NEA GaN光电阴极的量子效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaN常温下禁带宽度为3.4eV,光谱响应的闽值波长为365 nm,不吸收可见光,制成的紫外探测器可以做到可见光盲,不需要滤光系统。这样可以大大提高量子效率,满足紫外探测的需求。由GaN材料构成的负电子亲和势(NEA)光电阴极可以达到很高的量子效率,同时耐高温、耐腐蚀、抗辐射性能也更好,因而是研制真空紫外探测器的最理想材料之一。本文围绕GaN光电阴极的制备工艺、梯度掺杂阴极样品的量子效率、阴极光电发射量子效率的衰减与恢复及阴极在透射模式下的发射量子效率等方面开展研究。
     利用紫外光电阴极在线激活与测试系统和X射线光电子光谱仪(XPS)研究了GaN光电阴极的制备工艺,给出了具体的化学清洗工艺和加热净化过程。利用XPS分别分析了化学清洗和加热处理后的GaN(0001)表面的化学成分,并研究了GaN阴极Cs,O激活步骤及方法。
     为了获得更好的量子效率,设计了一种梯度掺杂结构的GaN光电阴极样品,利用紫外光谱响应测试仪器对三种样品(其他两种均匀掺杂样品作为参照)一起进行了净化及激活,测得三者的量子效率,实验结构证明变掺杂结构可以有效的提高GaN光电阴极的量子效率,在230nm处取得的峰值可达60%。
     测试了均匀掺杂及梯度掺杂两种样品在真空系统中300nm处量子效率的衰减,并从双偶极层模型角度分析了量子效率衰减的原因,运用补Cs激活,可以使GaN光电阴极的量子效率得到恢复甚至达到比第一次激活更高的值,说明真空系统中GaN光电阴极量子效率的衰减是由于阴极表面Cs的吸附量减少造成。
     测试了激活后的透射式均匀掺杂光电阴极和反射式梯度掺杂阴极在透射模式下的光电发射量子效率。结果表明,发射层的厚度及样品的导电性将影响GaN透射式工作模式下的量子效率。通过推导透射式光电阴极的量子效率公式,讨论了材料的特性对GaN光电阴极量子效率的影响。
In UV spectroscopy and low-light-level UV-imaging applications, there are strong demands for improved detectors which have higher quantum efficiency, low dark current, sharper wavelength cut-off response, and stable and robust characteristics. GaN is one of the promising candidate materials to meet these demands. In this thesis, the researches were made on such aspects as depuration method, activation technique, test of spectral response and stability performance for NEA GaN photocathode.
     1. The depuration method for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The chemical cleaning and the heating depuration methods were given in detail. After the effective chemical cleaning and the heating of 710℃about 20 minutes in the ultrahigh vacuum system, the oxides and carbon contaminations on GaN (0001) surface can be effectively removed. And the ideal atom clean surface can be obtained. The many activation experiments results show, the obvious NEA property can be achieved for GaN photocathode mainly by activating with Cs. The increase extent of photocurrent is not large after introducing O during Cs/O activation process for GaN photocathode.
     2. The photocurrent curves during either Cs or Cs/O activation process for 3 reflection-mode GaN photocathode samples of different doping concentrations were tested by using dedicated experimental system for activating and evaluating of NEA photocathode. The photocurrent of 3 samples during the Cs,O activation shows that grad doping sample can produce much higher value than uniform doping samples. The QE curves indicate that the grad doping structure can improve the photoemission of GaN cathode dramatically. The reason for this is that the diffuse length of grad doping sample is far longer that of uniform doping samples.
