新型冲压推进系统的波系结构及其MHD控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型冲压推进系统,如超燃冲压发动机、斜爆轰波发动机与冲压加速器等,其流场结构非常复杂,且具有高瞬态特性。由于目前的相关研究还不充分,因而无法达到工程应用的要求,一系列问题尚需解决,如扩大可操控的飞行马赫数范围、强激波对推进系统进气道的影响等。另一方面,高速流场中,强激波与爆轰波导致研究对象周围的气流电离,使得应用磁流体(MHD)技术对强激波与爆轰波的控制和优化流场结构变成可能,相关研究仍处于初级阶段。本文基于带化学反应与MHD控制源项的Euler方程,分别采用混合Roe/HLL及WENO计算格式,利用自适应加密笛卡尔网格与沉浸边界法对新型冲压推进系统的波系结构及其MHD控制机理进行了研究。
     首先对管内爆轰波的诱导过程进行数值模拟,研究了爆轰波的诱导特性,验证了所采用数值方法的有效性,并揭示了弱激波绕射方块障碍物并在障碍物后方碰撞加速诱导爆轰波的机理。
     数值模拟了超燃冲压发动机双楔形进气道流场及其MHD控制过程,计算结果表明应用洛伦兹力可控制进气道上的斜激波,洛伦兹力的方向对MHD控制的效果具有重要影响,并且具有合适大小和方向的洛伦兹力可以同时将不同超声速来流情况下的斜激波恢复到设计情况,但其流场情况会稍有不同。
     通过对单、双楔斜爆轰波流场结构及其MHD控制过程的数值研究,表明,斜爆轰波可分为稳定与不稳定两种情况。对于稳定斜爆轰波,其波阵面位置基本固定,而不稳定斜爆轰波则相反。洛伦兹力可以将不同马赫数条件下的稳定斜爆轰波恢复到其设计位置,但是,对于双楔,布置在第一道斜劈表面的洛伦兹力无法有效控制第二道斜激波,当后楔倾角过大时,斜爆轰波流场将失稳。洛伦兹力可使不稳定斜爆轰波趋于稳定,却很难控制不稳定斜爆轰波恢复到设计位置,因此MHD控制的应用主要针对稳定斜爆轰波阵面。
     采用高精度WENO计算格式数值模拟了冲压加速器冷态实验。通过与相关实验结果对比,表明计算方法很好地描述了冲压加速器内部流场和激波结构,验证了WENO格式捕捉高速流场结构的有效性,并完整地呈现了弹丸周围激波的形成与发展过程及相关参数的变化情况,可以对冲压加速器冷态实验给予一定的指导与借鉴,并对接下来的热壅塞与超爆轰模态冲压加速器的研究提供指导。
     数值研究了热壅塞模态冲压加速器内的流场情况,研究了预混气体反应速率、弹丸形状与速度对冲压加速器工作状态与性能的影响。结果表明只有速度与反应速率相匹配,才能形成热壅塞模态流场,合理的弹丸形状可以使来流速度与预混气体反应速率相匹配的范围扩大。而且,当流场处于热壅塞模态,火焰阵面可以稳定在船型弹丸肩部后方,并产生最大推力;当火焰阵面稳定在弹丸底部时,推力受到尾涡脱落的影响产生脉动。
     进一步研究了超爆轰模态,冲压加速器内的流场情况,发现在一定的马赫数范围内,斜爆轰波可驻定在弹丸肩部或头部,且都能产生推力。对于典型的超爆轰模态(斜爆轰波驻定在弹肩),反应速率增加时,弹丸推力增大。对来流马赫数过低或过高的流场情况,采用洛伦兹力可扩大弹丸在典型超爆轰模态运行的马赫数范围,发现马赫数过低时,洛伦兹力可加速弹丸头部气流,使斜爆轰波驻定在弹肩,从而形成典型超爆轰模态。当马赫数为某定值时,若无洛伦兹力控制,则因涡的产生最终无法形成超爆轰模态,而洛伦兹力则可使斜爆轰波驻定在弹丸前楔,对弹丸产生推力,并使流场保持稳定。
For the new types of ram propulsion systems, such as scramjet, oblique detonation wave engine and ram accelerator etc., their flow fields are very complex and have high transient features, the investigations of such fields are still inadequate to satisfy the practical requirement, a series of problems need to be solved, such as to expand their operation ranges to a wide range of Mach numbers and the infulences of high intensity shock waves influences etc. On the other hand, the strong shock waves or detonation waves of such propulsion systems can lead to a significant ionization of the air flow, which allows us to use the MHD (Magnetohydrodyamics) for the control and optimization of the flowfield. In this dissertation, based on the Euler equations with the chemical and MHD source terms, with the employ of the hybrid Roe/HLL scheme, Adaptive Mesh Refinement (AMR) Cartesian grid system and Immersed Boundary Method (IBM) to investigate the wave and flow structures of the new types of ram propulsion systems and their MHD control.
