基于泄流激励的水工结构动力学反问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水利水电工程高水头、大流量泄水建筑物的大量兴建及工程结构趋于轻型化,水流诱发的结构振动问题将会更加突出,严重情况下就有可能造成结构损伤,甚至结构功能的失效。因此,开展基于泄流振动响应的水工结构损伤诊断与健康监测研究,对于保障泄流结构安全运行具有重大的现实意义。本论文结合工程实例,对泄流激励下的典型水工结构进行以下三个方面的反问题研究:
     (一)泄流激励下水工结构工作模态参数辨识研究。针对原型动力试验激励难的问题,本文结合环境激励的特点,直接根据水工结构在工作环境激励作用下的动力响应去识别结构的模态参数。(1)提出一种利用特征矩阵奇异熵增量对动态系统进行系统定阶及对工作模态参数辨识的ERA方法,解决了动态系统定阶难的问题,揭示了结构在工作状态下的模态阶次及模态特性;(2)在SSI方法的基础上,提出用“三步法”流程对结构模态参数进行更为精确识别。即第一步,用奇异熵增量对系统进行定阶,使得定阶的界线更加清晰和稳定;第二步,利用改进的稳定图对虚假模态进行剔除,使得参数识别的结果更为准确可靠;第三步,将各阶模态参数识别结果进行平均处理,最终得到更为精确的识别结果;(3)对拉西瓦拱坝水弹性模型(1:100)、三峡溢流坝及其左导墙进行了大规模全面的正常运行状态下的振动测试,并将本文提出的基于泄流激励的模态参数识别理论应用到上述大型水工结构的工作模态参数识别中,对其工作性态进行评估。
     (二)泄流激励下高拱坝振源时域识别研究。高坝泄流诱发坝体振动的振源识别一直是水利界所关心的课题之一。在对水工结构进行安全评估时,有必要通过有限个测点的动态响应,反分析作用于整个结构的激振源特性。本文在小波理论、结构动力学及随机振动理论的基础上,提出了一种基于小波正交算子变换的多振源反分析方法,并结合水工结构的特点,探讨了进行振源识别时所需注意的关键技术问题。以拉西瓦拱坝水弹性模型为研究对象,通过有限个测点的动位移实测值,反分析各等效激励荷载时程,进而对拉西瓦拱坝的流激振动进行全面评估,为拱坝结构的动态监测和损伤诊断提供了基础。
     (三)泄流激励下水工结构损伤诊断研究。鉴于国内外学者对基于泄流振动响应的导墙及弧形闸门结构的损伤诊断研究尚处于空白,本文对这两类结构进行了如下研究:(1)提出了基于泄流振动响应的导墙损伤诊断方法,该方法较以往采用长期静态位移观测方法,可以更及时、准确地识别结构的整体安全性态,有其独特的优势;以某大型水电站导墙为研究背景,进行了基于泄流振动响应的损伤诊断,并提出了该导墙的频率安全监控指标。(2)以嘉陵江新政航电工程表孔双斜支臂弧形闸门为研究对象,提出了基于振动响应的弧形闸门框架多级损伤诊断方法。该方法集结构振动特性与神经网络及模式识别技术以及局部检测技术于一体,将组合信号指标作为RBF网络的输入,识别闸门框架的损伤位置与程度。研究表明,该损伤诊断方法具有良好的抗噪声能力和识别精度,为实现弧形闸门的在线状态检测与监测提供了新思路。
With the mass construction of hydraulic structure with high-head and large discharge,and with the trend of light-duty discharge structures, the problem of flow-induced vibration will become prominent,and in serious conditions the structure may be damaged and even be invalidated. So, study on damage diagnosis and health monitoring of hydraulic structure based on vibration response by discharge flow has practical significance for discharge flow structures. Combined with engineering in this paper,the inverse problems of typical hydraulic structures under discharge flow are researched in the following three aspects:
     Firstly, study on working modal parameter identification of hydraulic structure under discharge flow. Aimed at the difficult problem of exciting the prototype to test, combined with the characteristic of ambient excitation, the modal parameter of structure is directly identified according to the dynamic response of structure under ambient excitation in the paper. (1) A method of order determination and ERA is proposed to identify modal parameters of structures under the working state,and the system order is determined by the increasement of singular entropy of eigenmatrix. It can be used to solve the problem of system eigenmatrix order determination, and to identify the modal order and reveal the characteristics. (2)Based on the SSI method, the process of“three step method”is put forward to make more precise identification. That is,firstly the increasement of singular entropy is used to determine the system order and make the borderline of order is clearer and more stable.Secondly, eliminating the false modal parameters by the improved stabilization diagram makes the outcomes more precise and credible.Thirdly, average the identified results of each order ,and get the more precise results. (3) A large-scale comprehensive prototype vibration tests to the hydroelastic model of Laxiwa arc dam, Spillway dam and Left guide wall of Three Gorges are carried out during the working state. And the modal parameter identification theory under discharge flow proposed in the paper is applied to the operational modal parameter identification of these large-scale hydraulic structures, and the operational behaviors of these hydraulic structures are evaluated.
