大型水电站充水保压蜗壳受力及厂房动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国水电事业的不断发展,在建及将建的水电站机组的单机容量越来越大;蜗壳的HD值也急剧增长,蜗壳日趋向巨型化发展。蜗壳埋设方式的选择,是保证大型水电机组安全稳定运行的关键问题之一。为了充分发挥钢蜗壳的承载能力和降低外围混凝土的应力,减少配筋,使蜗壳结构安全可靠、经济合理、施工方便,通常对于大型水电站高HD值的蜗壳,国内外多采用充水保压埋设方式。对于充水保压蜗壳结构最关键的问题是,科学合理地选择保压方案与保压水头,并准确的掌握蜗壳外围混凝土的应力状态,而蜗壳钢衬和外围钢筋混凝土联合承载结构的研究,由于蜗壳结构复杂,且各实际工程之间差异较大,是一个非常复杂的研究课题,很难准确获得其应力状态。此外,大型水电站地下厂房,作为水电站的重要组成部分,它和机组的振动问题普遍存在,给电站的运行带来种种危害,甚至危及整个水电站的安全,这就使得水电站厂房的振动问题受到了普遍重视。
     因此,本文结合云南某水电站工程建设实际,在收集和总结前人经验的基础上,以大型通用有限元分析软件ANSYS为平台,首先研究了充水保压蜗壳结构外围混凝土受力状态和变形情况。接着,研究分析了各种主要因素对厂房下部结构自振特性的影响,同时对引起机组振动的机械、水力和电气等15种复杂因素进行阐述和分析,在此基础上按照相应的标准作出共振校核。最后,对厂房的抗震分析做出了安全评价。
With the continuous development of the domestic hydroelectric industry, the unit capacity of the existed power station and the power station under construction is becoming larger and larger. The HD values of the spiral case also grow rapidly. Choosing the right embedding manners is one of the key points to guarantee the safe and steady working performance of the hydraulic turbine generator unit. In order to give full play to the steel spiral case, lower the stress of outside concrete, reduce the ratio of reinforcement and make the structure of the spiral case safe, reliable, economical and convenient, to a giant hydraulic structure with high HD value, the preloading filling spiral case structure is mostly applied at domestic and aboard. The most crucial issue to preloading filling spiral case is the responsible choice of preloading water head and accurately achieve outside concrete state of stress. Due to the complex structure and the larger difference between the every actual project, the study of combined bearing structure is a very complicated subject. In addition,the underground powerhouse of the large-scaled station, as an important part of hydropower station, often induces serious vibration problem, which brings various harm to run of the station, even give rise to danger of the whole station. So, the vibration of the powerhouse has been given a common emphasis.
     Therefore, this paper is focused on the above questions. Taking the substructure of a hydropower station in Yunnan as an example, Applying ANSYS program, we established whole 3D finite element model for the stress analysis of the preloading filling spiral case structure, gained the stress distributed disciplinarian and displacements. Secondly, we analyze the dynamic characteristics of the powerhouse under different condition. In addition, fifteen kinds of vibration source from the hydraulic, mechanic and electrical factors is give a detailed introduction and analysis. Based on the result of analysis, the resonance is calibrated. Finally, has made Seismic analysis of powerhouse and give the safety evaluation.
引文
[1]练继建,王海军,秦亮.水电站厂房结构研究[M].中国水利水电出版社,2007
    [2]吴鸿寿,黄源芳.三峡水电站水轮发电机组的选择研究[J].人民长江,1993,2:6-12
    [3]李胜军.大型水电站蜗壳组合结构分析.[博士学位论文].天津:天津大学,1998
    [4]陈云光,张云.岩滩水电站蜗壳外围混凝土结构设计.红水河,1992,11(3)
    [5]姚全喜.国外埋置水轮机蜗壳的方法.水电站压力管道情报网网讯,1992.5
    [6]郭潇,张志强.万家寨水电站蜗壳组合结构有限元分析[J].水利水电工程设计,1999.4
    [7]王海军.水电站厂房组合结构分析与动态识别:[博士学位论文],天津,天津大学,2005