     Firstly, through the simulation of the detonation initiation accelerated by the collision of the diffraction shock waves, the numerical methods were verified, and our results revealed the mechanism that the wake shock waves diffract behind the square obstacles and collide to accelerate the induction of the detonation waves.
     The process of the MHD control of the double wedged inlet flowfield of a typical scramjet was also simulated. The numerical results show that, with the application of Lorentz force at the forebody of the first ramp, the lcoations of two oblique shock wave fronts at the inlet can be controlled, and the directions of the Lorentz force have significant effect on the MHD control process, moreover, the two oblique shock waves at off-design conditions can be restored to the desired location with proper magnitude and direction of Lorentz force, but the flowfield structures are slightly different from the desired case.
     The MHD control of the oblique detonation wave (ODW) induced by both single and double wedges has been investigated, the numerical results showed that MHD control can also return the location of a stable ODW front to its designed location. However, with the MHD control located on the surface of the first ramp, the second shock wave that generated at the corner of the double wedge could not be controlled. When the angle of the second ramp is large enough, the stable ODW becomes unstable and it cannot be manipulated with the MHD control. It is hard for the MHD control returning the unstable ODW front, but the front turns to be stable with proper MHD control.
     With the high order WENO scheme, we simulated the non-reactive flow field of a typical ram accelerator. The wake flow, including the shock wave structures, have been shown clearly, which agree well with corresponding experimental results. It is validated that WENO scheme is suitable for capturing the hypersonic flowfield and shock waves inside the ram accelerator. The generation and development of shock waves and relative parameters around the projectile have been presented, which can be used as a guide and reference for the cold launch experiments of ram accelerator.
     For the thermally choked ram accelerators, the influences of the gas reaction rate, the velocity and the projectile shapes on the states and performances of ram accelerator have been investigated numerically. It has been shown that the thermally choked mode occurs only when the variation of the reaction rate and velocity within certain limit, and a proper projectile shape can extend this limit. Furthermore, in a thermally choked mode, the flame front can be stable just behind the shoulder of a boat-shaped projectile, which generates the largest stable thrust. While the thrust generated with the flame stable at the projectile base vibrates due to the vortex shedding.
     Lastly, we investigated the flow field of the superdetonative mode of the ram accelerators, we found that with the increase of the velocity, there would be ODWs appeared at the shoulder and the head of the projectile, respectively, which can accelerate the projectile. For a typical superdetonative mode, the higher the reaction rate is, the larger its thrust becomes. The Lorentz force can extend the velocity area of the typical superdetonative mode from the cases that the velocity is too low or too high. As the velocity is too low, the Lorents force accelerates the flow of the projectile head, which makes the ODW staleb at the rear shoulder, however, for a certain incoming velocity, without the action of Lorentz force, the drag will be generated due to the appearance of vortexes, however, with the use of Lorentz force the stable ODW can be induced at the front wedge of projectile, and results to the generation of both thrust and stable flow.
引文
[1]刘陵,刘敬华,张榛,等.超音速燃烧与超音速冲压发动机[M].西安:西北工业大学出版社,1993年1月.
    [2]陈光.航空宇航推进理论与技术[M].重庆:重庆出版社,2001年1月.