     Secondly, study on the time domain identification of excitation source for high arch dam under discharge flow. How to identify the excitation sources inducing vibration of high dam is one of the concerned problems for water conservancy. While the hydraulic structure is evaluated,it is necessary to inverse analyse the characteristicof excitation source acting on the whole structure through some observed dynamic response datum. Based on wavelet theory and dynamics and stochastic vibration theory,a inverse analysis method to identify multi-excitation sources is put forward using wavelet orthogonal operator transformation in this paper.According to the characteristic of hydraulic structure,the key technical problems to identify the sources are discussed. Based on the hydroelastic model of Laxiwa arc dam,the equivalent loads are computed depending on some dynamic observed displacements,and then the comprehensive evaluation aimed at flow-induced vibration of the dam is done.This provides the basis for dynamic monitoring and damage diagnosis of arc dam.
     Thirdly, study on damage diagnosis of hydraulic structure under discharge flow. Aimed at the damage diagnosis of guide wall and radial gate under vibration response by discharge flow is blank in the world,the following study is carried out.(1) A method of damage diagnosis for guide wall based on vibration response by dischargeflow is put forward.This method can identify the whole safe state of structure timely and accurately comparing with the traditional method with long static observeddisplacement,and this method has particular advantages. Based on the vibration response of a guide wall under discharge flow,damage diagnosis is done and the frequency health monitoring index of the guide wall is put forward. (2)Based on the radial gate with double inclined arms of surface hole in the engineering of Xinzheng, a multilevel damage diagnosis method for radial gate is put forward. This method is a aggregation of vibration theory, neural networks and pattern identification,local test, and make the combined index as input data of RBF neural networks,and make the damaged locations and degree as output data. Study shows that the method has better function to denoise and precise identified results,and this provides a new way to online state testing and monitoring for radial gate.
引文
[1]彭程.21世纪中国水电工程[M].北京:中国水利水电出版社,2006.
    [2]潘家筝,何憬.中国大坝50年[M].北京:中国水利水电出版社,2000.
    [3]吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
    [4]吴中如.老坝病变和机理探讨[J].中国水利,2000(9):55-57.
    [5]陈宗梁.世界超级高坝[M].北京:中国电力出版社,1998.
    [6] J.LAGINHA SERAFIM(葡萄牙).大坝失事的回顾[J].大坝与安全,1991(4):74-76.
    [7]张光斗.法国马尔帕塞拱坝失事的启示[J].水力发电学报,1998,(4):96-98.
    [8]邢林生.我国水电站大坝事故分析与安全对策(一)[J].大坝与安全,2000, (1):1-5.
    [9]王仁钟,李君纯,刘嘉忻,等.中国水利大坝的安全与管理[C].’99大坝安全及监测国际研讨会,1999,10-14.
    [10]弓正华,储海宁,沈家俊,等.迈向21世纪的中国水电站大坝安全监察[C].’99大坝安全及监测国际研讨会,1999,1-9.
    [11] Ed Whitelaw, Ed MacMullan. A framework for estimating the costs and benefits of dam removal Bioscienc[J].2002,52(8):724-728.
