用于双微带阴极选通型分幅相机的改进型第三代像增强器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变像管分幅相机是研究物质超快过程的重要工具之一,在核聚变、高温高密度等离子体物理、非线性光学、光化学、光生物学等领域具有广泛的应用。变像管的光电阴极通常使用Ag-O-Cs阴极和多碱阴极。与Ag-O-Cs阴极和多碱阴极相比,以GaAs为代表的负电子亲和势(NEA)半导体光电阴极具有量子效率高、暗发射电流小、电子出射的平均能量和角分布小等优点,已在微光夜视、激光探测、辐射计量、自动控制等方面具有广泛的应用。如果这类光电阴极有足够的快速响应能力,这些优异的特点将使得GaAs类半导体光电阴极应用于超高速分幅相机成为可能。因此,研究并发展一种超快响应的光电阴极就是一个很值得探索的课题。
     本论文在理论上研究提高GaAs NEA阴极响应速度的方法,设计并理论分析了一种具有超快响应的NEA阴极新结构;在实验方面,在第三代像增强器的结构基础上,完成了使用GaAs NEA阴极的双微带选通型分幅管制作的整个工艺流程。
     首先,分别阐述了GaAs NEA阴极的特点和基于GaAs NEA阴极的分幅管的制作过程。简单描述了高速分幅相机的特点及发展状况。提出将半导体NEA阴极与分幅管结合发展,以进一步拓展变像管分幅相机的性能的实验构想;
     其次,提出了具有超快响应的大梯度指数掺杂NEA阴极结构,分别讨论了这种新结构的量子效率、空间分辨力和时间分辨力特性。在无偏压工作条件下,它的时间响应可以缩短到小于10ps,平均量子效率可以达到10~15%;首次提出了平均时间衰减常数的概念,有效地消除了以往计算中的缺陷。这为半导体NEA阴极在皮秒级分幅相机中的应用提供了必要的理论支持;
     然后,简单介绍了高分辨X射线衍射技术。设计并外协生长了用于GaAs阴极制作的四层结构的外延片,并利用高分辨X射线衍射仪测量了它的衍射曲线,使用非对称衍射测量技术分析了该结构的应变、Al组分含量和应力等结构特性。分析表明:外延片的Al组分和应力分布均匀性良好,同时高角度衍射测量获得的大面积外延片上应变曲率半径的分布优于低角度衍射,这可能表明高角度衍射更能够反映外延片的宏观应变;
     再次,进行了真空镀膜、光刻法制作网格电极、GaAs衬底化学刻蚀等工艺,构建了条形GaAs外延片与玻璃的真空热粘接设备,针对双条GaAs外延片与玻璃不易粘接的问题,设计并制作了真空粘接定位元件;探索利用金属网格电极代替常规Si3N4辅助粘接材料,实现了条形GaAs与玻璃的真空热粘接;粘接后的金属线的阻抗达到22-23欧姆,而分幅相机微带线的典型阻抗是1-25欧姆,因此新工艺的粘接效果能够满足分幅相机的要求;
     最后,进行了GaAs阴极激活和热铟封实验,完成了真空二极管的制作,为双条带及多条带阴极选通型GaAs分幅相机的制作提供了完整的工艺基础。
     本论文从理论上和工艺流程上探索了将GaAs光电阴极应用于双微带高速摄影分幅相机,为将来半导体NEA光电阴极应用于诸如多通道分幅相机和条纹相机等,提供了理论和实验的支持。
High-speed framing cameras are one of the most important research tools of an physicalultrafast process, they have broad application in nuclear fusion, plasma physics with hightemperature and high density, nonlinear optics, photobiology and so on. With high quantumefficiency, low dark current, low energy distribution and low emittance, GaAs negative electronaffinity (NEA) photocathodes have the wide application in photomultipliers (PMT), laserdetection, radiation measurement, automatic control, low-light level image, spintronics andelectron-beam lithography. Because of these outstanding characteristics, it is possible that theGaAs NEA cathodes can be used in high-speed framing cameras if these NEA semiconductorphotocathodes have high-speed response behavior.
     In this paper, In theory, we design a new GaAs NEA cathode structure with ultrafast responseand theoretically analyse its response characteristics for improving the response speed; Inexperiment, based on the third generation image intensifier, this paper completes the wholetechnical processes of the third generation image intensifier uesd by double microstrip line GaAscathode gated framing camera.