     3. According to the photocurrent curves and the quantum efficiency curves of fully activated reflection-mode NEA GaN photocathode, aiming at the decay tendency for reflection-mode NEA GaN photocathode and the different decay speeds of quantum efficiency corresponding to the different wave bands, the quantum efficiency decay mechanism for reflection-mode NEA GaN photocathode was studied. The surface model [GaN (Mg):Cs]:O-Cs for GaN photocathode after being activated with cesium and oxygen was used. And the change of energy band and surface barrier in the decay course of quantum efficiency was considered. The conclusions show:the reduction of the effective dipole quantity is the basic reason causing quantum efficiency to reduce. And it is the change of surface I, II barrier shape that causes the difference of dropping speeds of quantum efficiency corresponding to the different wave bands.
     4. The spectral response of fully activated 2 NEA GaN photocathode samples (one is opaque grad-doping, the other is transparent uniform doping) working under transmission mode were measured by using dedicated ultraviolet spectral response measurement instrument. The quantum efficiency of tranparent NEA GaN photocathode in transmission mode reaches up to 6.5% at 280nm, a "door" shape curve was observed from 240nm to 380nm has been observed. Based on the former research results, the factors influencing quantum efficiency were also comprehensively analyzed.
引文
[1]薛增泉,吴全德.电子发射与电子能谱.北京:北京大学出版社,1993
    [2]W.E.Spicer. Photoemissive. photoconductive. and absorption studies of alkali-antimony compounds. Physical review,1958,112(1):114-122
    [3]W.E.Spicer and A.Herrera-Gomez. Modern theory and application of photocathodes. Proc.SPIE,1993,2022:18-33
    [4]Francisco Javier Machuca. A thin film P-type GaN photocathode:prospect for a high performance electron emitter. phD. Dissertation,2003,(Stanford:Stanford university),15-29
    [5]M.P.Ulmer, B.W.Wessels.and O.H.W.Siegmund. Advances in Wide-Band Gap Semiconductor Based Photocathdoe Devices for Low Light Level Applications, 2003,SPIE,vol.4854.225
    [6]Fatemeh S. Shahedipour, Melville P. Ulmer et al, Efficient GaN Photocathodes for Low-Level Ultraviolet Signal Detection, IEEE JOURNAL OF QUANTUM ELECTRONICS,2002, Vol.38(4):333
    [7]C.I. Wu, A. Kahn, Negative electron affinity and electron emission at cesiated GaN and AlN surfaces, Applied Surface Science,2000, Vol.162-163:250
    [8]C. I. Wu and A. Khan, Electronic states and effective negative electron affinity at cesiated p-GaN surface, J. Appl. Phys,1999, Vol.86:3209.
    [9]F. Machuca, Y. Sun, Z. Liu, K. Loakeimidi, P. Pianetta, and R. F. W.Pease, Prospect for high brightness Ⅲ-nitride electron emitter, J. Vac. Sci. Technol. B.,2000, vol.18, pp. 3042-3046.
    [10]F. Shahedipour and B. W. Wessels, Investigation of formation of 2.8eV blue luminescence in p-type GaN:Mg, Appl. Phys. Lett,2000., Vol.76:3011.