    [3]金志明.高速推进内弹道学[M].北京:国防工业出版社,2001年.
    [4]B·B·鲍伊柯夫.航空发动机[M].国防工业出版社,1955年12月.
    [5]廉筱纯.航空发动机原理[M].西北工业大学出版社,2005年6月.
    [6]何至林,高峰,金楠楠.超燃冲压发动机进气道研究概述[J].飞航导弹,2010(4):82-87.
    [7]余勇.超燃冲压发动机燃烧室工作过程理论和试验研究[D].国防科技大学,2004年.
    [8]曲亮.超燃冲压发动机燃烧模态分类技术研究[D].哈尔滨工业大学,2008年6月.
    [9]胡晓煜.国外超燃冲压发动机技术的发展[EB/OL].[2013-1-22].http://news.ccaonline.cn/Article/2004-04-29/33741_1.shtml.
    [10]王爱峰,赵伟.斜爆轰与斜爆轰推进系统的研究进展[C].//第十三届全国激波与激波管会议论文集,湖南长沙:国防科技大学,2008.
    [11]蔡国飙,徐大军.高超声速飞行器技术[M].科学出版社,2012.
    [12]牛文,李文杰.X-51A三飞两败美国高超声速路向何方[J].国防科技工业,2012(9):68-69.
    [13]刘桐林.俄罗斯高超声速技术飞行试验计划[J].飞航导弹,2000,(4):23-30.
    [14]李大光.世界各国高超声速武器发展现状[J].国防技术基础,2007(5):45-48.
    [15]刘祥静,叶蕾.法国的LEA飞行试验计划[J].飞航导弹,2008(12):5-9.
    [16]刘陵,张榛.超声速燃烧冲压发动机最佳设计参数[J].推进技术,199,9(1):73-78.
    [17]刘陵,张榛,牛海发,刘敬华.超声速燃烧室燃烧效率数学模型及气流状态参数的计算[J].推进技术,1989,10(2):1-7.
    [18]Hertzberg, A, Bruckner, etal. Ram Accelerator:A New Chemical Method for Accelerating Projectiles to Ultrahigh Velocities[J]. AIAA Journal,1988,26(2):195-203.
    [19]Knowlen C, Joseph B, Bruckner A. Ram Accelerator as an Impulsive Space Launcher: Assessment of Technical Risk[R]. Dallas TX:International Space Development Conference,2007.
    [20]Yatsufusa T, Taki S. Visualization of burning flow around a ram accelerator projectile by coaxial simultaneous shadow/direct photography [J]. Shock Waves, 2002(12):235-240.
    [21]金志明.高速推进内弹道学[M].国防工业出版社,2001年9月.
    [22]Bruckner A P, Bogdanoff D W, Knowlen C, et al. Investigation of gasdynamic phenomena associated with the ram accelerator concept[J]. AIAA,1987,1327.
    [23]Kull A E, Burnham E A, Knowlen C, et al. Experimental studies of superdetonative ram accelerator modes [J]. AIAA,1989,2632.
    [24]Hertzberg A, Bruckner A P, Knowlen C. Experimental investigation of ram accelerator propulsion modes[J]. Shock Waves,1991,1(1):17-25.
    [25]Bengherbia T, Yao Y, Bauer P, et al. Numerical investigation of thermally choked ram accelerator in sub-detonative Regime[J]. AIAA 2009,2009,635.
    [26]Bengherbia T, Yao Y, Bauer P, et al. Thrust prediction in thermally choked ram accelerator[J]. AIAA2010-1129,2010.
    [27]张志成.冲压加速器概念性研究[R].气动中心超高声速所技术报告,1992.
    [28]柳森,简和祥,白智勇,平新红,部绍清.37mm冲压加速器热发射试验初步结果[J].流体力学实验与测量,1999,13(3):32-35.
    [29]柳森,简和祥白智勇,平新红,部绍清.37mm冲压加速器试验和计算[J].力学学报,1999,31(4):450-455.
    [30]柳森,白智勇,简和祥.冲压加速器的冷发射试验[J].流体力学实验与测量,1997,11(4):8-12.