     Firstly, we describe the characteristics of GaAs photocathodes and the manufacturingprocesses of the framing tube. The high-speed framing cameras are briefly described. Forimproving the further development of framing cameras, we bring forward the plan of combiningGaAs photocathodes with the application of the high-speed framing cameras.
     Secondly, a large exponential-doping transmission-mode GaAs photocathode is designed toimprove the response speed of GaAs NEA photocathodes to meet the application demands offraming cameras. The characteristics of the new photocathode——the quantum efficiency,spatial time resolution, is discussed in detail. Its response time is shorted to less than10ps, theaverage quantum efficiency can reach10-15%; a new concept——the average decay timeconstant is introduced firstly to the simulation and the defects in the previous calculation iseffectively eliminated. The results provide necessarily theoretical support for the application ofsemiconductor NEA cathodes to the picosecond framing cameras.
     Thirdly, the high resolution X ray diffraction technology is introduced briefly. we design andgrow the GaAs/GaAlAs epitaxial wafer for the GaAs photocathode fabrication. The diffraction curves are measured by the high resolution X-ray diffractometer. The structure characteristics oftrain Al component content and the stress is analyzed by the asymmetric diffraction measurementtechnique. The analysis results show that the GaAs/GaAlAs structure has good uniformitydistribution about Al component content and the stress. The strain curvature radius distribution ofthe epitaxial wafer obtained the high angle diffraction measurements is better than that of the lowangle diffraction measurements, which may indicate that the high angle diffraction can moremacroscopically reflect the structural stress condition.
     Fourth, the works as follows are made: the vacuum deposition, grid electrode fabrication byphotolithography, GaAs substrate corrosion; the new thermal bonding technique in vacuum ofstrip-type GaAs and K4glass is explored, in which Ni-Cr grid electrode instead by the auxiliarybonding material Si3N4; the positioning device is designed and fabricated for strip-type GaAs andK4glass positioning accurately in the vacuum heat bonding process.
     Finally, the vacuum diode is fabricated by the processes of the Cs: O activation of GaAsphotocathodes and the Indium seal experiment. Then, the whole technological processes of thenew framing camera are finished, which provide the necessarily experimental support.
     This thesis exploringly studies the fabrication processes of GaAs photocathode gated framingcamera, and study the ultrafast theory of the NEA photocathode. This work provides necessarilytheoretical and technological support, such as multi-channel framing camera and the developmentother ultrafast field.
引文
[1] P. E. Joseph, E. J. Bender. Long lifetime generation IV image intensifiers withunfilmed microchannel plate. SPIE,2000,4128:46-53.
    [2] S. G. Anderson. Active Night-Vision System Captures Near-IR Images. LaserFocus World,1996,32(5):16-18.
    [3] L. I. Antonova, V P Denissov. High efficiency photocathodes on the NEA GaAsbasis. Applied Surface Seience.1997,111:237-240.
    [4] A. H. Sommer著,侯洵译.光电发射材料.北京:北京科学出版社,1979.
    [5] M. P. Steele and Philip Perconti. Part task investigation of multispectral imagefusion using gray scale and synthetic color night vision sensor imagery forhelicopter pilotage, SPIE,1997,3062:88-100.
    [6] Liu Yu, Liu Wenli, Zhang Baomin, Wang Xiaoting, Jiang Junyan. Measurementand comparison of modulation transfer function and signal transfer function ofimage intensifiers, SPIE Proceedings,2000,4221:252—256.
    [7] Junhong Su, Xiaofeng Bai, Feng Shi, Rong Liu, Zhengliang Hu, ChunjuanCheng, Jinman Ge, Yingping He. Measurement and analysis of modulationtransfer function of the3rdgeneration low-light-level image intensifier. Proc. ofSPIE,2010,7658:765820-1-5.
    [8]金伟其,刘广荣,王霞,王志宏,孙海春,丁玲青,微光像增强器的进展及分代方法,光学技术,2004,30(4):460-466.
    [9] R. Floryan, N. Devoe, T. Peck. New image intensifier family for military andhomeland defense. SPIE,2003,5071:397~501.
    [10]刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995.
    [11] R. L. Bell. Negative Electron Affinity Devices, Clarendon Press, Oxford,1973.