    [8]水电站厂房设计规范,SL266—2001,中华人民共和国行业标准,北京:中国水利水电出版社,2001
    [9]李文富.大型水电站充水预压蜗壳结构优化分析研究:[硕士学位论文],天津,天津大学建筑工程学院,2003,12
    [10]吉晓红,张燎军,翟利军.ANSYS软件在水电厂房分析中的应用[J].东北水利水电,2006,1:1-3
    [11]杜申伟.三峡水电站蜗壳保压浇筑外围混凝土的设计研究[J].水利水电快报,2006.21(5):1-3
    [12]秦亮,练继建,郑伟.大型水电站厂房蜗壳结构形式研究[J].中国农村水利水电,2006,1:69-72
    [13]阳芳,伍鹤皋.大型水轮机蜗壳结构动静力分析[J].武汉大学学报(工学版),2004,37(5):46-49
    [14]秦继章,马善定,戴会超.高水头抽水蓄能电站蜗壳结构配筋原理研究[J].水力发电学报,2002,25(1):30-33
    [15]黄河,杨华彬.高水头水电站蜗壳结构受力特性研究[J].水利水电技术,2005,36(4):68-71
    [16]田子勤,陈明泉,李修树.三峡电站蜗壳浇混凝土充水保压系统设计[J].人民长江,2002,33(9):1-3
    [17]秦继章,马善定,伍鹤皋,匡会健.三峡水电站“充水保压”钢蜗壳外围混凝土结构三维有限元分析[J].水利学报,2002,6:28-32
    [18]戴会超,秦继章.三峡特大型水轮发电机组充水保压蜗壳关键技术研究及应用[J].水电能源科学,2005,23(2):33-37
    [19]谭恢村.三峡右岸电站座环蜗壳的整体刚强度分析[J].东方电机,2007,4:9-14
    [20]伍鹤皋,田海平,李永祖.水电站混凝土蜗壳三维有限元分析[J].武汉大学学报:工学版,2007,40(5):53-57
    [21]林绍忠,苏海东.水电站蜗壳保压浇混凝土结构的三维仿真分析[J].水利学报,2002,1:66-70
    [22]郭潇,张志强,于玉森,王振光.万家寨水电站蜗壳组合结构有限元分析[J].水利水电工程设计,1994,4:43-45
    [23]高峰,倪军,张彬.蜗壳保压技术在三峡工程中的发展与应用[J].水电建设,2006,2:48-52
    [24]王晓春,孙少杰,张沁成,亢景付.西龙池抽水蓄能电站充水保压蜗壳结构三维有限元分析[J].山西水利科技,2006,3:8-11
    [25]亢景付,孙少杰,张沁成.西龙池抽水蓄能电站蜗壳结构三维有限元计算分析[J].水力发电学报,2007,26(2):37-53
    [26]陈云光,张云.岩滩水电站蜗壳外围混凝土结构设计[J].红水河,1992,11(3):43-46
    [27]Nigam Prem S.,Jain 0. P. and Kanchi Mahesh B. Three-Dimensional Analysis of Hydroelectric Power Station. American Society of Civil Engineers, Journal of the Power Division,1976, 102(1):35-5
    [28]Nigam Prem S., Jain 0. P. and Kanchi Mahesh B. Stress in Concrete Around Spiral Case. American Society of Civil Engineers, Journal of the Power Division,1976,102(1):95-111
    [29]Khalid Syed and Rao P. V. Finite Element Analysis of Power House Substructures. Journal of the Institution of Engineers, Part CV:Civil Engineering Division,1977,57(6):328-334
    [30]Nigam Prem S., Jain 0. P. and Kanchi Mahesh B.. CoMParative Study of the Prevalent Design Practices for the Concrete Surrounding Spiral Case of A Hydrel Power Station. Irrigation and Power,1975,32(1):19-36
    [31]王海军,黄津民,王日宣.充水保压钢蜗壳外围混凝土应力分析方法研究[J].中国农村水利水电,2007,6:131-136
    [32]伍鹤皋,申艳,蒋逵超,马善定.大型水电站垫层蜗壳结构仿真分析[J].水力发电学报,2006,26(2):32-36
    [33]梁仁贵.三峡水电站蜗壳保温保压施_工介绍[J].西北水电,2003,3:20-23
    [34]练继建,喻刚,王海军.温度变化对水电站蜗壳结构配筋的影响[J].天津大学学报,2006,39(8):957-962
    [35]王林玉,朱向荣,钟秉章.岩石抗力和内外温差对大型水电站蜗壳结构的影响[J].浙江大学学报:工学版,2000,34(4):433-437
    [36]Verma Vishnu, Ghosh A K, Kushwaha H S. Temperature distribution and thermal stress analysis of ball—tank subjected to solar radiation[J]. Journal of Vessel Technology,2005,127:119-122
    [37]Lee Y S, Choi M H, Kang Y H, et al. A structural analysis of the circular cylinder with multi holes under thermal loading[J]. Nuclear Engineering and Design,2002,212:273-279
    [38]Chen Yaolong, Wang Changjiang, Li Shouyi, et al. Simulation analysis of thermal stress of RCC dams using 3-D finite element relocating mesh method[J]. Advances in Engineering Software, 2001,32:677-682
    [39]Wu Yong, Luna Ronaldo. Numerical implementation of temperature and creep in mass concrete[J]. Finite Elements in Analysis and Design,2001,37:97-106
    [40]王海军,练继建,闫晓荣,王日宣.三峡水电站钢蜗壳外围混凝土损伤分析[J].四川大学学报:工程科学版,2006,38(4):24-28.