    [12] Robin G. Charlwood.The main questions about dam-removal in US [A]. In:US Society for Dams & Acres International[C].Seattle , 2004 , 6 .
    [13]顾冲时,苏怀智.综论水工程病变机理与安全保障分析理论和技术[J].水利学报(增刊),2007(10):71-77.
    [14]吴水生.谈反问题与中医学[J].中国中医基础医学杂志,1999,5(2):12-14.
    [15]闻骥骏.工程结构损伤识别的反问题研究[D].武汉理工大学,2006.
    [16]周晶,魏大春.重大水工混凝土结构的健康监测与损伤识别[C].第十三届全国结构工程学术会议,550-559.
    [17]郭乙木,万力,魏德荣,等.坝体力学参数的混合模型优化反演法及其应用[J].水电能源科学,2001,19(2):36-38.
    [18]陈维江.大坝安全监测及厂房动力反演分析模型研究[D].大连理工大学,2002.
    [19]王仁.力学的反演、反演的力学[J].力学与实践,2000,22(1):71-74.
    [20]崔广涛,彭新民,等.高拱坝泄洪振动水弹性模型[J].水利学报,1996,(4):1-9.
    [21]崔广涛,林继镛,彭新民,等.二滩拱坝泄洪振动水弹性模型研究[J].天津大学学报,1991,(1):1-10.
    [22]路观平.随机脉动水压力作用下的结构响应[J] .水利学报,1993,(12):70-75.
    [23]曾昭扬,徐培忠,等.水流脉动压力下结构的随机振动分析[J].水利学报,1983,(1):15-20.
    [24]崔广涛,练继建,等.水流动力荷载与流固相互作用[M].中国水利水电出版社,1999.
    [25]练继建,杨敏,等.高坝泄流工程[M].中国水利水电出版社,2008.
    [26]崔广涛.高水头大流量泄洪结构脉动荷载及其振动和地基反应,“七.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之一-二滩水电站拱坝泄洪振动实验研究[R].天津:天津大学水资源与港湾工程系,1991.
    [27]崔广涛.高水头大流量泄洪振动及新型水垫塘研究,“八.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之一-高拱坝大流量泄洪诱发振动研究[R].天津:天津大学水资源与港湾工程系,1996.
    [28]崔广涛.高水头大流量泄洪振动及新型水垫塘研究,“八.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之二-高拱坝大流量泄洪动态仿真及振动影响评估[R].天津:天津大学水资源与港湾工程系,1996.
    [29]练继建.金沙江溪洛渡水电站拱坝泄洪水弹性模型研究[R].天津:天津大学水利水电工程系,2001.
    [30]练继建.黄河拉西瓦水电站坝身泄洪流激振动水弹性模型试验研究报告[R].天津:天津大学水利水电工程系,2006.
    [31]崔广涛.澜沧江小湾拱坝水弹性振动研究[R].天津:天津大学水资源与港湾工程系,1995.
    [32]崔广涛.构皮滩拱坝动力特征与泄流振动研究[R].天津:天津大学水资源与港湾工程系,1996.
    [33]练继建,崔广涛,等.水工结构流激振动响应的反分析[J].水利水电技术,1998,29(8):51-54.
    [34]马斌.高拱坝及反拱水垫塘结构泄洪安全分析与模拟[D].天津:天津大学,2006.
    [35]郄志红,郑旌辉,刘春来.反分析及其在水利工程中的应用[J].河海水利,1999,(3):5-8.
    [36]练继建,马斌,李福田.高坝流激振动响应的反分析方法[J].水利学报,2007,38(5):575-581.
    [37]姚志远.大型工程结构模态识别的理论和方法研究[D].江苏:东南大学,2004.
    [38]苏克忠,郭永刚,常延改,等.大坝原型动力试验[M].北京:地震出版社,2006.
    [39]杨和振.环境激励下海洋平台结构模态参数识别与损伤诊断研究[D].中国海洋大学,2004.
    [40]续秀忠,华宏星,等.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1-6.
