Residual stress measurement on a MEMS structure withhigh–spatial resolution[J]. Journal of micro-electromechanical system,2007,16(2):365-370
    [27]郝兴高.基于有限元的麻花钻加工精度分析[D].西安:西安电子科技大学,2007
    [28] Lianyu Fu, Shih-Fu Ling, Ching-Huan Tseng. On-line breakage monitoring of smalldrills with input impedance of driving motor[J]. Mechanical Systems and SignalProcessing,2007,21(1):457-465
    [29]林经德.微小孔钻头的折断与预防对策[J].机械工程师,1998(2):25-26
    [30]杨兆军,王勋龙,杨兆华.微小孔钻削加工的难点及其对策[J].机械工程师,1997(5):15-16
    [31]程军,焦锋.微小孔钻削工艺的研究现状[J].机械工程师,2007(11):9-11
    [32]石文天,刘玉德,李慎龙.微小型零件的微细切削加工工艺研究[J].组合机床与自动化加工技术,2011(5):93-97
    [33]王成勇,黄立新,郑李娟等.印刷电路板超细微孔钻削加工及其关键技术[J].工具技术,2010(1):3-10
    [34]马向平,向道辉,陈明等微小孔加工试验及刀具磨损机理[J].南京航空航天大学学报,2005(11):8-11
    [35]童幸生.微小孔零件的钻削加工[J].江汉大学学报,2000(12):51-53
    [36]张明,周锦进.微细钻头折断原因探讨[J].工具技术,1999(33):5-6
    [37]张春梅,雷贤卿.细微切削钻头损坏的力学探讨[J].煤矿机械,2007,28(11):51-53
    [38]贾居祥,瞿国权.微小孔钻头易折断的原因及解决方法[J].机械制造,1999(39):13
    [39]于凤云,孙洪江.浅析钻削加工刀具损伤[J].煤矿机械,2003(3):49-51
    [40]褚春丽.巧妙处理微钻头方法的探讨[J].今日科苑,2008(2):80-81
    [41]孙艳红,杨兆军,崔亚新.基于小波变换的微钻头破损模式的识别[J].组合机床与自动化加工技术,2006(6):67-70
    [42] W.H. Kao. Tribological properties and high speed drilling application of MoS2–Crcoatings[J]. Wear,2005(258):812-825
    [43] H. Nakagawa, K. Ogawa, A. Kihara. Improvement of micro-drilled hole quality forprinted wiring boards[J]. Journal of Materials Processing Technology,2007,191(1-3):293-296
    [44]杨兆军.变振幅振动钻削提高微小孔入钻定位精度的研究[J].吉林工业大学学报,1995,25(1):27-32
    [45]谢大刚,卢政君,袁哲俊.径向力对孔加工精度影响的研究[J].机械工程师,2000,(12):38-39
    [46] Babur Ozcelik, Eyup Bagci. Experimental and numerical studies on the determinationof twist drill temperature in dry drilling: A new approach[J]. Materials and Design,2006,27(10):920-927
    [47]李雪.基于粗糙集模糊神经网络的微孔钻削在线监测研究[D].吉林大学,2008
    [48]孙航.基于小波理论和神经网络的微孔钻削在线实时监控系统[D].吉林大学,2004
    [49]鄂世举.微小孔钻削力测力仪的研制[D].吉林大学,2000
    [50]王立平,杨兆军,王立江.低频振动钻削时微小钻头横向偏移的研究[J].中国机械工程,1998,9(12):156-158
    [51] H.BahaiA. parametric model for axial and bending stress concentration factors in APIdrilling threaded connectors[J]. International Journal of Prassure Vessels and Piping2001,78(7):495-505
    [52]罗艳春,杨威,张宝庆.基于LabVIEW的虚拟微孔钻削力测试仪的设计与实现[J].长春理工大学学报,2005,28(1):109-111
    [53]李雪,杨兆军.基于Labview的虚拟仪器技术在微孔钻削实时监控系统中的应用[J].机床与液压,2007,35(6):152-154
    [54] Vivek Chandrasekharan. A model to predict the three dimensional cutting force systemfor drilling with arbitrary point geometry [D]. Madras: Indian Institute of Technology,1990
    [55]郭贵生,樊相印,吴希锈.螺旋升角对钻头工作性能影响规律的研究[J].西安农业大学学报,1995,23(6):56-59
    [56]谢大纲.高效钻削机理的研究及新型钻头专用刃磨机的研制[D].哈尔滨:哈尔滨工业大学,1999
    [57]王昕.振动钻削新钻削力模型及定、变参数振动钻削的研究[D].长春:吉林大学,2004
    [58] Jung-Fa Hsieh. Mathematical model for helical drill point.[J]. International Journal ofMachine Tools&Manufacture,2005,45(7-8):967-977
    [59]刘彬.基于切屑卷曲、流出的麻花钻螺旋槽形优化方法的探索研究[D].贵阳:贵州大学,2006
