GaAs光电阴极及像增强器的分辨力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕均匀掺杂和指数掺杂GaAs光电阴极电子输运、分辨力及GaAs光电阴极在微光像增强器中的应用展开了研究。
     通过建立均匀掺杂GaAs光电阴极原子基本结构单元和电离杂质散射公式,模拟了光电子在均匀掺杂GaAs光电阴极体内的输运轨迹,分析了电子扩散长度、掺杂浓度和发射层厚度等因素对光电阴极的弥散圆斑和到达阴极出射面的光电子数与激发光电子总数之比的影响,讨论了发射层厚度、掺杂浓度以及电子扩散长度的最佳值。考虑了GaAlAs窗口层和GaAs发射层的反射率、透射率和吸收系数等参数的影响,计算了均匀掺杂GaAs光电阴极调制传递函数,分析了光电阴极的结构参数对调制传递函数的影响。
     在均匀掺杂GaAs光电阴极光电子输运理论模型的基础上,建立了指数掺杂GaAs光电阴极原子基本结构单元和电场作用下的电离杂质散射公式,考虑了400-900nm波段光在光电阴极体内不同位置激发的光电子,模拟了光电子在光电阴极体内的输运轨迹,比较分析了指数掺杂对GaAs光电阴极出射面的电子能量分布、出射角分布、光电发射效率和MTF等的影响。建立了场渗透模型,分析了场渗透强度对光电子落点分布、光电发射效率和调制传递函数的影响,研究了GaAs光电阴极在微光像增强器工作时的光电发射性能。
     考虑了GaAs光电阴极出射电子的能量与角度分布,设GaAs光电阴极出射电子的能量分布服从Beta分布,角度分布服从Lambert分布,研究了前近贴聚焦系统的调制传递函数,分析了近贴电压和距离对近贴聚焦系统分辨力的影响。根据次级电子发射理论,建立了MCP通道内壁发射次级电子的能量分布与角度分布,研究了MCP开口面积比、斜切角、末端电极深度和通道板长径比等参数对微光像增强器光电子输运和MTF的影响,建立了较为完善的GaAs光电阴极微光像增强器分辨力理论。
     为了验证理论模型,开展了GaAs光电阴极微光像增强器halo效应和分辨力测试研究工作,比较了超二代和三代微光像增强器halo效应,分析了采集的halo图像的灰度值分布曲线。构建了高压脉冲电源,通过调节前近贴脉冲信号的高低电平电压幅值和占空比,研究了前近贴脉冲电压对三代微光像增强器halo效应和分辨力的影响。另外,对比分析了不同掺杂方式下的GaAs光电阴极微光像增强器halo效应,理论研究了均匀掺杂和指数掺杂GaAs光电阴极微光像增强器的分辨力,分析了GaAs光电阴极对微光像增强器分辨力的影响,间接验证了GaAs光电阴极微光像增强器分辨力理论模型的可用性。
The researches on the electron transport and resolution of uniform-doping and exponential-doping GaAs photocathode, and the application of GaAs photocathode in image intensifier were carried out in this thesis.
     By establishing the atomic fundamental structure unit and ionized impurity scattering formula, the transport of photoelectrons in the uniform-doping transmission-mode GaAs photocathode was simulated. The influence of the electron diffusion length, the doping concentration, and the photocathode thickness on the dispersive spot and the ratio of the number of photoelectrons reaching the emission surface to the number of exited photoelectrons at the emission surface of GaAs photocathode were analyzed. The optimum values of the photocathode thickness, the doping concentration, and the electron diffusion length were explored. Considering the factors of reflectivity, transmisstivity, and absorption coefficient of GaAlAs window-layer and GaAs active-layer, the modulation transfer function of uniform-doping GaAs photocathode was calculated, and the influence of photocathode structure parameters on modulation transfer function was analyzed.
     Based on the photoelectron transport model of uniform-doping transmission-mode GaAs photocathode, the atomic fundamental structure unit and ionized impurity scattering formula of exponential-doping GaAs photocathode were established. Considering the different positions of excitated photoelectrons in the radiation range of400-900nm, the trajectories of photoelectrons in photocathode were simulated, and the influence of exponential-doping structure on the energy spread, emergence angle spread, the modulation transfer function and the photoemission efficiency of GaAs photocathode was analyzed. By establishing the electric field penetration model, the influence of electric field penetration on the electron distribution, the photoemission efficiency, and the modulation transfer function were analyzed. The photoemission performance of GaAs photocathode operating in low light level image intensifier was researched.
