反射式NEA GaN光电阴极激活与评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负电子亲和势(NEA) GaN光电阴极具有灵敏度高、暗发射小、发射电子能量分布集中等优点,是非常理想的新型紫外光电阴极。针对目前NEA GaN光电阴极的基础理论、制备方法与评估手段研究的不足,围绕反射式GaN光电阴极的光电发射机理、净化方法、激活工艺、光谱响应测试以及阴极的稳定性能等方面开展研究。
     根据W.E.Spicer提出的光电发射的“三步模型”,详细分析了NEA GaN光电阴极从光电子的激发、体内到表面的输运到穿越表面势垒逸出到真空的全过程,导出了光电子隧穿阴极表面势垒的透射系数。通过求解非平衡载流子的扩散方程导出了反射式NEA GaN光电阴极的量子效率公式。结合阴极的激活过程及充分激活后的NEA特性,给出了NEA GaN光电阴极铯(Cs)氧(O)激活后的表面模型[GaN(Mg):Cs]:O-Cs。
     利用NEA光电阴极激活系统和XPS表面分析系统研究了GaN光电阴极的净化方法,给出了具体的化学清洗和加热净化工艺。经过有效化学清洗后,超高真空中GaN样品在700℃下加热20分钟,可以有效去除阴极表面的氧化物以及C杂质,获得较为理想的原子级清洁表面。
     利用自行研制的光电阴极激活评估实验系统,给出了反射式GaN光电阴极Cs激活及C_S/O激活的光电流曲线。针对GaN光电阴极NEA特性的成因,结合激活过程中光电流变化规律和成功激活后阴极表面模型,研究了NEA GaN光电阴极激活机理,得到了阴极激活时光电流的变化规律和激活过程中电子亲和势的变化之间的关系。实验表明:GaN光电阴极在单独导入Cs激活时就可获得明显的NEA特性,C_S/O激活时引入O后光电流的增长幅度不大。用双偶极层模型[GaN(Mg):Cs]:O-Cs较好地解释了激活成功后GaN光电阴极NEA特性的成因。
     利用自行研制的紫外光谱响应测试仪器,测试了成功激活的反射式GaN光电阴极的光谱响应,给出了230nm-400nm波段内反射式NEA GaN光电阴极量子效率曲线。在230nm处得到了反射式GaN光电阴极高达37.40%的量子效率,230nm和400nm之间的锐截止比率超过2个数量级。结合国外对GaN光电阴极量子效率的研究结果,综合分析了影响量子效率的因素,得到了量子效率与入射光波长、阴极材料特性以及阴极制备水平之间的关系。
     以反射式NEA GaN光电阴极激活的光电流曲线和充分激活后的量子效率曲线为依据,针对阴极量子效率的衰减以及不同波段对应量子效率衰减速度的不同,论述了NEA GaN光电阴极量子效率的衰减机理。得到了反射式NEA GaN光电阴极量子效率的衰减现象与有效偶极子数量减小之间的关系以及量子效率曲线的衰减特点与表面势垒形状改变之间的关系。结合GaN光电阴极铯氧激活后的表面模型[GaN(Mg):Cs]:O-Cs,通过对量子效率衰减过程中阴极的能带与表面势垒结构变化的分析,得出结论:有效偶极子数量的减小是造成量子效率降低的根本原因,表面Ⅰ、Ⅱ势垒形状的变化造成了不同波段对应的量子效率下降速度的不同。
As a new type ultraviolet (UV) photocathode, negative electron affinity (NEA) gallium nitride (GaN) photocathode has many good performance characteristics, such as high quantum efficiency, low dark current and concentrated electron energy distribution and so on. Aiming at investigative scarcity of basic theory, preparation method and evaluation means for NEA GaN photocathode at present, the researches were made on such aspects as photoemission mechanism, depuration method, activation technique, test of spectral response and stability performance for reflection-mode NEA GaN photocathode.
     According to W.E.Spicer photoemission "3-step model" theory, the whole process including photoelectron excitation, transportation from bulk to surface and escape to the vacuum by traversing surface barrier was analysed in detail. The transmission coefficient that photoelectrons traverse cathode surface barrier was educed. The quantum yield formula of reflection-mode NEA GaN photocathode was gotten by solving the diffuse equation of non-equilibrium carriers. According to GaN photocathode NEA property during activation process and after being fully activated, the surface model [GaN(Mg):Cs]:O-Cs for NEA GaN photocathode after Cs/O activation was given.