    [12] Y. Tsuchiya. Advances in streak camera instrumentation for the study ofbiological and physical processes. IEEE J. Quantum Electron.,1984, QE-20:1516–1528.
    [13] Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura. Infraredsensitive universal streak camera for use in1.0to1.6μm wavelength region.1985, SPIE,569:181–188.
    [14] N. Onodera, H. Ito, and H. Inaba. Real-time measurement of picosecond opticalpulses from an InGaAsP diode laser using an ultrafast streak camera withinfrared frequency up-conversion. Appl. Phys. Lett.,1983,43:720–722.
    [15] Ross A. La Rue, John P. Edgecumbe, Gary A. Davis, Steve Gospe, Verle Aebi.High quantum efficiency photomultiplier with fast time response. SPIE,1993,2022:73.
    [16] V. W. Aebi, K. A. Costello, G. A. Davis, and R. E. Weiss. Photocathodedevelopment for a1300nm streak tube. SPIE,1993,2022:34-44.
    [17] K. Costello, V. Aebi, G. Davis, R. LaRue, and R. Weiss, Transferred ElectronPhotocathode with Greater Than20%Quantum Efficiency Beyond1Micron.SPIE,1995,2550:177-188.
    [18] J. P. Estrera, S. Lambert, K. T. Passmore, D. L. Phillips, S. M Vernon, R.Glosser, W. E. Flynt, and M. Rector. Development of1to1.7μm ImageIntensifier Tube using a Generation III Configuration. SPIE,1993,1952:258-266.
    [19] J. S. Escher, T. J. Maloney, P. E. Gregory, S. B. Hyder and Y. M. Houng.Photoemission to1.7μm from an lnP/lnGaAs transferred-electron photocathode.IEEE Trans. Electron. Devices,1978, ED-25:1347-1348.
    [20] J. E. Schneider, P. Sen, D. S. Pickard, G. I. Winograd, M. A. McCord, R. F. W.Pease, and W. E. Spicer, A. W. Baum, K. A. Costello, and G. A. Davis.Patterned negative electron affinity photocathodes for maskless electron beamlithography. J. Vac. Sci. Technol. B,1998,16(6):3192-3196.
    [21]李倩,郝亮,庞文宁. GaAs极化电子源激活的yo-yo过程研究.物理学报,2008,57(1):172-175.
    [22] Eduard L. Nolle, Alexander M. Prokhorov, Mikhail Ya. Schelev, Vyacheslav M.Senkov, Juris D. Vulis. Field-assisted semiconductor photocathodes for streaktubes. Opt. Eng.,1998,37(8):2233–2237.
    [23] A. S. Chernikov, S. G. Chernook, E. L. Nolle, A. M. Prokhorov, M. Ya. Schelev,E. G. Sokol. Properties of IR photocathodes based on InGaAs/InPheterostructures with Schottky barrier intended for streak tubes. SPIE,1995,2513:81-86.
    [24] A. S. Chernikov, E. L. Nolle, A. M. Prokhorov, E. V. Russu, M. Ya. Schelev, E.G. Sokol. IR photocathodes for streak image tubes based on semiconductorheterostructures and superlattice. SPIE,1992,1801:238-245.
    [25] Edouard L. Nolle, Alexander M. Prokhorov, Yurij G. Sadofyev, Mikhail Ya.Schelev, Vyacheslav M. Senkov, Yuris D. Vulis. Sensitivity and stability of IRphotocathodes based on In53Ga47As/InP heterostructures with Schottky barrierintended for streak tubes. SPIE,1997,2869:166-172.
    [26] E. L. Nolle. Photocathodes based on semiconductor superlattices for streak tubesfor IR region of0.9-l0um. SPIE,1995,2513:74-80.
    [27] Marcel Drabbels, G. M. Lankhuijzen, and L. D. Noordam. Demonstration of aFar-Infrared Streak Camera. IEEE Journal of Quantum Electronics,1998,34(11):2138-2144.
    [28] M. E. Lowry, M. D. Rotter, and D. R. Jander. A means of extending streakcamera recording into the important1300–1600nm wavelength regime:Parametric frequency upconversion. Proc. SPIE,1984,497:29–33.
    [29] G. Ping and H. Xun. A kind of new material usable in infrared streak camera.Chin. J. Infrared Millimeter Waves,1995,14:179–182.