     Considering the energy spread and emergence angle spread of photoelectrons, the modulation transfer function of pre-proximity focusing system was researched assuming that the initial energy distribution and angle distribution of photoelectrons escaped from GaAs photocathode obey Beta distributions and Lambert distributions respectively. The influence of proximity voltage and distance on the pre-proximity focusing system was analyzed. According to the theory of secondary electron emission, the energy spread and angle spread of secondary electron in microchannel plate were established. The influences of microchannel plate opening area ratio, oblique angle, ending spoiling electrode depth, and thickness on the resolution and modulation transfer function of the low light level image intensifier were researched. A perfect resolution theory of GaAs photocathode low light level image intensifier was established consequently.
     In order to verify the theoretical model, the halo effect and resolution of low light level image intensifier with GaAs photocathode were investigated. The halo effects of super second-and third-generation image intensifier were tested and compared by analyzing the gray value curves of the collected halo effect. The influence of pro-proximity pulse voltage on image intensifiers halo effect was researched by respectively changing the high and low level voltage and duty ratio. Besides, the halo effects of low light level image intensifiers with different doping GaAs photocathode were analyzed. Moreover, the resolutions of low light level image intensifiers consisting of uniform-doping and exponential-doping GaAs photocathode were calculated respectively. Then the influence of GaAs photocathode on image intensifier resolution was analyzed, and the availability of the resolution theory model of low light level image intensifier with GaAs photocathode was verified indirectly.
引文
[1]Ulrich H M Spandau, Stefanie Wechsler and Anita Blankenagel. Testing night vision goggles in a dark outside environment. Optometry and vision science:official publication of the American Academy of Optometry,2002,79(1):39-45
    [2]S. K. Kulov, S. A. Kesaev, E. N. Makarov, et al. The small pore microchannel plates for night vision devices. SPIE,2005,5834:228-231
    [3]张敬贤.微光与红外成像技术.北京:北京理工大学出版社,1995
    [4]向世明.三代微光夜视技术的最新发展和应用前景.应用光学,2003,24:51-54
    [5]艾克聪.微光夜视技术的现状和发展设想.应用光学,1995,16(3):11-22
    [6]王丽,尚晓星,王瑛.微光夜视技术的新进展.河南科技学院学报,2007,35(3):91-93
    [7]Justine J Allen, Lydia M Mathger, Kendra C Buresch, et al. Night vision by cuttlefish enables changeable camouflage. The Journal of experimental biology,2010,219(23): 3953-3960
    [8]Joseph P. Estrera, Timothy Ostromek, Wayne Isbell, et al. Modern Night Vision Goggles for Advanced Infantry Applications. SPIE,2003,5079:196-207
    [9]Joseph P. Estrera, Timothy Ostromek, Antonio Bacarella, et al. Advanced Image Intensifier Night Vision System Technologies:Status and Summary. SPIE,2002,4796: 49-59
    [10]Allen M Waxman, Alan N Gove, David A Fay, et al. Color Night Vision:Opponent Processing in the Fusion of Visible and IR. Imagery. Neural Networks.1996,10(1):1-6
    [11]金伟其,刘广荣,白廷柱,等.夜视领域几个热点技术的进展及分析.光学技术,2005,03:405-409
    [12]谭显裕.微光夜视和红外成像技术的发展及军用前景.航空兵器,2001,03:29-34.