    [41]王茂龙.结构损伤识别与模型更新方法研究[D].东南大学博士论文.2003.
    [42] Ibrahim S.R.Random Decrement Technique for Modal Identification of Structure,AIAA Journal of Spacecraft and Rockets,1977,696-700
    [43] Box G E P, Jenkins G M.Times Series Analysis, Forecasting and Control[M].2nd Editor,1976.
    [44]任伟新.环境振动系统识别方法的比较分析[J].福州大学学报(自然科学版),2001,29(6):80-86.
    [45] Rune Brincker, Lingmi Zhang and Palle Andersen. Modal Identification of Output-only Systems Using Frequency Domain Decomposition[J].Smart Material and Structures,2001,10(3):441-445.
    [46] Mergeary M. Least Squares Complex Exponential Method and Global System Parameter Estimations used by Modal Analysis[C].Proc. of the 5nd IMAC,1983,3.
    [47] Juang J.N. & Pappa R.S.An Eigensystem Realization Algorithm(ERA)for modal Parameter Identification & modal Reduction,NASA/JPL Workshop on Identification & Control of Flexible Space Structures,1984.
    [48]李慧彬.大型工程结构模态参数识别技术[M].北京:北京理工大学出版社,2007.
    [49] James G H,Carne T G,Lauffer J P.The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Turbines[R]. No. SAND92-166,UC-261.Sandia:Sandia National Laboratories,1993.
    [50] Peter Van Overschee,Bart De Moor.Subspace algorithms for the stochastic identification problem[J].Proceedings of the 30th Conference on Decision and Control Brighton,England,December 1991:1321-1326.
    [51] Peter Van Overschee,Bart De Moor. Subspace Identification for Linear Systems:Theory,Implementation,Applications[M].Dordrecht,theNetherlands:Kluwer Academic Publishers;1996.
    [52] Verhaegen M,Xiaode Yu.A class of suhspace model identification algorithms to identify periodically and arbitrarily time-varying systems[J].Automatica,1995,31(2):201-216
    [53]杨叔子,熊有伦,等.时序建模与系统辨识[J].华中工学院学报,1984,12(6):85-92
    [54]于开平,邹经湘,等.结构系统的时变参数识别方法[J].力学进展,2000,30(3):370-377.
    [55]李中付,华宏星,等.非稳态环境激励下线性结构的模态参数辨识[J].振动工程学报,2002,15(2):139-143.
    [56]史东锋,许锋,等.结构在环境激励下的模态参数辨识[J].航空学报,2004,25(2):125-130.
    [57]陈隽,徐幼麟.HHT模态参数识别方法在结构模态参数识别中的应用[J].振动工程学报,2003,16(3):383-388.
    [58]庞世伟,于开平,等.识别时变结构模态参数的改进子空间方法[J].应用力学学报,2005,22(2):184-188.
    [59]夏江宁,陈志峰,等.基于动力学环境试验数据的模态参数识别[J].振动与冲击,2006,25(1):99-104.
    [60]练继建,张建伟,等.泄洪激励下高拱坝模态参数识别研究[J].振动与冲击,2007,26(12):101-105.
    [61] Bartlett F D,Flannelly W D. Modal Verification of Force Determination for Measuring Vibration Loads.Journal of the American Helicopter Society.1979:10-18.
    [62] Giansamte N ,Jones R ,Calapodas N J. Determination of inflight Helicopter Loads. Journal of the American Helicopter Society,1 982:58-64.
    [63] Hillary B, Ewins D J. The Use of Strain Gaugesin Force Determination and Frequency Response Function Measurements .Proceedings of the 2ndInternational Modal Analysis Conference (IMAC),Florida , USA, 1984: 627-634.
    [64] Hansen M, Starkey J M.On Predicting and Improving the Condition of Modal-Model-based Indirect Force Measurement Algorithms. Proceedings of the 8th IM AC, Kissimmee F L ,USA ,1990: 115-120.
    [65] Karlsson S E S. Identification of External Structural Loads from Measured Harmonic Responses. Journal of Sound and Vibration,1996,196(1):59-74.