    [60] Pei Yongchen, Tan Qingchang, Yang Zhaojun. A study of dynamic stresses inmicro-drills under high-speed machining[J]. International Journal of Machine Tools&Manufacture,2006,46(14):892-1900
    [61]裴永臣.微小孔钻头的动态应力研究[D].长春:吉林大学,2005
    [62] TRAORE M Magara, PEI Yongchen, TAN Qingchang. Dynamic Stress Characteristicof High speed Micro hole Drill[J]. Journal of Jilin University (Engineering andTechnology Edition),2005,35(6):606-611
    [63]熊良山,师汉民,陈永洁.钻头与钻削研究的历史、现状与发展趋势[J].工具技术,2005(8):11-14
    [64] Anping GUO. Investigation of the static and dynamic chracteristics of micro-drilling [D]Nanjing: Nanjing University of Aeronautics and Astronautics,1996
    [65] Guo Y, Dornfeld D A. Integration of CAD of drill with FEA of drilling burrformation[C]. Transactions of NAMRI/SME,1998:1-6
    [66]母德强,陈塑寰.工作状态下钻头动态特性分析[J].吉林工学院学报,1999,20(3):5-7
    [67] J. Kosmol, M. Czech, K. Klareck, etc.The optimization of drills for the machining ofaustenitic steel[J]. Journal of Materials Processing Technology,1999(89):117-122
    [68]周志雄,袁建军,林丞.微钻头螺旋槽的数学模型及其CAD方法[J].中国机械工程,2000(11):1284-1288
    [69] M.Elhachimi,S.Torbaty,P.Joyot. Mechanical modeling of high speed drilling. predictedand experimental results[J]. Int.J.Mach. Tools Manufact,1999,39(4):569-581
    [70] M Shatla, T Altan. Analytical modeling of drilling and ball end milling[J]. Journal ofMaterials Processing Technology,2000,98(1):125-133
    [71]谢大纲,赵清亮,袁哲俊等.麻花钻刚度的有限元分析[J].中国机械工程,2001(5):154-157
    [72] Yongping Gong. Modeling and Simulation of Micro-drilling Dynamics [D]EVANSTON: Northwestern University,2001
    [73]马国亮,曹秋霞.麻花钻顶角对钻削加工的影响[J].河南机电高等专科学校学报,2002(6):39-40
    [74] H B Lin. Computer Simulations for Burr Formation Study[D]. Berkeley: University ofCalifornia,2002
    [75] M Bono, J Ni. The effects of thermal distortions on the diameter and cylindricity of drydrilled holes[J]. International Journal of Machine Tools and Manufacture,2001,41(15):2261-2270
    [76]徐年富,徐坚.钻削加工定位精度分析[J].精密制造与自动化,2003(4):59-60
    [77] Jihong Choi, Sangkee Min, David Dornfeld. Finite element modeling of burr formationin drilling of a multilayered material[C]. Berkeley:University of California atBerkeley,2003
    [78] J.S.Strenkowski, C.C.Hsieh, A.J.Shih. An analytical finite element technique forpredicting thrust force and torque in drilling[J].International Journal of MachineTools&Manufacture,2004,44(12-13):1413~1421
    [79]马国亮,曹秋霞,赵建敏.麻花钻的受力状态对钻削稳定性的影响[J].工具技术,2005(8):69-71
    [80] Anish Paul, Shiv G.Kapoor, Richard E. Chisel edge and cutting lip shape optimizationfor improved twist drill point design[J].International Journal of Machine Tools&Manufacture,2005,45(4-5):421-431
    [81]李晶.高速微孔钻床主轴系统的有限元分析[D].吉林大学,2007
    [82]谢俊峰.钻削加工毛刺的形成及解决方法[J].轻工机械,2007(2):85-87
    [83] Rodolfo Haber. A classic solution for the control of a high-performance drillingprocess[J]. International Journal of Machine Tools and Manufacture,2007,47(15):2290-2297