    [31]周春红,翁春生,袁亚雄.TVD格式在冲压加速器无粘非反应流中的应用[J].火炮发射与控制学报,1999,2:50-55.
    [32]张国强,金志明,翁春生.冲压加速机理数值研究[J].弹道学报,2000,12(3):27-31.
    [33]翁春生,金志明,袁亚雄.冲压加速器弹丸发射系统非反应流数值模拟[J].爆炸与冲击,1997,17(2):119-126.
    [34]张国强,金志明,翁春生.冲压加速器燃烧流场数值模拟[J].弹道学报,2001,13(3):38-41.
    [35]邹瑞荣,袁亚雄,翁春生.冲压加速器预混燃气密闭爆发器实验研究[J].弹道学报,2002,14(4):81-83.
    [36]陈坚强,张涵信,高树椿.冲压加速器燃烧的数值模拟[J].空气动力学学报,1998,16(3):297-303.
    [37]刘君.冲压加速器非平衡流动数值模拟[J].弹道学报,2002,14(4):31-35.
    [38]Van Wie D M, Nedungadi A. Plasma aerodynamic flow control for hypersonic inlets [R]. AIAA-2004-4129,2004.
    [39]田正雨.高超声速流动的磁流体力学控制数值模拟研究[D].国防科学技术大学,2008年4月.
    [40]Kopchenov V, Vatazhin A, Gouskov O. Estimation of possibility of use of MHD control in scramjet[R]. AIAA-99-4971,1999.
    [41]Brichkin D I, Kuranov A L, Sheikin E G. The potentialities of MHD control for improving scramjet performance[R]. AIAA-99-4969,1999.
    [42]Shang J S, Surzhikov S T, Kimmel R, et al. Mechanisms of plasma actuators for hypersonic flow control[R]. Progress in Aerospace Science 2005,41:642-668.
    [43]Macheret S O, Shneider M N, Miles R B. External supersonic flow and scramjet inlet control by MHD with electron beam ionization[R]. AIAA-2001-0492,2001.
    [44]Miles R B, Brown G L, Lempert W R, et al. Radiatively driven hypersonic wind tunnel[J]. AIAA Journal,1995,33(8):1463-1470.
    [45]Staats G E, McGregor W K, Sprouse J A. Magnetogasdynamic experiments conducted in a supersonic plasma ARC tunnel[C]. AIAA Paper,2000-2566.
    [46]Meloney E D, Myrabo L N, Nagamatsu H T, et al. Experimental investigation of a 2D MHD slipstream accelerator:Progress report[C]. AAIA Paper,2001-3799.
    [47]Kimmel R, Hayes J, Tyler C. Performance of a low-density hypersonic magnetoaerodynamic facility[C].2003.
    [48]McMullan R J, Lindsey M F, Adamovich IV, et al. Experimental validation of 3D magnetogasdynamic compressible Navier-Stokes solver[C]. AIAA Paper,2004-2269a.
    [49]Menart J, Shang J, Atzbach C, et al. Total drag and lift measurements in a mach 5 flow affected by a plasma discharge and a magnetic field[C]. AIAA Paper,2005-0947.
    [50]Shang J S, Kimmel R, Hayes J, et al. Hypersonic Experimental Facility for Magnetoaerodynamic Interactions[J]. Journal of Spacecraft and Rockets,2005, 42(5):780-789.
    [51]Shneider M N, Macheret S O, Miles R B. Comparative Analysis of MHD and Plasma Methods of Scramjet Inlet Control[R]. AIAA,2003-170.
    [52]Meyer R, Chintala N, Bystricky B, et al. Lorentz force effect on a supersonic ionized boundary layer[C]//42 nd AIAA Aerospace Sciences Meeting and Exhibit.2004.
    [53]Shneider M N, Macheret S O. Modeling Plasma and MHD Effects in Hypersonic Propulsion Flow path[R]. AIAA,2005-5051.
    [54]Nishihara M, Jiang N, Rich JW. Low-temperature Supersonic Boundary Layer Control Using Repetitively Pulsed MHD Forcing [J]. Physics of Fluids,2005,17:1-12.