    [66] Desanghere G, Snoeys R. Indirect Identification of Excitation Forces by Modal Coordinate Transformation. Proceedings of the 3rd IMAC, Florida,USA,1985:685-690.
    [67] Ory H, Glaser H, Holzdeppe D. The Reconstruction of Forcing Function Based on Aeroelasticity and Structural Dynamics. Proceedings of 2nd Int.Symp.On Aeroelasticity and Structural Dynamics, Aschen,FRG, 1985:164-168.
    [68]李万新,张景绘.载荷确定方法及直升飞机六力素识别[R].航空工业部飞行试验研究中心科研报告,1984.
    [69]唐秀近.动态力识别的时域方法[J].大连工学院学报,1987,26(4):22-28.
    [70]唐秀近.时域识别动态载荷的精度问题[J].大连理工大学学报,1990,30(1): 31-37.
    [71]初良成,曲乃泗,等.动态载荷识别的时域正演方法[J].应用力学学报,1994,11(2):1-9.
    [72]林高平,吴丹青,等.利用压缩机缸盖振动信号识别缸内压力[J].压缩机技术,1994,(5):35-38.
    [73]魏星原,宋兵,郑效忠.载荷识别的逆系统方法[J].振动、测试与诊断,1995, 15(3):35-43.
    [74]高保成,刘红霞,杨叔子.神经网络用于结构动荷载识别的研究[J].郑州工学院学报,1996,17(2):91-94.
    [75]王晓升,姜建东,屈梁生.应用载荷识别技术的一种转子动平衡方法[J].振动工程学报,1997,10(2):198-202.
    [76]林家浩,智浩,郭杏林.平稳随机振动荷载识别的逆虚拟激励法(一)[J].计算力学学报,1998,15(2): 127-136.
    [77]智浩,郭杏林,林家浩.平稳随机振动荷载识别的逆虚拟激励法(二)[J].计算力学学报,1998,15(4) :395-428.
    [78]文祥荣,缪龙秀.由实测应变响应识别结构动态载荷铁道学报[J].2000,12 (6): 36-39.
    [79]许峰.动载荷识别若干前沿理论及应用研究[D].南京:南京航空航天大学,2001.
    [80]淡丹辉,何广汉.基于神经计算的智能桥梁结构载荷识别[J].开发与借鉴,2001,(12):39-41.
    [81]陈隽,李杰.高层建筑风荷载反演研究[J].力学季刊,2001, 22 (1):72-77.
    [82]徐倩,文祥荣,孙守光.结构动态载荷识别的精细逐步积分法[J].计算力学学报,2002,19(1):53-57.
    [83]黄林,袁向荣.小波分析在桥上移动荷载识别中的应用[J].铁道学报, 2003,25(4): 97-101.
    [84]张运良,林皋,等.一种改进的动态载荷时域识别方法[J].计算力学学报,2004,21(2): 209-215.
    [85]卜建清,罗韶湘.基于广义正交函数和正则化的移动荷载识别法[J].振动、测试与诊断,2005,25(1):36-40
    [86]余岭,朱军华.基于矩量法的移动荷载识别[J].振动工程学报,2006,19(4):509-513.
    [87]侯秀慧,邓子辰.基于精细积分方法的桥梁结构移动荷载识别[J].振动与冲击,2007,26(9):142-145.
    [88]练继建,崔广涛,董淑芳.水工结构流激振动响应的反分析[J].水利水电技术,1998,29(8):51-54.
    [89]练继建,崔广涛,林继镛.高拱坝泄洪振动的计算分析与验证[J].水利学报,1999,(12):23-32.
    [90]王海军,练继建,等.混流式水轮机轴向动荷载识别[J].振动与冲击,2007,26(4):123-125.
    [91]李守巨,刘迎曦,等.基于RBF神经网络的水轮机振源参数识别方法[J].大连理工大学学报,2007,47(1):6-10.
    [92]王山山,任青文.基于振动理论的水工结构无损检测技术研究综述[J].河海大学学报(自然科学版),2004,32(5):550-556
    [93]王继成,许锡宾,等.水工混凝土结构损伤诊断技术研究综述[J].重庆交通学院学报,2004,23(4):19-23
    [94]张丽卿,韩兵康,等.基于振动的土木工程结构损伤诊断研究进展[J].自然灾害学报,2004,13(5):136-142.