    [84] Sedat Karabay. Analysis of drill dynamometer with octagonal ring type transducers formonitoring of cutting forces in drilling and allied process[J]. Materials and Design,2007,28(2):673-685
    [85]张春梅,雷贤卿.基于有限元的细微切削钻头强度分析[J].机械设计与制造2008(6):125-127
    [86]孙艳红,杨兆军,崔亚新等.基于NASTRAN的微小麻花钻头模态分析[J].东北大学学报,2008(6):293-296
    [87]唐英,马鹤坤,吴权.微小孔钻削过程轴向力和扭矩的模拟研究[J].工具技2009(6):61-64
    [88]杨兆军,王立江.振动钻孔的国内外研究状况[J].吉林工业大学学报,1994(2):57-60
    [89] Yang Zhaojun, Li Wei, Chen Yanhong,etc. Study for increasing micro-drills reliabilityby vibrating drilling[J].Reliability Engineering and System Safety,1998,61(3):229-233
    [90]杨兆军,王立江,王立平.变振幅振动钻削提高微小孔定位精度的研究[J].吉林工业大学学报,1995(1):45-49
    [91]杨兆军,王立江,杨雪等.振动钻削降低微小孔孔径分散度的试验研究[J].机械工程师,1995(10):35-38
    [92]杨兆军,王立江,王立平.振动钻削微小孔降低表面粗糙度的研究[J].汽车工艺与材料,1996(7):21-24
    [93]杨兆军,王立江,赵宏伟.三区段变参数振动钻削提高微小钻头可靠性的研究[J].林工业大学学报,1998(2):55-58
    [94]杨兆军,王立江.变进给量振动钻削微孔的研究[J].制造技术与机床,1998(2):67-69
    [95]杨兆军,王勋龙,池龙珠等.变频率振动钻削微孔提高孔径质量的研究[J].农业机械学报,1998(3):89-92
    [96]杨兆军,王立江,王立平.三区段变参数振动钻削微孔的研究[J].机械工程学报,2001(3):123-128
    [97]王立平.振动钻削动态特性及变参数振动钻削微机控制的研究[D].吉林大学,1997
    [98]王立平,杨叔子,杨兆军.低频振动钻削提高微小钻头寿命机理的研究[J].工具技术,1998(5):12-16
    [99]王立平,何玉辉,杨兆军.连续变参数振动钻削机床微机控制系统的研制[J].汽车工艺与材料,1998(2):41-44
    [100]王立平,杨兆军,王立江.多元变参数振动钻床的数控系统[J].机械工业自动化,1998(4):33-36
    [101]王立平,何玉辉,杨兆军.振动钻削时钻头的动力学模型[J].汽车技术,1998(9):24-27
    [102]王立平,杨叔子,杨兆军.振动钻削减小微小孔出口毛刺的实验研究[J].汽车工艺与材料,1998(9):23-26
    [103]王立平,杨叔子,杨兆军.三区段振动钻削动态轴向力和扭矩的计算机仿真[J].工具技术,1999(5):78-81
    [104]王立平,杨叔子,杨兆军.振动钻削的国内外研究状况和发展趋势[J].机械设计与制造工程,1999(3):1-4
    [105]池龙珠,卢龙,杨兆军.进给量对振动钻削钻头寿命的影响[J].机械工程师,1998(2):77-79
    [106]何玉辉.振动钻削微小孔力学特性的研究[D].长春:吉林大学,1998
    [107]李自军,洪迈生,王立江.变参数振动钻削微小孔的优化试验分析[J].上海交通大学学报,2000(10):935-938
    [108]徐盛林.使用气压振动工作台的微小孔钻徐加工[J].机械工程师,2000(11):5-8
    [109]黄文.用有限元法研究微细钻头振动钻入动力学特性[J].工具技术,2004,38(3):21-23
    [110]吴镝.复合材料超声振动钻削微小孔加工的研究现状[J].焦作大学学报,2005(7):69-70
    [111]朱晓翠,赵云飞,韩雪冰等.振动钻削的国内外研究现状和发展趋势[J].机械工程师,2005(10)15-18
    [112]高扬,顾立志.振动钻削理论与参数优化方法研究概况[J].工具技术,2008(10):16-18
    [113] Young Jun Choi, Min Soo Park, Chong Nam Chu. Prediction of drill failure usingfeatures extraction in time and frequency domains of feed motor current[J].International Journal of Machine Tools&Manufacture,2008,48(1):29-39
    [114]徐春广,王信义,肖定国.切削状态在线监测的新方法[J].北京理工大学学报,1994(2):48-51
    [115] S.Wiriyacosol, E.J.A.Armarego. Thrust and torque prediction in drilling from a cuttingmechanism approach[C]. Annals of the CIRP,1979(1):87-91
    [116]丁彦波,王太勇.小孔钻削加工自适应控制[J].航空精密制造技术,2005,41(2):51-53
    [117]姚英学,陈朔冬,袁哲俊.深孔钻削时排削过程的优化[J].机械工程师,1995(4):55-60
    [118]吕卫阳,陈克兴.小波倒频谱及其应用[J].北京科技大学学报,1999,21(5):491-493
    [119]李小俚,关新平.小波技术与工程信号处理[J].燕山大学学报,1999,23(1):93-94