     The depuration method for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The chemical cleaning and the heating depuration method were given in detail. After the effective chemical cleaning and the heating of 700℃about 20 minutes in ultrahigh vacuum system, the oxides and carbon impurities on cathode surface can be effectively removed, and the ideal atom clean surface can be obtained.
     The photocurrent curves of Cs and Cs/O activation for reflection-mode GaN photocathode were tested by using dedicated experimental system for activating and evaluating of NEA photocathode. Aiming at the formation cause of NEA property for GaN photocathode and according to the rule of photocurrent change during activation period and the surface model of a fully activated photocathode, the activation mechanism of NEA GaN photocathode was studied. The relation of the rule of photocurrent change during activation period and the change of electron affinity during activation period was gotten. The experiment results show:the obvious NEA property can be achieved for GaN photocathode mainly by activating with Cs. The increase extent of photocurrent is not large after introducing O during Cs/O activation process for GaN photocathode. The NEA property formation reasons of GaN photocathode after being fully activated successfully can be well explained using the double dipole layer model [GaN(Mg):Cs]:O-Cs.
     The spectral response of fully activated reflection-mode NEA GaN photocathode was measured by using dedicated ultraviolet spectral response measurement instrument. The quantum efficiency curves of reflection-mode NEA GaN photocathode were given in the band region from 230nm to 400nm. The quantum efficiency of reflection-mode NEA GaN photocathode reaches up to 37.40% at 230nm, a sharp cutoff characteristic with over two orders of magnitude degradation from 230nm to 400nm has been observed. Based on the former research results, the factors influencing quantum efficiency were also comprehensively analyzed. The relation of quantum efficiency and incidence light wavelength, cathode material characteristic and cathode preparation technique was gotten.
     According to the photocurrent curves and the quantum efficiency curves of fully activated reflection-mode NEA GaN photocathode, aiming at the decay tendency for reflection-mode NEA GaN photocathode and the different decay speeds of quantum efficiency corresponding to the different wave bands, the quantum efficiency decay mechanism of reflection-mode NEA GaN photocathode was studied. The relation of the quantum efficiency decay of reflection-mode NEA GaN photocathode and the reduction of effective dipole quantity was gotten, and the relation of the decay characteristic of quantum efficiency curves and the change of surface barrier shape was also gotten. The surface model [GaN (Mg):Cs]:O-Cs for GaN photocathode after being activated with cesium and oxygen was used, and the change of energy band and surface barrier in the decay course of quantum efficiency was considered. The conclusions show:the reduction of effective dipole quantity is the basic reason causing quantum efficiency to reduce, and it is the change of surface I. II barrier shape that causes the difference of dropping speeds of quantum efficiency corresponding to different wave bands.
引文
1 王君容,薛召南等.光电子器件.北京:国防工业出版社,1982
    2 方如章,刘玉凤.光电器件.北京:国防工业出版社,1988
    3 A.H.萨默.光电发射材料制备、特性与应用.北京:科学出版社,1979