    [55]Alferov V I, Labazkin A P, Rudakova A P, et al. Teplofizika Vysokikh Temperatur[C]. Eleventh Intern. Conf. on Magnetohydrodynamics Electrical Power Generation. Beijing, China:1992:1308.
    [56]Leonov S, Valentin Bityurin, Yury Kolesnichenko. Dynamic of A Single-Electrode H F Filament in Supersonic Airflow[R]. AIAA,2001-0493.
    [57]Leonov S B, Bityurin V, Savelkin K, et al. Progress in Investigation for Plasma Control of Duct-Driven Flows [R]. AIAA,2003-0699.
    [58]Leonov S B, Firsov A A, Yarantsev D A, et al. Flow Control in Model Supersonic Inlet by Electrical Discharge[R].AIAA 2009-7367.
    [59]Bityurin V A, Baranov D S, Bocharov A N, et al. Experimental study of MHD interaction at a cylinder in hypersonic flow[C]. The 4rd Workshop on Magneto-and Plasma-Aerodynamics for Aerospace Application. Moscow,9-11 April,2002.
    [60]Bocharov A, Bityurin V, Klementeva I. Experimental and theoretical study of MHD assisted mixing and ignition in co-flow streams[C]. AIAA Paper,2002-2228.
    [61]Bityurin V A, Bocharov A, Klementeva I, et al. A study of MHD assisted mixing and combustion[C]. AIAA Paper,2003-0378.
    [62]Bobashev S V, Erofeev A V, Lapushkina T A, et al. Experiments on MHD control of attached shocks in diffuser[C]. AIAA Paper,2003-0169.
    [63]Udagawa K, Kawaguchi K, Saito S, et al. Experimental study on supersonic flow control by MHD interaction[J]. AIAA Paper,2008,4222:2008.
    [64]Takizawa Y, Matsuda A, Sato S, et al. Experiment on shock layer enhancement by electro-magnetic effect in reentry-related high-enthalpy flow[C]. AIAA Paper, 2005-4786.
    [65]Udagawa K, Kaminaga S, Asano H, et al. MHD boundary layer flow acceleration experiments[C]. AIAA Paper 2006-3233.
    [66]Borghi C A, Carraro M R, Cristofolini A, et al. Experimental investigation on the magnetohydrodynamic interaction in the shock layer on a hypersonic body[C]. AIAA Paper,2004-2265.
    [67]许振宇,李椿萱.超声速磁流体管道流动的数值模拟[J].北京航空航天大学学报,2005,31(8):893-898.
    [68]吕浩宇,李椿萱,曹德一.乘波构型飞行器磁流体进气道一体化概念设计[J].北京航空航天大学学报,2008(10):1130-1134.
    [69]吕浩宇,李椿萱,董海涛.三维超声速磁流体发生器的流动特性[J].中国科学G辑:物理学力学天文学,2009,39(3):435-445.
    [70]田正雨,张康平,潘沙,等.磁流体动力学斜激波控制数值模拟分析[J].力学季刊, 2008,29(1):72-77.
    [71]赫新,陈坚强,邓小刚.NND格式在多维理想磁流体方程组中的应用[J].空气动力学学报,2005,23(3):267-273.
    [72]李应红,吴云,宋慧敏,等.大气压等离子体流动控制实验[J].空军工程大学学报(自然科学版),2006,3.
    [73]程邦勤,李应红,李军,等.等离子体气动激励改变激波系结构实验研究[J].核聚变与等离子体物理,2009,29(2):189-192.
    [74]王江峰,伍贻兆.非结构混合网格高超声速绕流与磁场干扰数值模拟[J].计算力学学报,2007,24(1):30-34.
    [75]Pan Y, Wang J, Wu Y. Upwind scheme for ideal 2D mhd flows based on unstructured mesh[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2007, 24(1):1-7.
    [76]张炎,黄护林.磁控等离子体对收敛喷管性能的影响[J].航空动力学报,2008,23(6):1024-1030.