    [120] Karri, Vishy, Kiatcharoenpol, Tossapol. Tool condition monitoring in drilling usingartificial neural networks[J]. Lecture Notes in Artificial Intelligence,2003,29(3):293-301
    [121] I.N.Tansel. Monitoring microdrilling operations with an intelligent diagnosticsystem[J]. The Journal of the Acoustical Society of America,1992,91(4):2358-2362
    [122] Man Sheel Cheong, Dong-Woo Cho, Kornel F. Ehmann.Identification and control formicro-drilling productivity enhancement[J].International Journal of Machine Tools&Manufacture,1999,39(10):1539-1561
    [123]王志勇,袁哲俊,李冬妮.钻头破损的声发射在线检测[J].组合机床与自动化加工技术,1991(4):7-9
    [124]张春江,陈小明.声发射监测钻头折断的实验研究[J].航空学报,1992(4):196-202
    [125]袁哲俊,姚英学,张飞虎.钻削过程监控技术及其应用的研究[J].机械工程学报,1992(6):55-60
    [126]杨兆军,杨永海,鄂世举.微小钻头钻削扭矩极限值的分布规律[J].吉林工业大学学报,1999,29(4):67-71
    [127]杨兆军,杨永海,王伟国.微孔钻削的在线实时监测[J].吉林大学学报(工学版),2003(4):35-37
    [128]杨兆军,杨永海,贾庆祥,王伟国.通过轴向力监测预报微钻头折断的研究[J].光学精密工程,2003(10):477-480
    [129]李雪.基于主轴电机电流的微孔钻削在线监测[D].长春:吉林大学,2005
    [130]张海华.钻削过程与监测信号映射模型研究[D].湘潭大学,2011
    [131]王清明,董申,李小俚.基于小波分析的钻头破损检测[J].哈尔滨工业大学学报,2000(12):76-79
    [132]郑慧萌.基于模糊控制的微孔钻削在线监测系统[D].长春:吉林大学,2006
    [133]周友行,张建勋,唐稳庄.基于瞬态特征的钻削过程与监控信号映射模型[J].中南大学学报(自然科学版),2010:26-30
    [134]鄂世举.微小孔钻削力监测系统及测力仪动态特性研究[D].长春:吉林大学,2000
    [135]罗艳春.基于神经网络的微孔钻削在线监测技术研究[D].长春:长春工业大学,2005
    [136]韩愈.基于模糊神经网络的微小孔钻削在线监测[D].长春:吉林大学,2006
    [137]闫震友.微孔钻削的模糊神经网络在线监控系统[D].长春:吉林大学,2007
    [138]王鹤.基于粗糙-模糊控制的微孔钻削在线监测系统[D].长春:吉林大学,2007
    [139]李雪.基于粗糙集模糊神经网络的微孔钻削在线监测研究[D].长春:吉林大学,2008.
    [140]张庭耀.微孔钻削在线监测控制技术研究[D].长春:吉林大学,2007
    [141]盛烨华.基于DSP的微孔钻削在线监测系统[D].长春:吉林大学,2007
    [142]贾民平.测试技术[M].北京:高等教育出版社,2006
    [143]刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003
    [144]黄文梅,熊桂林,杨勇.信号分析与处理--MATLAB语言与应用[M].长沙:国防科技大学出版社,2000
    [145]王永骥,涂健.神经元网络控制[M].北京:机械工业出版社,1998
    [146]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000
    [147]沈宁福.新编金属材料手册[M].北京:科学出版社,2003
    [148]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1992
    [149] R.C.Eberhart, R.W.Dobbins. Neural Network PC Tools[M]. Academic Press,1990
    [150] H.N.Robert. Counterpropagation Networks[C]. San Diego: Proc. IEEE FirstInternational Conference on Neural Networks,1987
    [151] BHAT N V, MC AVOY T J. Determining model structure for neural model by networkstripping[J]. Computers and Chem Engng,1992.
    [152] L.M.Fu. Rule Generation from Neural Networks[C]. IEEE Trans on System, Man andCybernetics,1994,24(8):1114-1124
    [153] Bhat N, McAvoy T J. Use of neural nets for dynamic modeling and control of chemical process systems[J]. Computers Chem. Eng.,1990,14(4-5):573-583
    [154]王沫然.MATLAB6.0与科学计算中心[M].北京:电子工业出版社,2001
    [155]闻新,周露,李翔.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [156]薛斌党,孙惠国,薛文芳等.故障诊断神经网络隐层节点数的优化方法[J].郑州工业大学学报,1999(3):57-61
    [157] S.C.LIN, C.J.TING. Drill wear monitoring neural networks[J]. Tool Manufacture,1996,30(4):465-475
    [158]权太范信息融合神经网络-模糊推理理论与应用[M].长沙:国防工业出社,2002