    [95]冉启芳.无损检测方法的分类及其特征简介[J].无损检测,1999,21(2):75-80.
    [96]刘箴,唐岱新.建筑结构损伤诊断方法研究[J].哈尔滨建筑大学学报,2000,33(1):37-40.
    [97] CHARLES J.HELLIER著,戴光,徐彦廷,译.无损检测与评价手册[M].中国石化出版社,2005.
    [98]董清华.混凝土超声波、声波检测的某些进展[J].混凝土,2005,(11):32-34.
    [99]林维正,苏勇,等.混凝土裂缝深度超声波检测方法[J].无损检测,2001,23(8):323-325.
    [100]林维正.混凝土超声波检测的进展[J].无损检测,2002,24(10):428-431.
    [101] Yam, L. H.Theoretical and experimental study of modal strain analysis[J]. J.of Sound and Vibration.1996,191(2):251-260.
    [102] Samman .M.Vibration testing for nondestructive evaluation of bridges[J]. J.of Structural Engineering.1994.120(1):269-306.
    [103]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社,2002.
    [104] Chen J C,Garba J A.On-orbit damage assessment for large space structures.AIAA Journal,1988,26:1119-1126.
    [105] Hearn G,Testa R.B.Modal analysis for damage detection in structures.Journal of Structural Engineering,1991, 117(10):3032-3063.
    [106] Cawley P,Adams R D.The location of defects in structures from measurements of the natural frequencies.Journal of Strain Analysis, 1979,14(2):49-57.
    [107] Salawu O S.Detection of structural damage through changes in frequency. Engineering structures,1997,19:718-723.
    [108] MASAFUMI K,SHIZUE S. Vibration of PC bridge during failure process[J].ASCE,Journal of Structural Engineering,1986,112(7):1692-1703
    [109] GEORGE H, RENE B T. Modal analysis for damage detection in structures[J]. ASCE,Journal of Structural Engineering,1991,117(10): 3042-3063.
    [110] HONG K S,CHUNG B Y.Improved method for frequency domain identifications of structures[J].Engineering Structures,1993,15(3):179-188.
    [111] JUAN R C,ANGEL C A.Structural damage identification from dynamic test data[J].ASCE,Journal of Structural Engineering,1994,119(8):2437-2450.
    [112] CHING D Y,HUANG S T.Modal parameter identification using simulated evolution [J]. AIAA Journal,1997,35(7):1204-1208.
    [113] Matin S .Williams,RichardS .G.. A parametric study of the nin-linear dynamic behaviour of an offshore jack-up unit[J]. Engineering Structures, 1999, 21: 383-394.
    [114] Jun Zhao, John T. Sensitivity study for vibrational parameters used in damage detection [J]. AS CE, Journal of Structural Engineering,1999, 125(4 ) :410-415
    [115] ZHANG D Y,FAN S C.Natural frequencies of a non-uniform beam with multiple cracks via modified fourier series[J].Journal of Sound and Vibration,2001, 242 (4):701-717.
    [116] GREGORY M, FERRY W, PAUL B. Estimating natural frequencies and mode shapes from forced response calculations[J].AIAA Journal, 2002,40(2):758-764.
    [117] LAW S S,SHI Z Y,ZHANG L M. Structural damage detection from incompleteand noisy model test data[J].ASCE,Journal of Structural Engineering,1998, 124 (11):1280-1288.
    [118] JAMES M, ZIMMERMAN M. Development of a coupled approach for structural damage detection with incomplete measurements[J].AIAA Journal, 1998,36(12):2209-2217.
    [119] CHA P D. Model updating using an incomplete set of experiment modes[J]. Journal of Sound and Vibration,2000,233(4):587-600.
    [120]王柏生,倪一清,高赞明.框架结构连接损伤识别神经网络输入参数的确定[J].振动工程学报,2000,13(1):137-142.