    4 刘恩科,朱秉升.半导体物理学.北京:国防工业出版社,1979
    5 A.Einstein. (U)ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Physik,1905,17(1):132~148
    6 W.E.Spicer and A.Herrera-Gomez. Modern theory and application of photocathodes. Proc. SPIE,1993,2022:18-33
    7 刘学悫.阴极电子学.北京:科学出版社,1980
    8 刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995
    9 A.H.Sommer. Brief history of photoemissive materials. Proc. SPIE,1993,2022:2~17
    10 常本康.多碱光电阴极机理、特性与应用.北京:机械工业出版社,1995
    11 J.J.Scheer and J.Vanlaar. GaAs-Cs:a new type of photoemitter. Solid State Communications,1965,3:189~193
    12 A.A.Turnbull and GB.Evans. Photoemission from GaAs-Cs-O. Journal of Physics D: Applied Physics,1968,1:155~160
    13 O. Siegmund, J. Vallerga, J. McPhate, J. Malloy, A. Tremsin, A. Martin,M. Ulmer, B. Wessels. Development of GaN photocathodes for UV detectors. Nuclear Instruments and Methods in Physics Research A,2006,567:89~92
    14 F. Shahedipour and B. W. Wessels, Investigation of formation of 2.8eV blue luminescence in p-type GaN:Mg, Appl. Phys. Lett,2000., vol.76:3011~3013
    15 乔建良,常本康,田思,高有堂.NEA光电阴极研究的最新进展及其制备技术探讨.红外技术.2007,29(3):136~139
    16 F. Machuca, Y. Sun, Z. Liu, K. Loakeimidi, P. Pianetta, and R. F. W.Pease, Prospect for high brightness Ⅲ-nitride electron emitter, J. Vac. Sci. Technol. B.,2000, vol.18: 3042~3046
    17 M. P. Ulmer, W. B. Wessels, F. Shahedipour, R. Y. Korotkov, C. Joseph, and T. Nihashi. Progress in the fabrication of GaN photo-cathodes. Proceedings of SPIE,2001, Vol.4288: 246-253
    18 杨树人,丁墨元.外延生长技术.北京:北京国防工业出版社,1992
    19 M.Ettenberg, G.H.Olsen and C.J.Nuese Effect of gas-phase stoichiometry on the minority-carrier diffusion length in vapor-grown GaAs Applied Physics Letters 1976, Vol.29(3):141 ~ 142
    20 N.Hayfuji, K.Mizuguchi, S.Ochi and T.Murotani. Highly uniform growth of GaAs and GaAlAs by large-capacity MOCVD reactor. Journal of Crystal Growth.1986,77:281 ~ 285
    21 A. Narayanan, G. Fisher, L. Erickson, and G. O'clock. Negative electron affnity gallium arsenide photocathode grown by molecular beam epitaxy. J. Appl. Phys.1984, 56(6):1886~1887
    22 Loig E. Bourreea, David R. Chasseb, P.L. Stephan Thambana and R. Glossera. Comparison of the Optical Characteristics of GaAs Photocathodes Grown Using MBE and MOCVD. SPIE.2003,4796:11 ~22
    23 王三胜,顾彪,徐茵,秦福文,杨大智.GaN基材料生长及其在光电器件领域的应用.电子器件.2002,25(1):1~8
    24 彭冬生,冯玉春,王文欣,刘晓峰,施炜,牛憨笨.一种外延生长高质量GaN薄膜的新方法.物理学报.2006,55(7):3606-3610
    25 郎佳红,顾彪,徐茵,秦福文,曲钢.标准温度和衬底分步清洗对GaN初始生长影响RHEED研究[J],红外技术,2003,25(6):64~68
    26 乔建良,常本康,高有堂,田思.NEA GaN光电阴极的制备及其应用.红外技术.2007,29(9):524~527
    27 张燕,龚海梅,白云,等.空问用紫外探测及AlGaN探测器的研究进展[J].激光与红外,2006,36(11):1009~1012
    28 游达,汤英文,赵德刚,等.高量子效率前照式GaN基p-i-n结构紫外探测器[J].半导体学报,2006,27(05):896-899
    29 谢雪松,吕长志,张小玲,等.GaN基p-i-n结构紫外光探测器[J].半导体光电,2007,28(01):33~35
    30 李向阳,许金通,汤英文,等.GaN基紫外探测器及其研究进展[J].红外与激光工程,2006,35(03):276~280
    31 Machuca F. A thin film p-type GaN photocathode:prospect for a high performance electron emitter[D], Stanford University,2003:Machuca F 2003 Ph. D. Dissertation (Stanford:Stanford University)
    32 Timothy Norton, Bruce Woodgate, Joseph Stock, George Hilton, Mel Ulmer, Shahid Aslam, R.D Vispute. Results from Cs activated GaN photocathode development for MCP detector systems at NASA GSFC. Proceedings of SPIE,2003,5164:155~164
    33 Ulmer M P, Wessels B W, and O. H. W. Siegmund. Advances in wide-band gap semi-conductor based photocathode devices for low light level applications. Proceedings of SPIE,2002, Vol.4650:94~103