    [13]李景生.微光夜视技术及其军事应用展望.应用光学,1997,02:1-3
    [14]贾世奎,赵书国.夜视技术在枪械瞄具上的应用概况.舰船防化,2011,15302:24-28
    [15]陈庆佑.微光夜视技术进展简介.真空电子技术,2011,1:32-35
    [16]董明礼,张晶,李银柱,等.激光辅助照明主动红外成像研究.红外技术,2006,28(2):91-94
    [17]唐钦,何开远,何宏坤,等.P22荧光粉在一、二代微光像增强器上的应用.四川兵工学报,2012,33(9):99-104
    [18]徐江涛.二代微光器件工艺质量分析.应用光学.2001,22(6):23-27
    [19]向世明.三代微光和超二代微光夜视技术的研究和开发.应用光学,1994,02:1-5+16
    [20]E. Roaux, J. C. Richard and C. Piaget. Third-Generation intensifier. AEEP,1985,64: 71-75
    [21]Illes P Csorba. Recent advancements in the field of image intensification:The generation 3 wafer tube. Applied Optics,1979,18(14/15):1440-2444
    [22]闫金良.MCP防离子反馈膜及其对Ⅲ代微光管分辨力特性影响研究:[博士学位论文].北京:北京理工大学,1998
    [23]杜玉杰,常本康,纪延俊.对三代微光管光谱响应的测试分析.光学技术,2006,32(3):364-366
    [24]姜德龙,吴奎,王国政,等.基于BCG-MCP的四代微光像增强技术.红外技术,2003,25(6):45-48
    [25]田金生,骆冠平(译).像增强器技术的最新进展.云光技术,2000,32(1):32-36
    [26]何开远.美军微光夜视技术的发展近况,云光技术,2003,35(2):18-21
    [27]金伟其,刘广荣,王霞,等.微光像增强器的进展及分代方法,光学技术,2004,30(4):460466
    [28]Siggins T, Sinclair C, Bohn C, et al. Performance of a DC GaAs photocathode gun for the Jefferson lab FEL. Nuclear Instruments and Methods in Physics Research A,2001, 475:549-553
    [29]艾克聪.微光夜视技术的进展和展望.应用光学,2006,27(4):11-22
    [30]周立伟.夜视像增强器的近期进展.北京:北京理工大学,1996
    [31]I. Mizuno, T. Nihashi, T. Nagai, et al. Development of UV image intensifier tube with GaN photocathode. Pro. of SPIE,2008,6945:69451N
    [32]A. E. Anderson. The Transmission Secondary Emission Image Intensifier and Its Application to Low Light Level Imaging. Nuclear Science, IRE Transactions on,1960, 7(2):133-136
    [33]Timoyhy W. Sinor and Joseph P. Estrera. Analysis of electron scattering in thin dielectric films used as ion barriers in Generation III image tubes. SPIE,2003, 4796:23-30
    [34]Joseph P. Estrera and Michael R. Saldana. High-speed photocathode gating for generation III image intensifier application. SPIE,2003,5079:212-221
    [35]V. Loktionov. High technology of night vision system with image intensifiers manufacture state and summary of 2003 year. SPIE.2003,5834:197-202
    [36]Edward J. Bender, Joseph P. Estrera, C. E. Ford, et al. Hight-reliability GaAs image intensifier with unfilmed microchannel plate. SPIE,1999, Vol.3749:713-714
    [37]Biass E H and Gourley S N. Night vision technology update. Armada International, 2001,25(5):27-37
    [38]Jijun Zou, Yijun Zhang, Wengjuan Deng, et al. Effect of different epitaxial structures on GaAs photoemission. Applied Optics,2011,50(27):5228-5234
    [39]Shi Feng, Zhang Yijun, Cheng Hongchang, et al Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes. Chinese Physics Letters,2011,28(4):044204
    [40]Niu Jun, Zhang Yi-Jun, Chang Ben-Kang, et al. Influence of varied doping structure on the photoemissive property of photocathode. Chinese Physics B,2011,20(4):044209
    [41]Jing Zhao, Yijun Zhang, Benkang Chang, et al. Comparison of structure and performance between extended blue and standard transmission-mode GaAs photocathode modules. Applied Optics,2011,50(32):6140-6145
    [42]Liang Chen, Yunsheng Qian, YiJun Zhang, et al. Comparative research for transmission-mode GaAs photocathodes of different doping structures on surface photovoltage. Optics Communications,2011,284(19):4520-4524
    [43]常本康,房红兵,刘元震.光电材料动态自动光谱测试仪的研究与应用.真空科学与技术,1996,16(5):364-366
    [44]Qian Yunsheng, Zong Zhiyuan and Chang Benkang. Measurement of spectral response of photocathodes and its application. Proc. SPIE,2001,4580:486-495