    [121]易伟建,刘霞.基于遗传算法的结构损伤诊断研究[J].工程力学,2001,18(2): 64-71.
    [122]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程震动,2002,22(3):82-88.
    [123]姜绍飞,党永勤,等.基于振动的结构健康监测技术[J].沈阳建筑工程学院学报,2003,19(4):275-279.
    [124]曹茂森,任青文,等.小波-分形联合的结构损伤无损振动诊断[J].实验力学,2004,19(3):359-364.
    [125]王步宇.基于分形的结构损伤检测方法[J].振动与冲击,2005,24(2):87-88.
    [126]丁幼亮,李爱群,等.大跨桥梁结构损伤诊断与安全评估的多尺度有限元模拟研究[J].地震工程与工程振动,2006,26(2):66-72.
    [127]张吉萍.板壳结构的多位置损伤诊断方研究[J].机械强度,2007,29(3):473-477.
    [128] MAU S T,WANG S. Arch dam system identification using vibration test data[J].Earthquake Engineering and Structural Dynamics,1989,18:491-505.
    [129] MOSTAFIZ R C, ROBERT L H. Dynamic performance evaluation of gate vibration[J].ASCE, Journal of Structural Engineering,1999,125(4):445-452.
    [130] DARBRE G R,DE SMET C A. Natural frequencies measured from ambient vibration response of the arch dam of Mauvoisin[J].Earthquake Engineering and Structural Dynamics,2000,29:577-586.
    [131] PROULX J, PATRICK P,JULIEN R. An experimental investigation of water level effects on the dynamic behaviour of a large arch dam[J]. Earthquake Engineering and Structural Dynamics,2001,30:1147-1166.
    [132]王山山,任青文.黄河大堤防渗墙质量无损检测方法研究[J].河海大学学报(自然科学版),2004,32(4):405-409.
    [133]王柏生,何宗成,等.混凝土大坝结构损伤检测振动法的可行性[J].建筑科学与工程学报,2005,22(2):51-56.
    [134]李松辉,练继建.基于支持向量机及模态参数识别的导墙结构损伤诊断研究[J].水利学报,2008,39(6):652-657.
    [135]常建平,李海林.随机信号分析[M].北京:科学出版社,2006.
    [136]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [137]李彩霞.数字滤波器的设计技术[D].黑龙江:哈尔滨工程大学,2007.
    [138]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998.
    [139]刘贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1995.
    [140]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995.
    [141]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西安:西北工业大学出版社,2006.
    [142]陈果.一种转子故障信号的小波降噪新方法[J].振动工程学报,2007,20(3): 287-290.
    [143]林椹尠,宋国乡,薛文.图像的几种小波去噪方法的比较与改进[J].西安电子科技大学学报,2004,31(4):626-629.
    [144]邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报,2000,28(9):78-84.
    [145] Schuster A.On the Investigation of Hidden Periodicities with Application to a Supposed 26Day Period of Meteorological Phenomena, Terr. Mag.,1898, 3(1):13-41
    [146] Yule G.U. On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers, Philos. Trans. R. Soc. London, ser. A, 1927,226(6): 267-298.
    [147] Walker G. On Periodicity in Series of Related Terms, Proc. R. Soc. London, ser.A, 1931,131: 518-532.
    [148] Wiener N. Generalized Harmonic Analysis, Acta Math.,1930,55:117~258
    [149] Tukey J. W. The Sampling Theory of Power Spectrum Estimates, J. Cycle Res. , 1957, 6: 31-52.
    [150] Bartlett M. S. Smoothing Periodograms from Time Series with Continuous Spectra, Nature, London, 1948, 161(5): 686-687.
    [151] Levinson N. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction, J. Math. Phys. , 1947, 25: 261-278.
    [152] Burg J. P. ,Maximum Entropy Spectral Analysis, Proc. 37th Meeting of Society Exploration Geophysicists, Oklahoma City, 1967.
    [153]曹树谦,张文德,萧龙翔.振动结构模态分析-理论、试验与应用[M].天津:天津大学出版社,2000.