    34 M. P. Ulmer, W. B. Wessels, and O. H. W. Siegmund. Advances in wide-band gap semiconductor based photocathode devices for low light level applications. Proceedings of SPIE,2003, Vol.4854:225~232
    35 Ulmer M P, Wessels B W, Han B, et al. Advances in wide-band-gap semiconductor based photocathode devices for low light level applications.Proceedings of SPIE,2003, 5164:144-154
    36 Zhi Liu, Francisco Machuca, Piero Pianetta and etc. Electron scattering study within the depletion region of the GaN(0001) and the GaAs (100) surface, APPLIED PHYSICS LETTERS,2004, v 85, n 9:1541~1543
    37 J. Stock, G. Hilton, T. Norton, B. Woodgate, S.Aslam, M.Ulmer. Progress on development of UV photocathodes for photon-counting applications at NASA GSFC.. Proceedings of SPIE,2005, Vol.5898:58980F-1~58980F-8
    38 O. H. W. Siegmund, A.S. Tremsin, A. Martin, and etc. GaN photocathodes for UV detection and imaging. Proceedings of SPIE,2003, Vol.5164:134~143
    39 Shahedipour F S, Ulmer M P, et al. Efficient GaN photocathodes for low-level ultraviolet signal detection[J]. IEEE Journal of Quantum Electronics,2002,38(4): 333-335
    40 Shoichi Uchiyama,Yasufumi Takagi, Minoru Niigaki and Hirofumi Kan. GaN-based photocathodes with extremely high quantum efficiency [J]. APPLIED PHYSICS LETTERS,2005,86:103511-1~103511-3
    41 李慧蕊,申屠军,戴丽英,马建一.负电子亲和势氮化镓光电阴极.光电子技术.2007,27(2):73~77
    42 李朝木,曾正清,陈群霞.GaN负电子亲和势光电阴极材料的生长研究.真空与低温.2008,14(4):236~239
    43 杜晓晴,常本康.负电子亲和势光电阴极量子效率公式的修正.物理学报.2009,58(12):8643~8650
    44 A.S. Tremsin, O. H. W. Siegmund. The quantum efficiency and stability of UV and soft X-ray photocathodes. Proceedings of SPIE,2005, Vol.5920:592001-1 ~592001-13
    45 Charles L. Joseph. UV detective quantum efficiency measurements. Proceedings of SPIE,1999, Vol.3764:246~253
    46 O. H.W. Siegmund, J.V. Vallerga, J. McPhate and A.S. Tremsin. Next generation microchannel plate detector technologies for UV Astronomy. Proceedings of SPIE,2004, Vol.5488:789~800
    47 Oswald H.W. Siegmund. Advances in microchannel plate detectors for UV/visible Astronomy. Proceedings of SPIE,2003, Vol.4854:181 ~ 190
    48 Patrick Morrissey, Steve Kaye, Chris Martin, Janet Sheung, Shouleh Nikzad, Todd Jones, Jordanna Blacksberg, Michael Hoenk and L. Douglass Bell. A novel low-voltage electron-bombarded CCD readout. Proceedings of SPIE,2006, Vol.6266:626610-1-626610-9
    49 Oswald H.W. Siegmund. High-performance microchannel plate detectors for UV/visible astronomy. Nuclear Instruments and Methods in Physics Research A,2004, Vol.525: 12~16
    50 F.C.tang, M.S.Lubell, K.Rubin and A.Vasiakis. Operating experience with a GaAs photoemission electron source. Review of Scientific Instrument.1986.57(12):3004~ 3011
    51 Francisco Machuca, Zhi Liu, J. R. Maldonado and etc, Negative electron affinity group Ⅲ-nitride photocathode demonstrated as a high performance electron source, J. Vac. Sci. Technol. B,2004, vol.22:3565~3568
    52 T.S.Saka, T.Kato, T.Nakanishi and M.Tsubata. New-type photocathode for polarized electron source with distributed bragg reflector. Japanese Journal of Applied Physics. 1993,32:L1837~L1840
    53 Z. Liu, Surface characterization of semiconductor photocathode structures. Doctoral dissertation, Stanford University,2005
    54 朱建国,郑文琛,郑家贵,孙小松,王洪涛.固体物理学.北京,科学出版社,2005.
    55 陈光华,邓金祥等.新型电子薄膜材料.北京,化学工业出版社,2002.