    [41]刘国华,王振宇,钱镜林.水电厂蜗壳裂缝分析与治理[J].水力发电,2002,4:46-48
    [42]蒋逵超,伍鹤皋,申艳.完全联合承载蜗壳三维非线性分析[J].水力发电学报,2007,26(1):71-76
    [43]亢景付,孙少杰.西龙池抽水蓄能电站蜗壳结构非线性有限元分析[J].水力发电学报,2007,26(5):42-46
    [44]伍鹤皋,马善定,白建明.三峡水电站充水保压蜗壳平面非线性分析[J].水利学报,2003,(5):57-60
    [45]伍鹤皋,蒋逵超,申艳,马善定.直埋式蜗壳三维非线性有限元静力计算[J].水利学报,2006,37(11):1323-1328
    [46]Kalkani E.C.. Expected Displacements and Stress in The Encasing Concrete of A Francis Turbine Scroll Case. Computers and Structures,1995,55(4):13-2
    [47]Dong Z. R., Zhao Q.F., Song C.C. Nonlinear Analysis of Steel Liner-Reinforced Concrete Penstocks. Journal of Pressure Vessel Technology,1990,112(1):57-64
    [48]张益军,聂威.龙滩水电站左岸地下厂房蜗壳二期混凝土施工[J].水力发电,2007,33(4):31-32
    [49]曾伟,苗建杰,陈世庄.糯扎渡水电站地下引水发电系统的施工方法[J].水力发电.2005,31(5):61-65
    [50]林金良,刘传平.三峡电源电站主厂房蜗壳层混凝土施工技术[J].吉林水利,2006,285(4):34-38
    [51]程志华,陈仔群,陈芙蓉.三峡工程700MW机组蜗壳安装及蜗壳周边混凝土施工技术[J].葛洲坝集团科技,2007,4:43-46
    [52]邵珠玉,李庆云.三峡工程左岸厂房蜗壳二期混凝土施工方案优化[J].四川水力发电.2006,25(6):22-25
    [53]董毓新,李彦硕.水电站建筑物结构分析[M].大连理工大学出版社,1995
    [54]董毓新,鲁一晖.钢衬和钢筋混凝土联合承载蜗壳结构分析[J].大连理工大学学报,1995,6:389-394
    [55]秦继章,马善定,伍鹤皋,匡会键.二滩水电站钢蜗壳与外围钢筋混凝土联合受力三维仿真材料模型试验研究[J].水利学报,1996,6:11-15
    [56]秦继章,马善定,龚国芝,黄祖光.天荒坪抽水蓄能电站钢蜗壳水压试验研究[J].水利水电技术,1999,30(9):33-35
    [57]秦继章,龚国芝,刘国刚,叶绍圣.广州抽水蓄能电厂二期工程钢蜗壳水压试验研究[J].武汉水利电力大学学报,1999,32(4):9-12
    [58]秦继章,马善定,龚国芝,熊德炎.三峡水电站“充水保压”蜗壳三维仿真整体结构模型试验[J].水利学报,2002,10:33-38
    [59]谭玉平.三峡工程左岸厂房蜗壳保温保压试验[J].水电站机电技术,2003,3:9-12
    [60]张杰,兰道银,何英杰.三峡电站机组蜗壳直埋方案仿真模型试验研究[J].长江科学院院报,2007,24(1):48-50
    [61]陈进,黄薇.三峡水电站蜗壳充水加压模型试验研究[J].水力发电学报,2002,76(1)83-88
    [62]苏振,李国勇,蒋为群.水轮机预应力混凝土蜗壳三维仿真模型试验成果分析[J].水利水电快报,2005,26(20):13-16
    [63]王长富.高水头混流式水轮机蜗壳水压试验及封堵设施[J].云南水力发电,2007,23(4):95-104
    [64]张雪利.水电站蜗壳结构的裂缝分析与优化设计:[硕士学位论文],大连,大连理工大学,2006,6
    [65]李文富,李锦成,赵小娜.水电站充水预压蜗壳结构的应力仿真算法研究[J].水利发电,2004,30(3):52-54
    [66]林绍忠,苏海东.水电站蜗壳保压浇混凝土结构的三维仿真分析[J].水力学报,2002,(1):66-70
    [67]金钟元.水力机械[M].中国水利水电出版社,1992
    [68]江见鲸,何放龙,何益斌,陆新征.有限元法及其应用[M].北京:机械工业出版社,2006.8
    [69]匡会健,伍鹤皋,马善定等,二滩水电站钢蜗壳与外围钢筋混凝土联合承载研究:水电站压力管道·岔管·蜗壳[M],杭州:浙江大学出版社,1994
    [70]E.Kramer, Determining the Hydraulic Lateral Porce of Pump-turbines, Water Power and Dam congstruction,1981
    [71]Specifications for Seismic Design of Hydraulic Structures[S].China Electric Power Press,1997
    [72]R.W.Fazalare and R.E.Israelsen, World-wide Practices for Embedding Spiral Case, Hydro Review, 1989.10
    [73]Hinton E, Jowon Z R, Finite element for plates and steels. Prinerdge Press, Limited, (U. K),1984