灯泡贯流式水电站厂房结构振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国具有丰富的低水头水力资源,且大多分布在中东部对电能需求高的经济发达地区。随着我国高水头水力资源的大力开发利用,可供开发的高水头水力资源所剩不多,因此低水头水力资源的开发日益受到人们的重视。理论与实践证明,贯流式水轮机组是开发低水头水电站最为适合的机组。贯流式水电站厂房是河床式厂房的一种,本身既是发电建筑物,又是挡水建筑物,因此厂房结构的稳定性十分重要。结构与机组的耦联振动问题也一直是研究的重点,水力因素又是非常重要的振源,因此研究水流与结构的相互作用非常有必要。
     本文以某贯流式水电站厂房结构为研究对象,利用三维有限元软件ANSYS建立了厂房结构模型,分析了水体对结构自振特性的影响,对结构在静力荷载和动力荷载作用下的受力情况进行了分析。主要研究内容如下:
     (1)在水电站厂房结构自振特性的计算中,计算了结构的干模态和湿模态。在湿模态计算中,对流道充水、溢流面充水和两者均过水三种工况分别进行了计算。计算中,首先采用流固耦合的方法,根据流固耦合方法计算的数值和振型图,利用附加质量法不断试算,直到两种方法所得频率值相差不多且振型相同时为止,得到适用于贯流式水电站流道的附加质量公式。
     (2)根据计算的厂房结构的自振特性,对引起水电站厂房结构振动的振源进行分析,得到影响厂房结构振动的主要振源。根据规范,对该厂房结构进行共振校核。
     (3)对三种工况下的8个剖面进行静力计算,对各个部位的应力情况进行分析。考虑地震对水电站结构的影响,并对这三种工况下8个剖面进行地震响应谱分析,为反映实际情况,将谱分析结果和静力结果进行叠加,分析各个剖面的应力情况。
     (4)对贯流式机组支撑结构进行谐响应分析。将基础荷载看作是简谐荷载,计算结构在一定频率范围和额定转频、飞逸转频下的位移响应,得到结构主要受力部位的频率-幅值曲线,并对受力情况做研究分析。
China has a lot of low-head hydropower resources , and most of them are in the eastern part of the high energy demand in economically developed areas. With the rapid exploitation of high-head hydropower resources in China, there are seldom high-head hydropower resources left to be developed, so people have pay an increasing attention on the development of low-head hydropower resources. Theory and practice have proved that tubular turbine is the most suitable units for the development of low-head hydropower. Bulb turbine hydropower station is one type of run-of-river power plants, and the building itself is not only power building but also retaining structures, therefore structural stability of the plant is very important. Structure and unit coupled vibration problem has been the focus of the study, besides, water is also very important factors in the local oscillator, so it is necessary to study the interaction of flow and structure.
     Therefore, in this paper, the study is based on a bulb turbine hydropower station, uses ANSYS which is three-dimensional finite element software to build the model of the station, analysis the influence of water on structural vibration characteristics, and analysis the stress condition of the structure under static and dynamic loads. And the main studies are as follows:
     (1) In the calculation of the vibration characteristics of the hydropower plant structure, the dry modal and wetting modal is calculated. In the wetting mode calculation, three conditions are calculated, flow channel water-filled, spillway over the water and both of them with water. According to the fluid-solid coupling method to calculate the values, and based on the results and shapes, using the mass added method to calculate the modal again and again, and do not stop the simulation until two methods income similar frequency value and the same vibration mode shape, and then get the mass added formula which is suitable for the bulb turbine hydropower station.
     (2) According to the calculation of the vibration characteristics of plant structures, analysis the vibration sources which is lead to the vibration of the hydropower station, and then get the main vibration source. According to the standard, check the resonance of the hydropower station.
     (3) This paper calculates the static of the structure with eight sections of three condition, and analysis the press condition of these sections. Considering the influence of earthquake to the hydropower station, calculates the spectrum of the three condition with eight sections. To reflect the actual situation, overlay the spectral analysis results and the results of static, and then analysis the stress of every section.