    [45]Chang Benkang, Du Xiaoqing, Liu Lei, et al. The automatic recording system of dynamic spectral response and its applications. Proc. SPIE,2003,5209:209-218
    [46]杜晓晴,常本康,邹继军.Cs、O激活方式对GaAs光电阴极的影响.真空科学与技术学报,2006,26(1):1-4
    [47]邹继军.GaAs光电阴极理论及其表征技术研究:[博士学位论文].南京:南京理工大学,2007
    [48]杜晓晴.高性能GaAs光电阴极:[博士学位论文].南京:南京理工大学,2005
    [49]邹继军,钱芸生,常本康,等.GaAs光电阴极制备过程中多信息量测试技术研究.真空科学与技术学报,2006,26(3):172-175
    [50]Zou Jijun and Chang Benkang. Gradient-doping negative electron affinity GaAs photocathodes. Optical Engineering,2006,45(5):054001
    [51]Yijun Zhang, Jijun Zou, Jun Niu, et al. Photoemission characteristics of different-structure reflection-mode GaAs photocathodes. Journal of Applied Physics, 2011,110:063113
    [52]Ling Ren, Benkang Chang and Ruili Hou. Study on the resolution of uniformly doped transmission-mode GaAs photocathode, Proceedings 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC),2010:228
    [53]Niu Jun, Zhang Yijun, Chang Benkang, et al. Influence of exponential doping structure on the performance of GaAs photocathodes. Applied Optics,2009,49(29):5445-5450
    [54]姜德龙,吴奎,王国政,等.微通道板离子壁垒膜及其特性.发光学报,2004,25(6):737-742
    [55]周立伟.光电子成像:走向新的世纪.北京理工大学学报,2002,22(1):1-12
    [56]徐宏伟,王鼎盛.埋入GaAs/AlAs周期反射层提高反射式负电子亲和势阴极效率的研究.半导体学报,1992,13(11):675-682
    [57]马建一,顾肇业,申屠浩.负电子亲和势III-V族化合物半导体光电阴极及其发展.半导体情报,1996,33(6):17-22
    [58]Guo Tailiang and Gao Huairong. Photoemission stability of negative-electron-affinity GaAs photocathodes. Proc. SPIE,1993,1982:127-132
    [59]郭太良,王敏,黄振武,等.反射式GaAs负电子亲和势光电阴极的激活.福州大学学报,1988,3:57-60
    [60]Lin L W. The role of oxygen and fluorine in the electron emission of some kinds of cathodes. Journal of Vacuum Science and Technology A,1988,6(3):1053-1057
    .[61]薛增泉,吴全德.电子发射与电子能谱.北京:北京大学出版社,1993
    [62]刘学悫.阴极电子学.北京:科学出版社,1980
    [63]A. Einstein. (U)ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Physik,1905,17(1):132-148
    [64]刘元震,王仲春,董亚强.电子发射与光电阴极.北京: 北京理工大学出版社, 1995
    [65]A.H.Sommer. Brief history of photoemissive materials. Proc. SPIE,1993,2022:2-17
    [66]V. R. Katti, L. M. Rangarajan and G K. Bhide. Some salient observations in processing CS3Sb photocathodes on thin-film coated glass substrates. Vacuum,1980,30(11-12): 497-505
    [67]K. U. Von Raben, K. C. Lee, R. K. Chang, et al. Enhanced Raman scattering from cesium suboxides in photocathodes:Ag-O-Cs (S-1) and Bi-Ag-O-Cs (S-10). Journal of Applied Physics,1984,55(11):3907-3911
    [68]B. Erjavec. Activation of the Na2KSb photocathode with Cs and O2 at lowered temperatures. Applied Surface Science,1996,103(4):343-349
    [69]B. Erjavec. Alkali-metal vapor dynamics during Na2KSb(Cs) photocathode growth. Vacuum,1992,43(12):1171-1175
    [70]M. E. Moorhead and N. W. Tanner. Optical properties of an emi K2CsSb bialkali photocathode. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,1996,378(1-2): 162-170
    [71]W. E. Spicer. Photoemissive photoconductive and absorption studies of alkali-antimony compounds. Physical review,1958,112(1):114-122
    [72]W. E. Spicer and A. Herrera-Gomez. Modern theory and application of photocathodes. Proc. SPIE,1993,2022:18-33
    [73]A.H.萨默.光电发射材料制备、特性与应用.北京:科学出版社,1979
    [74]Scheer J J and Vanlar J. GaAs-Cs:new type of photoemitter. Solid State Communications,1965,3:189-193
    [75]Turnbull A A and Evans G B. Photoemissions from GaAs-Cs-O. Journal of Phisics D: Applied Phisics,1968,1:155-160