    [11]Zhi Liu, Yun Sun, Francisco Machuca et al, Optimization and characterization of Ⅲ-Ⅴ surface cleaning, Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2003, Vol.21(4):1953
    [12]E.James Egerton,AshokK.Sood, Robert A.Bell and Yash R.Puri. Design and Development of High quantum efficiency large area UV Focal Plane Arrays for Photon counting Applications. SPIE,2006, vol.6389.6389R-1
    [13]Oswald H. W. Sigmund, Anton S. Tremsin, John V. Vallerga et al. Gallium Nitride Photocathode Development for Imaging Detectors, Proc. SPIE,2008, Vol.7021: 70211B
    [14]李向阳,许金通,汤英文等人,GaN基紫外探测器及其研究进展,红外与激光工程,2006,Vol.35(3):276
    [15]李慧蕊,申屠军,戴丽英,马建一.负电子亲和势氮化镓光电阴极[J].光电子技术,2007,27(2):73-77
    [16]游达.汤英文,赵德刚.高量子效率前照式GaN基p-i-n结构紫外探测器[J].半导体学报,2006,27(05):896-899
    [17]彭冬生,冯玉春,王文欣,等.一种外延生长高质量GaN薄膜的新方法[J].物理学报,2006,55(07):3606-3610
    [18]宗志园,常本康.用积分法推导NEA光电阴极的量子产额,光学学报,1999,Vo1.19(9):1177-1182
    [19]乔建良,常本康,高有堂等,NEA GaN光电阴极的制备及其应用,红外技术,2007,vol.29(9):1411-1414
    [20]S.W.King, J.P.Barnak, M.D.Bremser, K.M.Tracy, C.Ronning. Cleaning of AIN and GaN surfaces. Journal of Applied Physics,1998,vol.84,5248
    [21]童杏林,罗梦泽,姜德生,刘忠明.GaN薄膜制备及脉冲激光沉积法的研究进展[J].激光杂志,2006,27(1):5-7
    [22]乔建良,牛军,杨智,邹继军等.NEA GaN光电阴极表面模型研究.[J]光学技术.2009,,35(1):145-151
    [23]乔建良,田思,常本康,杜晓晴,高频.负电子亲和势GaN光电阴极激活机理研究.[J]物理学报,2009,,58(08):5847-5851
    [24]Zhi L, Yun S, Francisco Machuca, and etc.Optimization and characterization of Ⅲ-Ⅴ surface cleaning.[J] Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2003,21(04):1953-1958
    [25]杜晓晴,高性能GaAs光电阴极研究,博士学位论文,2005,(南京:南京理工大学)63-64
    [26]乔建良,反射式NEA GaN光电阴极研究,博士学位论文,2010,(南京:南京理工大学)50-54
    [27]杜晓晴,常本康,汪贵华,宗志园,NEA光电阴极的(Cs,O)激活工艺研究.[J]光子学报,2003,32(07):826-829
    [28]杜晓晴,常本康,钱芸生,富容国,,GaN负电子亲和势光电阴极的激活工艺,中国激光,2010,37(02):385-388
    [29]邹继军,常本康,杨智.指数掺杂GaAs光电阴极量子效率的理论计算.[J]物理学报, 2007,56(5):2992-2997
    [30]刘一兵,黄新民,刘国华.GaN基材料及其外延生长技术研究.[J]纳米科学与技术,2008,45(3):153-157
    [31]林郭强,曾一平,段瑞飞.HVPE汽相外延法在c面蓝宝石上选区外延生长GaN及其表征.[J]半导体技术,2008,29:(3)530-533
    [32]杜晓晴,常本康,钱芸生,乔建良,田健.GaN紫外光阴极材料的高低温两步制备实验研究[J].光学学报.2010,30(6):1734-1738
    [33]邹继军,陈怀林,常本康,王世允.GaAs光电阴极表面电子逸出概率与波长关系的研究[J].光学学报,2006,26(9):1400-1403
    [34]邹继军,常本康,杜晓晴,陈怀林,王惠,高频.铯氧比对砷化镓光电阴极激活结果的影响[J].光子学报,2006,35(10):1493-1496
    [35]M.Diale, F.D.Auret, N.G.van der Berg, R.Q. Odendaal, W.D. Roos, Analysis of GaN cleaning procedures, Applied Surface Science.2005,246:279-289
    [36]O.E.Tereshchenko, G.E.shaibler, A.S. Yaroshevich, etal. Low-Temperature Method of Cleaning P-GaN (0001)surfaces for photoemitters with Effective Negative Electron Affinity,2004, PHYSICS OF THE SOLID STATE,46 (10):1949-1952
    [37]Oswald H. W. Siegmund, Anton S. Tremsin, John V. Vallerga, Jason B. Macphate,