    [30] O. Matsumoto and Y. Ohbayashi. Crystal streak camera for infrared light pulse.SPIE,1992,1720:598–604.
    [31] G. M. Lankhuijzen and L. D. Noordam. Atomic streak camera. Opt. Commun.,1996,129:361–368.
    [32] G. M Lankhuijzen, L. D Noordam. Far-infrared streak camera. Nucl. Instr. Meth.Phys. Res. A,1996,375:651–653.
    [33] M. Drabbels and L. D. Noordam. Streak camera operating in the midinfrared.Opt. Lett.,1997,22:1436–1438.
    [34]邹峰,微通道板行波选通分幅相机动态特性的Monte-Carlo模拟,硕士学位论文,西安:中科院西安光学精密机械研究所,2007.
    [35] D. J. Muron, M. J. Hurst, M. S. Derzon, Development of a visible framingcamera diagnostic for the study of current initiation in z-pinch plasmas, Reviewof Scientific Instruments,1997,68,656-659.
    [36]盛亮,魏福利,邱孟通,黑东炜,王奎禄,袁媛,赵吉祯,张美,王培伟.可见光分幅相机及其在Z箍缩诊断中的应用.核聚变与等离子体物理,2008,3:285-288.
    [37] W. E. Spicer. Negative Affinity3-5Photocathodes: Their Physics andTechnology. Appl. Phys.,1977,12:115-130.
    [38]李晋闽,场助红外半导体光电阴极的研究,博士学位论文,西安:中科院西安光学精密机械研究所,1990.
    [39]李相民,半导体近红外TE光电阴极的理论研究与制作,博士学位论文,西安:中科院西安光学精密机械研究所,1994.
    [40]杜晓晴,高性能GaAs光电阴极,博士学位论文,南京:南京理工大学,2005.
    [41]杨铭,NEA GaN光电阴极制备以及激活方法研究,硕士论文,南京:南京理工大学,2010.
    [42]邹继军,GaAs光电阴极理论及其表征技术研究研究,博士学位论文,南京:南京理工大学,2007.
    [43]牛军,变掺杂GaAs光电阴极特性及评估研究,博士学位论文,南京:南京理工大学,2011.
    [44] K. A. Costello, V. W. Aebi, and H. F. MacMillan. Imaging GaAs VacuumPhotodiode with40%Quantum Efficiency at530nm. SPIE,1990,1243:99-106.
    [45] J. P. Edgecumbe, V. W. Aebi, and G. A. Davis. A GaAsP Photocathode with40%QE at550nm. SPIE,1992,1655:204-210.
    [46] J. S. Escher, P. E.Gregory, S. B. Hyder, R. R. Saxena, R. L. Bell. Photoelectricimaging in the0.9-1.6micron range. Electron Device Letters, IEEE,1981,2(5):123-125.
    [47] Norman A. Foss. Field-Enhanced Photoelectron Emission fromMetal-Oxide-Semiconductor Structure. Journal of Applied Physics,1971,42(10):3762-3765.
    [48] Zhi Liu, Francisco Machuca, Piero Pianetta, William E. Spicer, and R. F. W.Pease.Electron scattering study within the depletion region of the GaN(0001) andthe GaAs(100) surface. Appl. Phys. Lett.,2004,85(9):1541-1543.
    [49] J. S. Escher, R. L. Bell, P. E. Gregory, S. B. Hyder, T. J. Maloney, G. A.Antypas. Field-Assisted Semiconductor Photoemitters for the1-2μm Range.Electron Devices, IEEE Transactions on,1980,27(7):1244-1250.
    [50] P. E. Gregory, J. S. Escher, R. R. Saxena, and S. B. Hyder. Field-assistedPhotoemission to2.1μm from photocathode. Appl. Phys. Lett.,1980,36:639-640.
    [51] W. E. Spicer. Photoemissive, photoconductive, and optical absorption studies ofalkali-antimony compounds. Physical Review,1958,112(1):114-122.
    [52] W. E. Spicer and A. Herrera-Gómez. Modern theory and application ofPhotocathodes. Proc. of SPIE,1993,2022:18-33.
    [53]郭里辉,透射式GaAs光电阴极,博士学位论文,西安:中科院西安光学精密机械研究所,1988.