    [76]向世明,倪国强.光电子成像器件原理.北京:国防工业出版社,1999
    [77]向世明.双近贴聚焦微光像增强器分辨力理论极限问题研究.应用光学,2008,29(3):351-353
    [78]Jose M Medina.1/fa noise in reaction times:A proposed model based on Pieron's law and information processing. Journals of Phys Rev E,2009,79(1)
    [79]李升才,金伟其,许正光,等.微光增强型电荷耦合装置成像系统调制传递函数测量方法研究.兵工学报,2005,15(3):53-55
    [80]沈庆垓.摄像管理论基础.北京:科学出版社,1984
    [81]汪贵华.光电子器件.北京:国防工业出版社,2009
    [82]A Jain, A Kuhls-Gilcrist, S Rudin, et al. An analysis of signal-to-noise ratio differences between the new high-sensitivity, microangiographic fluoroscope (HSMAF) and a standard flat-panel detector. Med. Phys,2008,35:2636
    [83]程耀进,向世明.三代微光像增强器分辨力计算理论模型,应用光学,2007,5(28)
    [84]J. R. Howorth, R. Holtom, Z. Hawton, et al. Exploring the limits of performance of third generation image intensifiers. Vacuum,1980,30 (11/12):551-555
    [85]沈庆垓.摄像管理论基础.北京:科学出版社,1984
    [86]Fisher D G, Martinelli R U. Negative electron affinity materials for imaging devices. Advances in Image Pickup and Display,1974,1:101-106
    [87]闫金良,赵银女,朱长纯.GaAs/GaAlAs透射式光电阴极的分辨率特性分析.半导体光电,1998,20(4):252-254
    [88]R. U. Martinelli and D. G. Fisher. The application of semiconductors with negative electron affinity surfaces to electron emission devices. Proc. IEEE,1974,62(10): 1339-1360
    [89]Howorth J R, Holtom R, Hawton A, et al. Exploring the limits of performance of third generation image intensifiers. Vacuum,1980,30 (11/12):551
    [90]Allen G A. Calculations on the performance of gallium arsenide photocathodes. Acta Electronica,1973,16 (3):229-236
    [91]邹继军,常本康,杨智,等.指数掺杂GaAs光电阴极分辨力特性分析.物理学报,2009,58(8):5842-5846
    [92]D. G. Fisher and U. Martnellir. Negative electron affinity material for imaging devices. Advances in image pickup and display,1974, (1):71-162
    [93]宋克昌.双近贴聚焦象增强器的MTF评价.高速影像与光子学,1985,14(3):1-22
    [94]程耀进,石峰,郭晖,等.MCP参数对微光像增强器分辨力影响研究.应用光学,2010,31(17802):292-296
    [95]周立伟,刘玉岩.目标探测与识别.北京:北京理工大学出版社,2004
    [96]王勇.微光像增强器的分辨率研究:[硕士学位论文].南京:南京理工大学,2011
    [97]周立伟.宽束电子光学.北京:北京理工大学出版社,1993
    [98]牛军,杨智,常本康,等.反射式变掺杂GaAs光电阴极量子效率模型研究.物理学报,2009,5807:5002-5006
    [99]]邹继军,常本康,杨智,等.GaAs光电阴极在不同强度光照下的稳定性.物理学报,2007,10:6109-6113
    [100]T. Maruyama, A. Brachmann, J. E. Clendenin, et al. A very high charge, high polarization gradient-doped strained GaAs photocathode. Nuclear Inst, and Methods in Physics Research, A,2002,492(1-2):199
    [101]Zhang Yijun, Zou Jijun, Wang Xiaohui, et al. Comparison of the photoemission behaviour between negative electron affinity GaAs and GaN photocathodes. Chinese Physics B,2011,20(4):048501
    [102]Shramana Mishra, D. Kabiraj, Anushree Roy, et al. Effect of high-energy light- ion irradiation on SI- GaAs and GaAs:Cr as observed by Raman spectroscopy. Journal of Raman Spectroscopy,2012,43(2):344-350
    [103]D. Durek, F. Frommberger, T. Reichelt, et al. Degradation of a gallium-arsenide photoemitting NEA surface by water vapour. Applied Surface Science,1999,143(1-4): 319-322
    [104]Liu Ning, Jin Peng and Wang Zhan-Guo. Broadband light emitting from multilayer-stacked InAs/GaAs quantum dots. Chinese Physics B,2012,21(11):1-4
    [105]赵静,张益军,常本康,等.高性能透射式GaAs光电阴极量子效率拟合与结构研究.物理学报,2011,60(10):107802
    [106]张益军,牛军,赵静,等.指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究.物理学报,2011,60(6):067301
    [107]刘恩科,朱秉升,罗晋生.半导体物理学(第7版).北京:电子工业出版社,2009
    [108]褚圣麟.原子物理学.北京:高等教育出版社,1979