    [38]JeffreS. Hull, James Malloy and Amir M. Dabiran, SPIE,7021,70211B(2008)H. Amano, T. Tanaka, Y. Kumi, K. Kato, S. T. Kim and I. Akasaki, Appl. Phys. Lett.86, 103511 (2005)
    [39]乔建良,常本康,钱芸生,杜晓晴,张益军,高频,,王晓晖,郭向阳,牛军,高有堂.负电子亲和势GaN光电阴极光谱响应特性研究.物理学报,59(5):3577
    [40]F. S. Shahedipour, M. P. Ulmer, B. W. Wessels, C. L. Joseph, and T. Nihashi 2002 IEEE J. Quantum Electron.38 333
    [41]F. Machuca, Y. S. Z. Liu, P. Pianetta, W. E. Spicer, and R. F. W. Pease 2003 J. Vac. Sci. Technol.B 21,1863
    [42]M. Niigaki, T. Hirohata, T. Mochizuki, S. Uchiyama, H. Kan, and T. Hiruma 1998 Jpn. J. Appl. Phys. Part 2 37, L1531
    [43]M. Niigaki, T. Hirohata, T. Mochizuki, S. Uchiyama, H. Kan, and T.Hiruma,1999 Appl. Phys. Lett.75,3533
    [44]R. Calabres, V. Guidi, P. Lenisa, B. Maciga,1994 Appl. Phys. Lett.65,301
    [45]R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L.Tecchio, and B. Yang 1994 Rev. Sci. Instrum.65,343
    [46]郭向阳.常本康,乔建良,王晓晖.GaN与GaAs NEA光电阴极稳定性的比较.红外技术.2010.32(2):117-120
    [47]F.Machuca, Z Liu, Y Sun, etal 2002 J. Vac. Sci. Technol.B 20 2721
    [48]J.I. Pankove, H. schacle 1974 Appl. Phys. Lett.2553
    [49]郭向阳,常本康,王晓晖,张益军,杨铭.反射式NEA GaN光电阴极的光电发射及稳定性研究,物理学报,(已录用,2011,05)
    [50]K.A. Elamrawi 1999 ph. D. dissertation Norfolk Old Dominion university
    [51]James L W 1974 J. Appl. Phys.45 1326
    [52]乔建良,常本康,杜晓晴,郭向阳,钱芸生,王晓晖.反射式NEA GaN光电阴极量子效率恢复研究,物理学报,(已录用,2011,01)
    [53]Fisher D G, Enstrom R E, Escher J S, Williams B F 1972 J. Appl. Phys.43 3815
    [54]A. Tremsin, O.H.W. Siegmcend 2005 Proc. Of SPIE 592001-1
    [55]J.Stock, G.Hilton, T.Norton, B.Woodgate, S.Aslam,S.Aslam, M.Ulmer, Progress on development of UV photocathodes for photon-counting applications at NASA GSFC, SPIE,2005,5898
    [56]S. Fuke, M. Sumiya, T. Nihashi, M. Hagino, Development of UV-photocathodes using GaN film on Si substrate,SPIE,2008,6894
    [57]G.Vergara, L.J.Gomez, J.Capmany and M.T.Montojo. Electron diffusion length and escape probability measurements for p-type GaAs(100) epitaxies. Journal of Vacuum Science and Technology A.1990,8(5):3676-3681
    [58]W.A.Gutierrez, H.L.Wilson and E.M.Yee. GaAs transmission photocathode grown by hybrid epitaxy. Applied Physics Letters.1974,25(9):482-483
    [59]乔建良,常本康,杨智,高有堂,田思,NEA GaN光电阴极量子产额研究,光学技术.2008,34:(3),395-400
    [60]S.B.Hyder. Thin film GaAs photocathodes deposited on single crystal sapphire by a modified rf sputtering technique. The Journal of Vacuum Science and Technology. 1971,8(1):228-232
    [61]N.Hayfuji, K.Mizuguchi, S.Ochi and T.Murotani. Highly uniform growth of GaAs and GaAlAs by large-capacity MOCVD reactor. Journal of Crystal Growth.1986,77:281-285