    56 薛增泉,吴全德.电子发射与电子能谱.北京:北京大学出版社,1993
    57 [俄]Michael E Levinshtein,Sergey L Rumyantsev,|[美]Michael S Shur.杨树人,殷景志译.先进半导体材料性能与数据手册.化学工业出版社,2003.
    58 虞丽生.半导体异质结物理.北京,科学出版社.2007
    59 沈学础.半导体光谱和光学性质.北京,科学出版社,2006.
    60 W.A.Gutierrez, H.D.Pommerrenig. High-sensitivity transmission-mode GaAs photocathode. Applied Physics Letters.1973,22(6):292~293
    61 D.G.Fisher, G.H.Olsen. Properties of high sensitivity GaP/In_xGa_(1-x)P/GaAs:(Cs-O) transmission photocathodes. Journal of Applied Physics.1979,50(4):2930~2935
    62 G.H.Olsen, D.J.Szostak, T.J.Zamerowski et al. High-performance GaAs photocathodes. Journal of Applied Physics.1977,48(3):1007~1008
    63 G.A.Allen. The performance of negative electron affinity photocathode. Journal of Physics D:Applied Physics.1971,4:308~317
    64 D.J.Bradley, M.B.Allenson and B.R.Holeman. The transverse energy of electrons emitted from GaAs photocathodes. Journal of Physics D:Applied Physics.1977,10: 111-125
    65 宗志园,富容国,钱芸生,常本康.GaAs:Cs,O NEA光电阴极电子表面逸出几率的计算.红外技术.2002,24(3):27-30
    66 GVergara, A.H.Gomez and W.E.Spicer. Escape probability for negative electron affinity photocathodes:calculations compared to experiments. SPIE.1995,2550:142~156
    67 Jianliang Qiao, Benkang Chang, Zhi Yang, Si Tian, Youtang Gao.Comparative study of GaN and GaAs photocathodes. Proceedings of SPIE.2008, Vol.6621:66210J-1 ~ 66210J-8
    68 H.-J.Drouhin, C.Hermann, and G.Lampel. Photoemission from activated gallium arsenide. I. Very-high-resolution energy distribution curves. Physical Review B,1985, 31(6):3859~3871
    69 D.G.Fisher, R.E.Enstrom, J.S.Escher and B.F.Williams. Photoelectron surface escape probability of (Ga,In)As:Cs-O in the 0.9 to 1.6 μm. Journal of Applied Physics,1972. 43(9):3815~3823
    70 G.Vergara, A.Herrera-Gomez and W.E.Spicer. Calculated electron energy distribution of negative electron affinity cathodes. Surface Sciences,1999,436:83~90
    71 J.S.Escher, H.Schade. Calculated energy distributions of electrons emitted from negative electron affinity GaAs:Cs-O surfaces. Journal of Applied Physics,1973,44(12): 5309~5313
    72 D.J.Bartelink, J.L.Moll and N.L.Meyer. Hot-electron emission from shallow p-n junctions in silicon. Physical Review,1963,130(3):972~985
    73 B.F.Williams and R.E.Simon. Direct measurement of hot electron-photon interactions in GaP. Physical Review Letters,1967 18(13):485~487
    74 Herrera-Gomez A, Spicer W E. Physics of high intensity nanosecond electron source. Proc. SPIE,1993 2022:51~63
    75 乔建良,牛军,杨智,邹继军,常本康.NEA GaN光电阴极表面模型研究.光学技术.2009,35(1):145~147
    76 王洪梅,张亚非.Airy传递矩阵法与偏压下多势垒结构的准束缚能级.物理学报,2005,54(5):2226~2232
    77 W.W.Lui and M.Fukuma. Exact solution of the Schrodinger equation across an arbitray one-dimension piecewise-linear potential barrier. Journal of Applied Physics,1986, 60(5):1555~1559
    78 Dongsheng Hsu, Mingzhen Hsu, Changhua Tan, and Yang Yuan Wang. Calculation of resonant tunneling levels across arbitrary potential barriers. Journal of Applied Physics, 1992,72(10):4972-4974