    [109]任玲,常本康,侯瑞丽,等.均匀掺杂GaAs材料光电子的输运特性研究.物理学报,2011,60(8):087202
    [110]Ren Ling and Chang Benkang. Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode. Chinese Physics B, 2011,20(8):087308
    [111]张益军.变掺杂GaAs光电阴极研制及特性评估.南京理工大学,2012
    [112]邹继军,常本康,杨智.指数掺杂GaAs光电阴极量子效率的理论计算.物理学报,2007,56(5):2992-2997
    [113]Ling Ren, Benkang Chang and Honggang Wang. Influence of Built-in Electric Filed on the Energy and Emergence Angle Spreads of Transmission-mode GaAs Photocathode. Optics Communications,2012,285:2650-2655
    [114]Zhang Yijun, Chang Benkang, Niu Jun, et al. High-efficiency graded band-gap AlxGai-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition. Applied Physics Letters,2011,99:101104
    [115]Hu J C, Deal M D and Plummer J D. Modeling the diffusion of grown-in Be in molecular beam epitaxy GaAs. Journal of Applied Physics,1995,78(3):1595-1605
    [116]Yamada M and Ide Y. Anomalous behaviors observed in the isothermal desorption of GaAs surface oxides. Surface Science Letters,1995,339:L914-L918
    [117]Casey H C, Jr and Stern F. Concentration-dependent absorption and spontaneous emission of heavily doped GaAs. Journal of Applied Physics,1976,47(2):631-643
    [118]Ling Ren, Benkang Chang, Honggang Wang, et al. Influence of Electric Field Penetration on Uniformly Doping GaAs Photocathode Photoelectric Emission Properties.2012 Photonics Global Conference
    [119]王吉晖,白廷柱,金伟其,等.像增强器信噪比测试方法的分析与研究.光学技术,2005,02:177-178
    [120]Sergio Ortiz, Deitze Otaduy and Carlos Dorronsoro. Optimum parameters in image intensifier MTF measurement. SPIE,2004,5612:382-391
    [121]朱宏权,王奎禄,向世明,等.微通道板像增强器的调制传递函数的测量与研究.光子学报,2007,11:1983-1987
    [122]Hong-quan Zhu, Kui-lu Wang, Shi-ming Xiang, et al. Dynamic modulation transfer function measurement of image intensifiers using a narrow slit. Review of Scientific Instruments,2008,79:023708
    [123]钱芸生,常本康,詹启海,等.微光像增强器信噪比测试技术研究.真空科学与技术,2002,5:73-75
    [124]G. W. Fraser. Advances in micro-channel plates detector. SPIE,1988,982:98-107
    [125]顾燕.电子散射对微光像增强器分辨力的影响研究:[硕士学位论文].南京:南京理工大学,2009
    [126]陈杰MATLAB宝典.北京:电子工业出版社,2008
    [127]Ling Ren, Feng Shi, Hui Guo, et al. Numerical Calculation Method of Modulation Transfer Function for Preproximity Focusing Electron-optical System. Applied Optics. 2013,52(8):1641-1645
    [128]C. B. Johnson. Classification of electron-optical device modulation transfer functions. Adv. Electron. Electron Phys.1972,33B:579-584
    [129]承欢,江剑平.阴极电子学.西北电讯工程学院出版社,1986
    [130]http://www.photonis.com/nightvision/technology/what_is_meant_by_halo_size
    [131]James E. Zacher, Tracey Brandwood, Paul Thomas, et. Al. Effects of image intensifier halo on perceived layout. Proc. of SPIE,6557:65570U
    [132]Dongxu Cui, Ling Ren, Feng Shi, et al. Test and analysis of the halo in low-light level image intensifiers. Chinese optics letters,2012,10(6):060401
    [133]任玲,石峰,郭晖,等.前近贴脉冲电压对三代微光像增强器halo效应的影响.物理学报,2012,62(1):014206
    [134]J. T. Paul, S. A. Robert, C. Peter, et al. Physical modeling and characterization of the halo phenomenon in night vision goggles. Proc. of SPIE,2005,5800:21-31
    [135]H. E. Edward. Image transfer properties of proximity focused image tubes. Appl. Opt.,1977,16:2127-2133
    [136]Ling Ren, Feng Shi, Hui Guo, et al. Analysis of image intensifiers halo effect with curve fitting and separation method.2012 International Conference of Electrical and Electronics Engineering. August 18-19