    [54] Lihui Guo and Xun Hou. Analysis of photoelectron emission oftransmission-mode NEA GaAs photocathodes. J. Phys. D: Appl. Phys.,1989,22:348-353.
    [55] H. R. Gao. Investigation of the mechanism of the activation of GaAs negativeelectron affinity photocathodes. The Journal of Science and Technology.1987,5(4):1295-1298.
    [56] J. J. Uebbing, L. James. Behavior of cesium oxide as a low work functioncoating. Journal of Applied Physics.1970,41(11):4505-4516.
    [57] C. Y. Su, I. Lindau, W. E. Spicer. Photoemission studies of the oxidation of Csidentification of the multiple structures of oxygen species. Chemical PhysicsLetters.1982,87(6):523-527.
    [58] R. L. Bell, L. W. James, and R. L. Moon. Transferred electron photoemissionfrom InP. Appl. Phys. Lett.,1974,25:645-646.
    [59] J. S. Escher, R. D. Fairman, G. A. Antypas, R. Sankaran, L. W. James and R. L.Bell. Field-assisted photoemission from an InP/InGaAsP/InP cathode.1975,Critical Reviews in Solid State and Materials Sciences,5(4):577-583.
    [60] M. Niigaki, T. Hirohat, T. Suzuki, H. Kan, and T. Hirum. Field-assistedphotoemission from InP/InGaAsP photocathode with p/n junction. Appl. Phys.Lett.,1997,71(17):2493-2495.
    [61]张书明,第三代像增强器的研究,博士论文,西安:中科院西安光学精密机械研究所,1994.
    [62] B. Yang, G. Ciullo, V. Guidi and L. Tecchio. Monte Carlo simulation of a GaAselectron source.1992, J. Phys. D: Appl. Phys.,251834-1837.
    [63] B. Yanga, X. Houa, Y.L. Xu. Monte Carlo simulation of the temporal responsetimes of negative electron affinity GaAs transmission photocathodes. PhysicsLetters A,1989,142(2-3):155-158.
    [64] P. Hartmann, J. Bermuth, D. v. Harrach, J. Hoffmann, S. K bis, E. Reichert, K.Aulenbacher, J. Schuler, M. Steigerwald. A diffusion model for picosecondelectron bunches from negative electron affinity GaAs photocathodes. Journal ofApplied Physics,1999,86(4):2245-2249.
    [65] Ivan V. Bazarov, Dimitre G. Ouzounov, Bruce M. Dunham, Sergey A.Belomestnykh, Yulin Li, Xianghong Liu, Robert E. Meller, John Sikora, CharlesK. Sinclair, Frank W. Wise, Tsukasa Miyajima. Efficient temporal shaping ofelectron distributions for high-brightness photoemission electron guns. PhysicalReview Special Topics-Accelerators and Beams,2008,11:040702-1-9.
    [66] C. C. Phillips, A. E. Hughes and W. Sibbett. Quantitative XPS surface chemicalanalysis and direct measurement of the temporal response times of glass-bondedNEA GaAs transmission photocathodes. J. Phys. D: Appl. Phys.,1984,17:1713-1725.
    [67] L. H. Guo, J. M. Li, and X. Hou, Calculation of temporal response offield-assited transmission-mode GaAs NEA photocathodes. Solid StateElectronics,1990,33(4),435-439.
    [68] R. L. Bell. Thermionic emission of the GaAs photocathode. Solid-StateElectronics,1969,12(6):475-483.
    [69] R. L. Bell. Thermionic emission from3-5Infra-red photocathode. Solid-StateElectronics,1970,13(6):397-402.
    [70] H. J. Drouhin, C. Hermann, and G. Lampel. Photoemission from activatedgallium arsenide: I. Very-high-resolution energy distribution curves. Phys. Rev.B,1985,31:3859-3871.
    [71] Y. Naoi, K. Ito, Y. Uehara, S. Ushioda and Y. Murata. Very high resolutionphotoelectron spectra of NEA-GaAs. Surface Science,1993,283:457-461.
    [72] Jim Clendenin and G. A. Mullhollan. High Quantum Yield, Low EmittanceElectron Sources. SLAC-PUB-7760,1998,1-12.
    [73] D. A. Orlova, U. Weigela, D. Schwalma, A.S. Terekhovb, A. Wolf. Ultra-coldelectron source with a GaAs-photocathode. Nuclear Instruments and Methods inPhysics Research A,2004,532:418–421.