    79 Shaune S. Allen, and Steven L. Richardson. Improved Airy function formalism for resonant tunneling in multibarrier semiconductor heterostructures. Journal of Applied Physics,1996,79(2):886~894
    80 宗志园,常本康.用积分法推导NEA光电阴极的量子产额.光学学报.1999,19(9):1177-1182
    81 乔建良,常本康,杨智,高有堂,田思NEA GaN光电阴极量子产额研究.光学技术.2008,34(3):395~397
    82 C.Y.Su, P.W.Chye, P.Pianetta, I.Lindau and W.E.Spicer. Oxygen adsorption on Cs covered GaAs(110) surfaces. Surface Science,1979,86:894~899
    83 C.Y.Su, I.Lindau and W.E.Spicer. Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species. Chemical Physics Letters, 1982,87(6):523~527
    84 C.Y.Su, W.E.Spicer and I.Lindau. Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs (110) surface. Journal of Applied Physics,1983, 54(3):1413~1422
    85 Huai-rong Gao. Investigation of the mechanism of the activation of GaAs negative electron affinity phototocathodes. Journal of Vacuum Science Technology A,1987,5(4): 1295~1298
    86 杨邦朝,王文生.薄膜物理与技术.成都:电子科技大学出版社,1994
    87 恽正中,王恩信,完利祥.表面与界面物理.成都:电子科技大学出版社,1993
    88 丘思畴.半导体表面与界面物理.武昌:华中理工大学出版社,1995
    89 Machuca F, Liu Z, Sun Y, et al. Role of oxygen in semiconductor negative electron affinity photocathodes[J]. J. Vac. Sci. Technol,2003,20(6):2721~2725.
    90 Machuca F, Liu Z, Sun Y, et al. Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes[J]. J. Vac. Sci. Technol,2003,21(4):1863~ 1869
    91 邹继军,钱芸生,常本康,王惠,王世允.GaAs光电阴极制备过程中多信息量测试技术研究.真空科学与技术学报,2006,26(3):172-175
    92 钱芸生.光电阴极多信息量测试技术及其应用研究[博士学位论文].南京:南京理工大学,2000
    93 邹继军.GaAs光电阴极理论及其表征技术研究[博士学位论文].南京:南京理工大学,2007
    94 K.A.Elamrawi, H.E.Elsayed-Ali. GaAs photocahode cleaning by atomic hydrogen from a plasma source. Journal of Physics D:Applied Physics.1999,32:251~256
    95 K.A.Elamrawi, M.A.Hafez and H.E.Elsayed-Ali. Atomic hydrogen cleaning of InP(100) for preparation of negative electron affinity photocathode. Journal of Applied Physics. 1998,84(8):4568~4572
    96 Zhi Liu, Yun Sun, Francisco Machuca, and etc, Optimization and characterization of Ⅲ-Ⅴ surface cleaning, Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2003, vol.21, Issue 4, pp.1953~1958
    97 杜晓晴.高性能GaAs光电阴极[博士学位论文].南京:南京理工大学,2005
    98 邹继军,常本康,杜晓晴,陈怀林,王惠,高频.铯氧比对砷化镓光电阴极激活结果的影响.光子学报,2006,35(10):1493-1496
    99 C.I. Wu, A. Kahn, Negative electron affinity and electron emission at cesiated GaN and AlN surfaces, Applied Surface Science,2000, v.162-163:250~255
    100 C. I. Wu and A. Khan, Electronic states and effective negative electron affinity at cesiated p-GaN surface, J. Appl. Phys,1999, vol.86, pp.3209~3212
    101 ZOU Ji-Jun, CHANG Ben-Kang, YANG Zhi, DU Xiao-Qing, GAO Pin, and QIAO Jian-Liang. Evolution of photocurrent during coadsorption of Cs and O on GaAs (100). Chinese Physics Letters,2007,24(6):1731~1734
    102 G. Vergara, L.J. Gomez, J.Capmany and M.T. Montojo. Adsorption kinetics of cerium and oxygen on GaAs(l00). Surface Science.1992,278:131 ~ 145