     (4) Calculates the structural support harmonic of the tubular turbine. The foundation loads is regarded as the harmonic loads, and calculates the amplitude when the structure is under a certain frequency , specified frequency and fly to escape frequency, and get the frequency - amplitude curve of the main parts of the force structure, and then study on the stress conditions.
引文
[1]田树棠,贯流式水轮发电机组实用技术——设计.施工安装.运行检修(上册),北京:中国水利水电出版社,2010
    [2]桥巩水电站分公司、河海大学,特大型灯泡贯流式电站工程实践,北京:中国水利水电出版社,2011
    [3]中水珠江规划勘测设计有限公司,灯泡贯流式水电站,北京:中国水利水电出版社,2009
    [4]沙锡林,贯流式水电站,北京:中国水利水电出版社,1999
    [5]马震岳,董毓新,水电站机组及厂房振动的研究与治理,北京:中国水利水电出版社,2007
    [6]王泉龙,浅谈水轮机振动的研究,大机电技术,2001,(7):12~14
    [7]谷兆棋,国外五座特大型水电站介绍,北京:清华大学出版社,1996
    [8]发生在俄罗斯水电集团有限股份责任公司萨扬-舒申斯克水电站分公司的事故原因技术调查报告,俄罗斯:2009.08
    [9]练继建,王海军,秦亮,水电站厂房结构研究,北京:中国水利水电出版社, 2007
    [10]钟媛,GDO03-WZ-80轴伸贯流式机组的振动处理方法,水力发电,1989,(1):56
    [11]何振平,王俊娟,于桥水电站机组振动测试,水电站机电技术,1989,(2):33~37
    [12]董海强,陈炼红,都平电厂机组振动情况的几点分析,小水电,2005,(4):73~74
    [13]孙旭为,灯泡贯流式水轮机水力振动的形成及其影响,电站系统工程,2006,(5):58~60
    [14]刘信康,伊拉克SADDM水坝一号机导叶事故情况介绍,水电站机电技术,1993,增刊
    [15]曹伟,张运良,马震岳等,厂顶溢流式水电站厂房振动分析,水利学报,2007,38(9):1090~1095
    [16]何国任,贯流式机组的国内外发展概况,水电站机电技术,1993,增刊:58~65
    [17]崔广涛,练继建,彭新民等,水流动力荷载与流固相互作用,北京:中国水利水电出版社,1999
    [18]马震岳,董毓新,水轮发电机组动力学,大连:大连理工大学出版社,2003
    [19]董毓新,李彦硕,水电站建筑物结构分析,大连:大连理工大学出版社,1995
    [20]练继建,黄河李家峡水电站双排机组真机试验研究,天津:天津大学,2004
    [21]练继建,黄河青铜峡水电站厂房结构动力测试与分析研究报告,天津:天津大学,2006
    [22]练继建,三峡电站初期运行厂房结构振动观测分析与运行优化研究,天津:天津大学,2006
    [23]练继建,二滩厂房和机组振动测试分析与运行优化研究报告,天津:天津大学,2010.05
    [24] Rahman M F, Hotchkiss A. Analysis of a Bulb Generator Structure. Water Power and Dam Construction,1982(7)
    [25] Wang Z X, et al. Finite Element Analysis for Static Stress of a Large Bulb Turbine. International Symposium of Large Hydraulic Machinery and Associated Equipments, Beijing,China,1989
    [26]徐云明,陈尧隆,司政等,某灯泡贯流式水电站厂房应力场三维有限元分析,西北水力发电,2005,21(4):22~25
    [27]王霄,卢向丽,贯流式水电站厂房三维有限元静动力分析,红水河,2006,25(1):53~57
    [28]李永新,某灯泡贯流式水电站厂房三维有限元分析,红水河,2010,29(3):36~39