    [74] D. A. Orlov, F. Sprenger, M. Lestinsky, U. Weigel, A.S. Terekhov, D. Schwalmand A. Wolf. Photocathodes as electron sources for high resolution merged beamexperiments. Journal of Physics: Conference Series,2005,4:290–295.
    [75] YAN Jin-liang, ZHAO Yin-nu, ZHU Chang-chun. Resolution Characteristics ofGaAs/GaAlAs Transmission Photocathode. Semiconductor Photonics andTechnology,1999,5(2):96-100.
    [76] Li Jinmin, Hou Xun and Guo Lihui. Theoretical calculation of dark current for afield-assisted semiconductor photocathode. J. Phys. D: Appl. Phys.,1989,22:1544-1548.
    [77]李晓峰,第三代像增强器研究,博士学位论文,西安:中科院西安光学精密机械研究所,2000.
    [78]杨树人,丁默元.外延生长技术.北京:国防工业出版社,1992.
    [79]杨文正,ICF用MCP选通软X射线皮秒分幅相机动态时空特性及新型多时间分辨诊断技术研究,博士学位论文,西安:中科院西安光学精密机械研究所,2008.
    [80] I. Zuic, J. Fabian, S. D. Samma. Spintronics: Fundamentals and applications.Rev. Mod. Phys.,2004.76:323-410.
    [81]郭立俊,Jan-Peter Wutenberg,Andreyev Oleksiy,Michael Bauer,MartinAeschlimann.利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程.物理学报,2005,54(7):3200-3206.
    [82]周立伟,李元,张智诠,M.A.Monastyrski,M.Y.Schelev.直接积分法研究电子光学成像系统的时间像差理论.物理学报,2005,54:3591-3596.
    [83] L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E.Scheibler, S. L. Smith, A. S. Tereldiov,18th International Spin PhysicsSymposium Spin. Phys.,2009,1149:1057-1061.
    [84]邹继军,常本康,杨智.指数掺杂GaAs光电阴极量子效率的理论计算.物理学报,2007,56:2992-2997.
    [85] Zhi Yang, Benkang Chang, Jijun Zou, Jianliang Qiao, Pin Gao, Yiping Zeng,Hui Li. Comparison between gradient-doping GaAs photocathode anduniform-doping GaAs photocathode. Applied Optics,2007,46(28):7035-7039.
    [86] Zou Jijun, Lin Gangyong, Wei Xiong, Feng Lin, Yang Zhi, Chang Benkang.Activation experiment of exponential-doping NEA GaAs photocathodes. Proc.of SPIE,2009,7384:1-6.
    [87]杨智,邹继军,常本康.透射式指数掺杂GaAs光电阴极最佳厚度研究.物理学报,2010,59(6):4290-4295.
    [88]刘恩科,朱秉升,罗晋生.半导体物理学(第四版).北京:国防工业出版社,1994.
    [89] S. M. Sze, Kwok K. Ng. Physsics of semiconductor devices. Wiley,1982.
    [90] K. Togawa, T. Nakanishi, T. Baba, F. Furuta, H. Horinaka, T. Ida, Y. Kurihara,H. Matsumoto, H. Matsuya, T. Matsuyama, M. Mizuta, S. Okumi, T. Omori, C.Suzuki, Y. Takeuchi, K. Wada, K. Wada, M. Yoshioka. Surface charge limit inNEA superlattice photocathodes of polarized electron source. Nucl. Instrum.Meth.,1998,414(2-3):431-445.
    [91] A. Herrera-Gomez, G. Vergara, W. E. Spicer. Physics of high‐intensitynanosecond electron source: Charge limit phenomenon in GaAs photocathodes. J.Appl. Phys.,1996,79:7318-7323.
    [92]杜晓晴,常本康,宗志园. GaAs光电阴极p型掺杂浓度的理论优化.真空科学与技术学报,2004,24(3):195-198.
    [93] G. ergara, L. J. Gómez, J. Capmany and M. T. Montojo. Influence of the dopantconcentration on the photoemission in NEA GaAs photocathodes. Vacuum,1997,48:155-160.