    103 Kenji Yamada, Junko Asanari, Masamichi Naitoh and Satoshi Nishigaki. Co-adsorption of cesium and oxygen on GaAs(00l) surfaces studied by metastable de-excitation spectroscopy. Surface Science.1998,402-404 (1-3):683~686
    104 S. More, S. Tanaka, S. Tanaka et al. Coadsorption of Cs and O on GaAs:formation of negative electron affinity surfaces at different temperatures. Surface Science.2000, 454-456(1-3):161~165
    105 S. Mor e, S. Tanaka, S. Tanaka et al. Interaction of Cs and O with GaAs(100) at the overlayer-substrate interface during negative electron. Surface Science.2003,527: 41-50
    106 A.H.Sommer. Cesium-oxygen activation of three-five compound photoemitters. Journal of Applied Physics.1970,41(1):2158
    107 乔建良,田思,常本康,杜晓晴,高频.负电子亲和势GaN光电阴极激活机理研究.物理学报.2009,58(8):5847-5851
    108 乔建良,常本康,牛军,杨智,邹继军.NEA GaN和GaAs光电阴极激活机理对比研究.真空科学与技术学报..2009,29(2):115-118
    109 Chang Benkang, Du Xiaoqing, Liu Lei et al. The automatic recording system of dynamic spectral response and its applications. SPIE.2003,5209:209~218
    110 Fu Rongguo, Chang Benkang, Qian Yunsheng et al. The Evaluation System of Negative Electron Affinity Photocathode. SPIE.2001,4580:614~622
    111 Wei Li, Benkang Chang. Spectral matching factors between GaAs and multialkali photocathodes and reflective radiation of objects. Optical Engineering.2001,40(5): 674-678
    112 Qian Yunsheng, Zong Zhiyuan,Chang Benkang. Measurement of Spectral Response of Photocathodes and its Application. SPIE.2001,4580:486~495
    113 Zong Zhiyuan, Chang Benkang. A study on the technology of on-line spectral response measurement. SPIE.1998,3558:23~27
    114 A.Schmidt-Ott and F.Meier. Automatic recording of quantum yields in phtoemission. The Review of Scientific Instruments.1977,48(5):524~527
    115 常本康,房红兵,刘元震.光电材料动态自动光谱测试仪的研究与应用.真空科学与技术学报.1996,16(5):364-366
    116 钱芸生,宗志园,常本康.负电子亲和势光电阴极评估技术研究.真空科学与技术,2001,21(6):445~447
    117 钱芸生,宗志园,常本康.GaAs光电阴极原位光谱响应测试技术研究.真空科学与技术,2000,20(5):305~307
    118 常本康,房红兵,富容国,钱芸生.多碱光电阴极光谱响应在线测试结果与分析.真空科学与技术,1998,18(2):111~115
    119 常本康,房红兵,刘元震.光电材料动态自动光谱测试仪的研究与应用.真空科学与技术,1996,16(5):364-366
    120 宗志园.NEA光电阴极的性能评估和阴极激活工艺研究[博士学位论文].南京:南京理工大学,2000
    121 牛军,乔建良,常本康.光谱响应在线测试仪的研制与应用.半导体技术.2008,33(3):212-215
    122 杜玉杰,杜晓晴,常本康,钱芸生.光谱响应测试仪的研制及应用.南京理工大学学报.2005,29(6):690-692
    123 杜晓晴,宗志园,常本康.GaAs光电阴极稳定性的光谱响应测试与分析.光子学报.2004,33(8):939~941
    124 钱芸生,常本康,邱亚峰,杜晓晴,杜玉杰.三代微光器件的测试和评估技术研究.真空科学与技术学报.2004,24(5):389~392
    125 杜玉杰,杜晓晴,常本康,钱芸生.激活台内透射式GaAs光电阴极的光谱响应特性研究.光子学报.2005,34(12):1792-1794
    126 邹继军,常本康,杜晓晴,杨智.GaAs光电阴极光谱响应曲线形状的变化.光谱学与光谱分析,2007,56(5):2992-2997
    127 乔建良,常本康,钱芸生,杜晓晴,张益军,高频,王晓晖,郭向阳,牛军,高有堂.NEAGaN光电阴极光谱响应特性研究.物理学报.2010,59(5):3577-3582
    128 Y.Z.Liu, J.L.Moll, W.E.Spicer. Quantum yield of GaAs semitransparent photocathodes. Applied Physics Letters.1970,17(2):60~62
    129 M.Milanova, A.Mintairov, V.Rumyantsev and K.Smekalin. Spectral Characteristics of GaAs Solar Cells Grown by LPE. Jurnal of Electronics Materials.1999,28(1):35~38