    [29]季勇志,贯流式水轮机管形座强度分析与优化设计:[硕士学位论文],河北工业大学,2006
    [30]董云峰,曲兴田,李志和,贯流水电站混凝土基础与水轮机支承座耦合刚强度分析,吉林建筑工程学院学报,2009,26(4):21~23
    [31]苏礼邦,刘云贺,李守义,灯泡贯流式水电站厂房坝段的抗震分析,西北农林科技大学学报(自然科学版),2007,35(7):202~206
    [32]板田昌良,大型灯泡式水轮机的振动分析技术,张明译,东方电机技术参考资料,1991,(12):32~38
    [33]韦冰,马骝滩水电厂1号机组振动与噪音分析,广西水利水电,2009,(2):39~40
    [34]何伯森,庄良松,贯流式机组水电站厂房整体结构动力分析,天津大学学报,1990,(2):105~113
    [35]邢景棠,周盛,崔尔杰,流固耦合力学概述3,力学进展,1997,27(1):19~38
    [36] Zienkiewicz O C, Bettess P. Fluid2 structure dynamic interaction and wave forces, an introduction to numerical treatment. Int. J. N um. M eth. Engrg., 13, 1 (1978):1~16
    [37] Li Guifen, Xie Shenzong, Lin Qinhua. Research on hydroelastic vibration on hydraulic structures in China. In: [ 131 ]
    [38]张辉东,周颖,大型水电站厂房结构流固耦合振动特性研究,水力发电学报2007,26(5):135~138
    [39]邵岩,赵兰浩,李同春,考虑流固耦合的渡槽动力计算方法综述,人民黄河,2005,27(11):5~56
    [40]李鸿吉,模糊数学基础及实用算法,北京:科学出版社,2005:210~217
    [41]张立翔,杨柯,流体结构互动理论及其应用,北京:科学出版社,2004
    [42]居荣初,曾心传,弹性结构与液体的耦联振动理论,北京:地震出版社,1983:162~164
    [43]中国水利水电科学研究院,DL 5073-2000,水工建筑物抗震设计规范,北京:中国电力出版社,2000
    [44]阳武,黄耀英,混凝土坝自振频率研究分析,红水河,2004,23(1):35~37
    [45]徐汉忠,吴旭光,马贞信,计算动水压力附加质量的韦氏公式的扩充,南京:河海大学学报,1997,25(5):120~123
    [46]张燎军,闸涵结构的抗震分析与设计,哈尔滨:世界地震工程,2003,19(2):67~71
    [47]宫圣维,码头和船闸建筑物的抗震,北京:人民交通出版社,1993:185~187
    [48] Craig R R Jr,结构动力学,常岭,李振邦译,北京:人民交通出版社,1981
    [49]孙万泉,水电站厂房结构振动分析及动态识别:[博士学位论文],大连:大连理工大学,2004
    [50]练继建,王海军,王日宣,河床式水电站厂房结构动力特性研究,水利水电技术,2004,35(8):37~40
    [51]舒扬棨,王日宣,水电站厂房动力分析,北京:水利电力出版社,1987:I,l7~19,122~l35
    [52]商舸,反击式水轮机尾水管低频压力波动参数计算方法,水利水电技术,1986:15~20
    [53]王海军,水电站厂房组合结构与动态分析:[博士学位论文],天津:天津大学,2005
    [54]陈厚群,侯顺载,杨大伟,地震条件下拱坝库水相互作用试验研究,水利学报,1989,(7):26~28
    [55]王海军,练继建,安刚等,水电站双排式机组厂房现场测试分析,水力发电学报,2006,25(6):55~60
    [56]汪丽川,浅析岩滩电厂厂房振动现象,广西电力技术,1996(3):10~16
    [57]马震岳,沈能成,路振刚等,红石水电站厂房的机组诱发振动及抗振加固研究,水力发电学报,2002(1):28~36
    [58]马震岳,沈能成,王溢波等,红石水电站机组振动及诱发厂坝振动分析,水力发电,2000(9):52~54
    [59]杜晓京,地下厂房机组支撑结构振动观察与分析,水力发电,1999(2):27~30
    [60]张波,水电站厂房机墩组合结构振动分析:[硕士学位论文],大连:大连理工大学,2009