    [154]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [155]张莲,胡晓倩,等.现代控制理论[M].清华大学出版社,2008.
    [156]张辉东,周颖,练继建.一种水电厂房振动模态参数识别方法[J].振动与冲击2007,26(5):15-118.
    [157] Prasenjit Mohanty,Daniel J. Rixen.Modified ERA method for operational modal analysis in the presence of harmonic excitations[J].mechanical Systems and Processing,2006,20:114-130.
    [158]樊江玲,张志谊,华宏星.从响应信号辨识斜拉桥模型的模态参数[J].振动与冲击2004,23(4):91-94.
    [159]杨和振,李华军,黄维平.海洋平台结构环境激励的试验模态分析[J].振动与冲击2005,24(2):129-132.
    [160]李德葆,陆秋海.试验模态分析及其应用[M].北京:科学出版社,2001.
    [161]张笑华,任伟新,禹丹江.结构模态参数识别的随机子空间法[J].福州大学学报(自然科学版),2005,33(10):46-49.
    [162]王安丽,史志富,张安.基于熵的空中目标识别模型及应用[J].火力与指挥控制,2005,30(2):110-112.
    [163]杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究[J].西北工业大学学报,2001,19(3):368-371.
    [164]孙增寿.基于小波的土木工程结构损伤识别方法研究[D].福州大学,2006.
    [165]常军,张启伟,孙利民.基于随机子空间结合稳定图的拱桥模态参数识别方法[J].建筑科学与工程学报,2007,24(1):21-25.
    [166] Thomson W.T.Theory of Vibration With Applications[M].Prentice-hall,1981.
    [167]智浩,文祥荣,缪龙休,等.动态荷载的频域识别法[J].北方交通大学学报,2000,24(14):5-10.
    [168]刘昉.水流脉动壁压特性及其相似律研究[D] .天津:天津大学,2007.
    [169]马福恒,顾冲时,等.青铜峡大坝河西下导墙变形性态分析[J].大坝与全,1998,(4):44-49.
    [170] Berryhill,B.H.Experience with prototype energy dissipater [J]. ASCE, Hydr, Divi, May, 1963.
    [171] King,D.L. Hydraulic model studies of the modified outlet works stilling basin,Navajo Dam [R].Bureau of Reclamation,HYD,1967.
    [172] H.T.Falvey, Hydraulic Model Studies of the Modified Outlet Works Stilling Basin Navajo Dam Cororado River Storage Project New Mexico [R]. Report NO.hyd-573,Hydraulics Branch Division of Research,office of chief engineering,Denver Colorado,June 15,1967.
    [173]Л.Π.连佳叶夫,等.高坝溢洪道隔墩水流动力作用的计算[C].高速水流译文集,水利水电出版社,1979.
    [174]曹羡平,张云飞,等.大化水电站溢流坝闸墩振动测试报告[R].北京:中国水利水电科学研究院抗震所,1985.
    [175]苑希民.高水头大流量泄流振动仿真研究[D].天津:天津大学,1996.
    [176]章继光,刘恭忍.轻型弧形钢闸门事故分析研究[J].水力发电学报,1992,38(3): 49-57.
    [177]黄正道,唐平.青铜峡水电站大坝安全定期检查与补强消缺[J].水力电,1999,(8):48-50.
    [178]李建中,宁利中.高速水力学[M].西北工业大学出版社,1994.
    [179]练继建,崔广涛,等.导墙结构的流激振动研究[J].水利学报,1998,(11):33-37.
    [180]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2006.
    [181]刘朝勇,郑世杰,王晓雪.基于径向基函数神经网络的编织复合材料结构脱层损伤监测研究[J].振动与冲击,2007,26(1):61-64.
    [182]姜静清,宋初一,刘娜仁,等. RBF神经网络的训练方法及分析[J].内蒙古民族大学学报(自然科学版),2003,18(4):301-303.
    [183]饶文碧,吴代华.RBF神经网络及其在结构损伤识别中的应用研究[J].固体力学学报,2002,23(4):477-481.
    [184]姜绍飞.基于神经网络的结构优化与损伤检测[M].北京:科学出版社,2002.