    [77]张康平.磁流体力学管道流动数值模拟研究[D].长沙:国防科学技术大学,2007.
    [78]陈瑞锋,魏志军,王宁飞.磁流体能量旁路超燃冲压发动机的混合和燃烧性能数值研究[J].航空动力学报,2012,27(5):999-1004.
    [79]刘顺隆.计算流体力学[M].1.哈尔滨工程大学出版社,1998.
    [80]Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics[J]. IBM Journal of Research and Development,1967,11(2):215-234.
    [81]忻孝康,刘儒勋,蒋伯诚.计算流体动力学[M].1.国防科技大学出版社,1989.
    [82]张德良.计算流体力学教程[M].高等教育出版社,2010.
    [83]Peery K M, Imlay S T. Blunt-body flow simulations[C]//AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference,24 th, Boston, MA.1988:1988.
    [84]Robinet J C, Gressier J, Casalis G, et al. Shock wave instability and the carbuncle phenomenon:same intrinsic origin?[J]. Journal of Fluid Mechanics,2000,417: 237-263.
    [85]Warnecke G. Analysis and numerics for conservation laws[M]. Springer,2005.
    [86]Harten A, Lax P D, Van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM review,1983,25(1):35-61.
    [87]Colella P, Woodward P R. The piecewise parabolic method (PPM) for gas-dynamical simulations[J]. Journal of computational physics,1984,54(1):174-201.
    [88]Arora M, Roe P L. On postshock oscillations due to shock capturing schemes in unsteady flows[J]. Journal of Computational Physics,1997,130(1):25-40.
    [89]Roberts T W. The behavior of flux difference splitting schemes near slowly moving shock waves[J]. Journal of Computational Physics,1990,90(1):141-160.
    [90]Deiterding R. Parallel adaptive simulation of multi-dimensional detonation structures[M]. dissertation, de,2003.
    [91]Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics,1994,115(1):200-212.
    [92]阎超.计算流体力学方法及应用[M].北京航空航天大学出版社,2006.
    [93]Berger M J, Colella P. Local adaptive mesh refinement for shock hydrodynamics[J]. Journal of computational Physics,1989,82(1):64-84.
    [94]Mittal R, Iaccarino G. Immersed boundary methods[J]. Annu. Rev. Fluid Mech.,2005, 37:239-261.
    [95]严传俊,范玮.燃烧学[M].2.西北工业大学出版社,2008.
    [96]Eidelman S, Grossman W. Pulsed detonation engine experimental and theoretical review[R]. AIAA,1992-3168.
    [97]Bussing T R A, Hinkey J B and Kaye L. Pulse detonation engine preliminary design considerations[R]. AIAA,1994-3220.
    [98]Pratt D T, Humphrey J W and Glenn D E. Morphology of standing oblique detonation wave[J]. Journal of Propulsion and power,1991,7(5):837-845.
    [99]Wintenberger E and Shepherd J E. The performance of steady detonation engines[R]. AIAA,2003-0714.
    [100]Valorani M, Giacinto M D and Buongiorno C. Performance prediction for oblique detonation wave engine(odwe)[J]. Acta Astronautica,2001,48(4):211-228.
    [101]Roy G D, Frolov M, Borisov A A, et al. Pulse detonation propulsion:challenges, current state and future perspective [J]. Progress in Energy and Combustion Science, 2004,30(6):545-672.
    [102]Falempin F, Bouchaud D, Forrat B, et al. Pulsed detonation engine:Possible application to low cost tactical missile and to space launcher[R]. AIAA,2001-3815.
    [103]Endo T and Fujiwara T. A Simplified analysis on a pulse detonation engine mode[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2002, 44(146):217-222.
    [104]Akbar R, Thibanlt P A, Harris P G, et al. Detonation properties of unsensitized and sensitized JP-10 and Jet-A fuels in air for pulse detonation engines [R]. AIAA, 2000-3592.
    [105]徐华舫.空气动力学基础(下册)[M].北京航空学院出版社,1987.
    [106]Chapman D L, On the rate of explosion in gases[J]. Philosophical Magazine,1899, 47:90-104.