    [94] D. G. Fisher, R. E. Enstrom, J. S. Escher and B. F. Williams. photoelectronsurface escape probability of (Ga,In)As: Cs-O in the0.9to~1.6um range. J. Appl.Phys.,1972,43(9):3815-3823.
    [95] Chung-Yi Su, I. Lindau and W. E. Spicer. Photomission studies of the oxidationof Cs. identification of the multiple structures of oxygen species. ChemicalPhysics Letters,1982,87(6):523-527.
    [96] C. Y. Su, W. E. Spicer, and I. Lindau. Photoelectron spectroscopic determinationof the structure of (Cs,O) activated GaAs (110) surfaces. J. Appl. Phys.,54(3):1413-1422.
    [97] C. Y. Su, P. W. Chye, P.Pianetta, I. Lindau and W. E. Spicer. Oxygen adsorptionon Cs Covered GaAs(110) Surfaces. Surface Science,1979,86:894-899.
    [98] J. S. Escher and H. Schade. Calculated energy distributions of electrons emittedfrom negative electron affinity GaAs: Cs: O surfaces. J. Appl. Phys.,1973,44(12):5309-5313.
    [99]薛增泉,吴全德.电子发射与电子能谱.北京:北京大学出版社,1993.
    [100] T. Furuta, H. Taniyama. M. Tomizawa and A. Yoshii. Hot-carrier transportin p-GaAs. Semicond. Sci. Technol.,1992,7: B346-B350.
    [101] D. J. Bartelink, J. L. Moll and N. L. Meyer. Hot–electron emission fromshallow p-n junctions in silicon. Physical Review,1961,130(3):972-985.
    [102] B. F. Williams and R. E. Simon. Direct measurement of hot electron-phononinteraction in GaP. Phycical Review Letters,1967,18(13):485-487.
    [103] S. Tiwari and S. L. Wright. Material properties of p-type GaAs at largedopings. Appl. Phys. Lett.,1990,56(6):563-565.
    [104] A. Sadao. Handbook on physical properties of semiconductors: III-Vcompound semiconductors,2004, Springer,2:437.
    [105] K. R. Freeman and G. S. Hobson. The VfT relation of CW Gunn-effectdevices. IEEE Trans.,1972, ED-19:62-70.
    [106] A. Sadao. Optical constants of crystalline and amorphous semiconductors-numerical data and graphical information.1999, Springer,221-222.
    [107]向世明.双近贴聚焦微光像增强器分辨力理论极限问题研究.应用光学,2008,29(3):351-353.
    [108]程耀进,向世明,师宏立.三代微光像增强器分辨力计算理论模型.应用光学,2007,28(5):578-581.
    [109] D. A. Orlov, F. Sprenger, M. Lestinsky, U. Weigel, A.S. Terekhov, D.Schwalm and A. Wolf. Photocathodes as electron sources for high resolutionmerged beam experiments. Journal of Physics: Conference Series,2005,4:290–295.
    [110] YAN Jin-liang, ZHAO Yin-nu, ZHU Chang-chun. Resolution Characteristicsof GaAs/GaAlAs Transmission Photocathode. Semiconductor Photonics andTechnology,1999,5(2):96-100.
    [111]邹继军,常本康,杨智,张益军,乔建良.指数掺杂GaAs光电阴极分辨力特性分析,物理学报,2009,58(8):5842-5846.
    [112] H. Z. Fardi. Characterization of submicrometer GaAs MESFET usingdrift-diffusion simulator. The International Journal for Computation andMathematics in Electrical and Electronic Engineering,1993,12(4):361-375.
    [113] T. W. Sinor, J. P. Estrea, D. L. Phillips and M. K. Rector. Extended blueGaAs image intensifiers. Proc. SPIE.,1995,2551:130-134.
    [114] I. V. Bazarov, D. G. Ouzounov, B. M. Dunham, S. A. Belomestnykh, Y. L.Li, X. H. Liu, R. E. Meller, J. Sikora, C. K. Sinclair. Efficient temporal shapingof electron distributions for high brightness photoemission electron guns.Physical Review Special Topics–Accelerators and Beams,2008,11:040702-06.
    [115] I. V. Bazarov, B. M. Dunham, Y. Li, X. Liu, D. G. Ouzounov, C.K. Sinclair,F. Hannon, T. Miyajima. Thermal emittance and response time measurements ofnegative electron affinity photocathodes. Journal of Applied Physics,2008,103:054901-09.