    130 Lihui Guo, Jinmin Li and Hou xun. The quantum efficiency of field-assisted transmission-mode GaAs photocathodes. Semiconductors Science and Technology. 1989,4(6):498~499
    131 Oswald H.W. Siegmund, Anton S. Tremsin, John V. Vallerga, Jason B. McPhate, Jeffrey S. Hull, James Malloy and Amir M. Dabiran. Gallium nitride photocathode development for imaging detectors. Proceedings of SPIE,2008,7021:70211B-1~70211B-9
    132 王力鸣,张小秋,李晋闽,侯洵.超高真空条件下NEA Ⅲ一Ⅴ族半导体光电阴极的工艺与性能研究.真空科学与技术学报.1992,12:390-396
    133徐江涛.三代微光像增强器制管工艺对阴极光电发射性能的影响.应用光学.2004.5:30~32
    134 徐江涛.三代微光像增强器GaAs负电子亲和势(NEA)光电阴极稳定性研究.应用光学.1999,20(2):6-9
    135 闫金良,朱长纯,向世明.透射式GaAs(Cs,O)光电阴极稳定性的研究.红外与毫米波学报.2001,20(2):157-160
    136 Tailiang Guo, Huairong Gao. Photoemission stability of negative electron affinity GaAs photocathodes. SPIE.1993,1982:127~137
    137 杜晓晴,杜玉杰,常本康,宗志园.三代微光管均匀性测试与分析.真空科学与技术.2003,23(4):248-250
    138 徐江涛.真空残气对GaAs阴极发射性能的影响.应用光学.2003,24(2):13~15
    139 江剑平,翁甲辉,杨泮棠等.阴极电子学与气体放电原理.北京:国防工业出版社,1980
    140 Huairong Gao, Qing-Bin Lu. Investigation of electron emission stability of negative electron affinity cathodes. Vacuum.1990,41(7-9):1753~1755
    141 P.Sen, D.S.Pickard, J.E.Schneider etc al. Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system. The Journal of Vacuum Science and Technology.1998, B16(6):3380~3384
    142 A.H.Sommer. Stability of photocathode. Applied Optics.1973,12(1):90~92
    143 王近贤,杨汉琼.象增强器稳定性分析.云光技术.1999,31(2):43-48
    144 E.M.Yee, D.A.Jackson. Photoyeild decay characteristics of a cesiated GaAs Solid-State Electronics.1972,15:245-247
    145 T.Wada, T.Nitta, T.Nomura. Influence of exposure to CO,CO_2 and H_2O on the stability of GaAs photocathodes. Japanese Journal of Applied Physics.1990,29(10):2087~ 209
    146 J.Grames, P.Adderley, M.Baylac, J.Clark, A.Day, J.Hansknecht, M.Poelker, M.Stutzman. Status of the Jefferson lab polarized beam physics program and preparations for upcoming parity experiments. Spin 2002:15~(th) Int'l. Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimenters,2002, CP675:1047~1052
    147 D.Durek, F.Frommberger, T.Reichelt, and M.Westermann. Degradation of a gallium-arsenide photoemitting NEA surface by water vapour. Applied Surface Science, 1999,143:319~322
    148 乔建良,常本康,杜晓晴,牛军,邹继军.反射式NEA GaN光电阴极量子效率衰减机理研究.物理学报.2010,59(4):2855-2859
    149 邹继军,常本康,杨智,高频,乔建良,曾一平.GaAs光电阴极在不同强度光照下的稳定性.物理学报,2007,56(10):6109~6113
    150 Zhi Yang, Benkang Chang, Jijun Zou, Jianliang Qiao, Pin Gao, Yiping Zeng, and Hui Li. Comparison between gradient-doping GaAs photocathode and uniform-doping photocathode. Applied Optics,2007,46(28):7035~7039
    151 Jijun Zou and Benkang Chang. Gradient doping negative electron affinity GaAs photocathodes. Optical Engineering,2006,45(5):054001
    152 杜晓晴,常本康,邹继军,李敏.利用梯度掺杂获得高量子效率的GaAs光电阴极.光学学报,2005,25(10):1411~1414
    153 邹继军,常本康,杨智.指数掺杂GaAs光电阴极量子效率的理论计算.物理学报,2007,Vol.56(5):2992~2997