    [107]Jouguet E. On the propagation of chemical reactions in gases[J]. Journal de Mathematiques Pures et Appliquees,1906,1:347-425.
    [108]Zel'dovich Y B. On the theory of the propagation of detonation in gaseous systems[J]. Journal of Experimental and Theoretical Physics,1940,10(1):542-568.
    [109]Von Neumann J. Collected works[Z]. ln:Taub A J (eds.). New York:Macmillan Press, 1942.
    [110]Doring W. On detonation processes in gases[J]. Annals of Physics,1943,43:421-436.
    [111]恽寿榕.一维平面定常爆轰波结构的确定[J].北京理工大学学报,2003,23(增刊):68-72.
    [112]孙锦山,朱建士.理论爆轰物理[M].北京:国防工业出版社,1995.
    [113]Fickett W, Davis W C. Detonation:theory and experiment[M]. Berkeley:University of California Press,1979.
    [114]Strehlow R A. The nature of transverse waves in detonations[J]. Astronaut. Acta,1969, 14(5):539-548.
    [115]Strehlow R A. Multi-dimensional detonation wave structure[J]. Astronautica Acta,1970, 15(5-6):345-357.
    [116]Strehlow R A, Maurer R E, and Rajan S. Transverse waves in detonations:I.Spacing in the hydrogen-oxygen system. AIAA,7:323-328,1969.
    [117]Radulescu M I, Law C K, Sharpe G J. Structure of unstable gaseous detonation waves[J]. Physics of Fluids,2005,17(9):091105-091105-1.
    [118]Austin J M. The role of instability in gaseous detonation[J].2003. Ph.D. thesis, California Institute of Technology, Pasadena, CA.
    [119]Bourlioux A, Majda A J. Theoretical and numerical structure for unstable two-dimensional detonations[J]. Combustion and Flame,1992,90(3):211-229.
    [120]王昌建,徐胜利.直管内胞格爆轰的基元反应数值研究[J].爆炸与冲击,2005,25(005):405-416.
    [121]孙晓晖,陈志华,张焕好.激波绕射碰撞加速诱导爆轰的数值研究[J].爆炸与冲击,2011,31(4):407-412.
    [122]孙晓晖,陈志华,张焕好,等.激波绕射双方块加速诱导爆轰的数值研究[J].推进技术,2011,32(2):287-291.
    [123]Bityurin V A, Bocharov A N, Lineberry J. MHD flow control in hypersonic flight[J]. AIAA Paper,2005,3225:2005.
    [124]Soloviev V R, Krivtsov V M, Konchakov A M, et al. Modeling of MHD effects in 2-D planar flow over a wedge[J]. AIAA,2002,2138:2002.
    [125]Grismer M J, Powers J M. Numerical predictions of oblique detonation stability boundaries[J]. Shock Waves,1996,6(3):147-156.11
    [126]Viguier C, Silva L F F, Desbordes D, et al. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixtures[C]//Symposium (International) on Combustion. Elsevier,1996,26(2): 3023-3031.
    [127]SUN Xiao-Hui, CHEN Zhi-Hua, ZHANG Huan-Hao. MHD Control of Oblique Detonation Waves, CHIN. PHYS. LETT.,2011,28(1):014703.
    [128]孙晓晖,陈志华,薛大文,沙莎.双楔面诱导的斜爆轰波阵面的磁流体控制,航空动力学报,2012,27(4):735-741.
    [129]Yatsufusa T, Chang X, Taki S. Experiments on flame holding position of the fin-less projectile in ram accelerator[J]. AIAA,2001-1765.
    [130]Chang X, Kanemoto H, Taki S. A ram accelerator with rectangular bore is working at Hiroshima University [C]//AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit,31 st, San Diego, CA.1995.
    [131]孙晓晖,陈志华,韩珺礼,薛大文.冲压加速器冷态流场结构研究,弹道学报,2011,23(4):70-74.
    [132]孙晓晖,陈志华,薛大文.反应速率对热壅塞冲压加速器的推力影响,燃烧科学与技术,2012,18(6):562-568.