    [116] A. V. Aleksandrov, M. S. Avilov, R. Calabrese, G. Ciullo, N. S. Dikansky, V.Guidi, G. Lamanna, P. Lenisa, P. V. Logachov, A. V. Novokhatsky, L. Tecchio,B. Yang. Experimental study of the response time of GaAs as a photoemitter.Physics Review E,1995,51:1449-1452.
    [117] W. Enloe, R. Sheldon, L. Reed, and A. Amith. Electron-bombarded CCDimage intensifier with a GaAs photocathode. Proc. SPIE.,1992,1655:41-49.
    [118] I. Zuic, J. Fabian and S. D. Samma. Spintronics: fundamentals andapplications. Rev. Mod. Phys.,2004,76:323-410.
    [119] F. Richard, J. R. Schneider, D. Trines and A. Wagner. TESLA Technicaldesign report, part I: executive summary.2001, DESY Report No.2001-011,Deutsches Elektronen S, ynchrotron (DESY), Hamburg.
    [120] L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H.E. Scheibler, S. L. A. S. Smith and Tereldiov. Cooled Transmission-ModeNEA-Photocathode with a Band-Graded Active Layer for High BrightnessElectron Source. Spin Phy.18thInternational Spin Physics Symposium,2009,1149:1057-1061.
    [121] P. Hartmann, J. Bermuth, D. v. Harrach, J. Hoffmann, S. K bis, E.Reichert, K. Aulenbacher, J. Schuler, M. Steigerwald. A diffusion model forpicosecond electron bunches from negative electron affinity GaAs photocathodes.Journal of Applied Physics,1999,86(4):2245-2249.
    [122] J. S. Escher and R. Sankaran. Transferred-electron photoemission to1.4μm.Appl. Phys. Lett.,1976,29(2):87-88.
    [123] X. F. Wang, Y. P. Zeng, B. Q. Wang, Z. P. Zhu, X. Q. Du, M. Li and B. K.Chang. The effect of Be-doping structure in negative electron affinity GaAsphotocathodes on integrated photosensitivity. Applied Surface Science,2006,252:4104-4109.
    [124] J. J. Zou and B. K. Chang. Gradient doping negative electron affinity GaAsphotocathodes. Opt. Eng.,2006,45(5):054001-5.
    [125] K. Aulenbacher, J. Schuler, D. V. Harrach, E. Reichert, J. R thgen, A.Subashev, V. Tioukine and Y. Yashin. Pulse response of thin III/Vsemiconductor photocathodes. J. Appl. Phys.,2002,92(12):7536-7543.
    [126] Y. K. Feng and A. Hintz. GaAs MESFET's using a full dynamic transportmodel. IEEE Transaction on Electron Devices,1988, ED-35:1419-1431.
    [127] Y. C. Wang and Y. T. Hsieh. Velocity overshoot effect on a short-gatemicrowave. Int. J. Electronics,1979,47:49-66.
    [128] Y. K. Feng. New u(E) Relationship of GaAs. Electron. Lett.,1985,21:453-454.
    [129]曹俊诚,半导体太赫兹源、探测器与应用,北京:科学出版社,2012.
    [130] David Keith Bowen, Brian Keith Tanner. X-Ray Metrology inSemiconductor Manufacturing. CRC/Taylor&Francis,2006.
    [131] D. Keith Bowen and Brian K.Tanner. High Resolution X-ray Diffractometryand Topography. Taylor&Francis Ltd,1998.
    [132] J. Hornstra and W.J. Bartels. Determination of the lattice constant ofepitaxial layers of III-V compounds. J. Crystal Growth,1978,44:513-517.
    [133]徐菊仙,AuCr-p型GaAs欧姆接触电阻的研究.固体电子学研究与进展,1984,6(3):226-231.
    [134] J. Uebbing John. Use of Auger Electron Spectroscopy in Determining theEffect of Carbon and Other Surface Contaminants on GaAs Cs:O Photocathodes.Journal of Applied Physics,41:802-804.
    [135]顾培夫,薄膜技术,浙江大学出版社,1990.
    [136]杨国光,近代光学测试技术,北京:机械工业出版社,1988.
    [137]朱小平,王蔚晨,杜华,高思田,提升探针式台阶仪计量性能的研究与应用,测量与设备,2007(3):39-41.