高阻尼Zn-27Al合金阻尼特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻尼减振是以动力学和材料科学为基础的一门综合性技术,是工程结构或构件减振降噪的有效手段。为了更好地提高结构材料的阻尼减振能力,要在高阻尼结构材料的基础理论和制备工艺上实现新的突破。本文系统地介绍了Zn-27Al合金的铸造、变质和固溶时效处理工艺;详细分析了不同工艺下的微观组织结构的特点;在微观分析的基础上重点研究了Zn-27Al合金的阻尼机理;对Zn-27Al合金的力学性能和阻尼性能进行分析测定,在保证材料具有良好的综合力学性能的基础上,较大地提高合金的阻尼性能;对试验数据进行分析拟合导出反应金阻尼值与温度、频率的关系式;在研究微观机理的基础上,从微观层次首次给出定量计算合金阻尼值的近似表达式;对Zn-27Al高阻尼合金构件进行振动试验分析和有限元模态分析。本文的主要研究工作如下:
     1.基于对力学性能和阻尼性能的综合考虑,自制了Zn-27Al铸态合金,通过控制凝固参数和铸造工艺,很好地控制了铸态合金的成分和组织。对合金的凝固过程进行了深入分析,对凝固组织进行了研究。
     2.在Zn-27Al合金中加入微量钛和稀土元素进行变质处理,分析了变质后合金的微观组织结构发生的变化以及对合金的性能的影响,对各种微量元素的变质细化机理进行了研究。
     3.Zn-27Al合金经过稀土和钛变质后,进一步进行了350℃保温1小时后水淬的固溶处理,并长时间室温时效。热处理能消除合金铸造产生的非平衡网状共晶体,消除成分偏析,使组织均匀化。水淬时,冷速大,单相固溶体保留至室温,在随后的自然时效过程中,析出细粒状的α和η相,且相界面为可动非共格界面。从而能够进一步提高合金的阻尼性能。
     4.对铸态和变质固溶时效处理后的Zn-27Al合金的力学和阻尼性能进行比较,深入研究变质固溶时效后合金阻尼性能提高的微观组织影响因素。根据实验结果,研究了合金的阻尼性能对环境因素(温度、频率和振幅)的敏感性:Zn-27Al合金的阻尼性能随温度的升高而增大;随着频率的增大而减小;不随振幅的变化而变化,温度和频率对变质固溶时效后合金阻尼性能的影响更为突出。
     5.对铸态和变质固溶时效后Zn-27Al合金的阻尼值进行拟合分析,给出合
    
    第日页西南交通大学博士研究生学位论文
     金阻尼值随温度、频率变化的拟合公式,比较合金阻尼值拟合计算结果与
     试验结果,表明所给出拟合公式是合理的。并由此公式可计算出材料在工
     作温度范围内任一温度和频率下的阻尼值。
    6.Zn-27AI合金属于复相型阻尼合金,通过对Zn一27AI合金微观组织的分析
     和对合金阻尼特性的研究,提出了变质固溶时效处理提高合金阻尼的微观
     机理。zn一27AI合金的力学阻尼(内耗)是一种线性滞弹性弛豫的动滞后型
     阻尼,其耗能机制是由于晶界和相界的粘滞性滑动,以及Q相的局部微塑
     性变形。因而,合金的内耗值大小主要决定于界面的可动性及可动界面的
     面积。上述微观机理充分揭示了变质固溶时效后的Zn一27AI合金由于组织
     细化及非共格可动界面的增多,使合金阻尼大大提高的原因。
    7.采用透射电镜,在研究高阻尼Zn一27AI合金微观机理的基础上,从微观
     层次首次给出定量计算材料内耗值的近似表达式,与实验结果的比较表明
     了该表达式的适用性。
    8.论文进行了不同材料简单结构件的减振性能研究。把铸态、变质固溶时效
     Zn一27AI合金以及常用普通A3钢加工成简单结构件,从有限元分析和试验测
     试两个方面对比研究了三种材料结构件在实际振动条件下的减振性,对此分
     析表明:(l)用Zn一27AI合金加工成结构件,其减振性能远远大于工程上常用
     的普通A3钢。经过变质固溶时效处理后的Zn一27AI合金结构件,其结构件减
     振性能更好。(2)用实验测试和有限元分析两种方法对不同材料结构件进行
     减振分析,二者所得结构件的固有基频值与阻尼值基本是一致的。说明通过
     计算模型对阻尼材料结构件进行减振分析是可行的。(3)通过对三种材料阻
     尼值与相应材料结构件振动试验所测阻尼值比较,说明高阻尼材料的材料阻
     尼性能在结构阻尼中占重要比例。因此采用高阻尼材料以及提高材料的阻尼
     性能对提高结构减振性有重要意义。
    关键词:高阻尼Zn一27AI合金;铸造;变质;固溶时效;内耗;阻尼机理;
    结构件:模态分析
Vibration damping which is an effective application in vibration and noise control is a field of comprehensive technology on the basis of dynamics and material science. In order to improve the capability of vibration damping of structure materials, innovation must be carried out from the aspect of basic theory and preparation techniques. The techniques of founding, modification, solution heat treatment and ageing are systematically introduced in this paper. Microstructures of Zn-27A1 alloy are analyzed. The damping mechanism of Zn-27A1 alloy was studied in detail. The mechanics and damping properties of Zn-27A1 alloys were mensurated, and the damping properties of Zn-27A1 alloys got a farthest advancement on the basis of having good mechanics properties. Based on the test-data, the linear fitting expression for the damping of alloy is obtained, which shows the relationship between the damping properties of alloy, the temperature and the frequency. On the basis of this study of the damping mechanism, the approximate expression of quantitatively calculating the damping has been derived for the first time. The vibration test and modal analysis method were used to analyze the structures made of Zn-27A1 damping alloy. The main work is as follows:1. By considering both compositive mechanical properties and damping properties, the foundry Zn-27A1 alloy was made, the component and microstructure of the foundry alloy were controlled by controlling the solidification parameters and casting techniques. The solidification process and microstructures were studied.2.The alloy was modified by adding trace Ti and rare earth(RE) elements, the microstructure and properties of Zn-27A1 alloy modified by Ti and RE were analyzed. The modification micromechanism was studied.3. The Zn-27A1 cast-alloy modified by Ti and Re was solution heat treated (350 X lh)and then aged naturally. The net structure after un-equilibrium solidification and component asymmetry can be eliminated by heat treatment. The microstructure of alloy was refined by solution treatment and natural ageing. The single-phase structure kept to room temperature for water quench and speediness cooling . The
    
    single-phase structure would transit granular a and n phases, and their phase interface are incoherent. The above made the damping properties of Zn-27A1 alloy getting advancement.4. The mechanical and damping properties of the foundry Zn-27A1 alloys and the Zn-27A1 alloys after modificition, solution heat treatment and ageing were Compared. The effect of microstructure to the damping properties of alloy was studied. The damping properties of Zn-27A1 alloy under various working conditions such as temperature, amplitude and frequency were studied. The research results show that: the damping properties of alloy are increased with increasing temperature, increased with the reduced frequency, and was independent of amplitude. The effect of the temperature and frequency on the damping properties of Zn-27A1 alloys after modification, solution treatment and natural ageing was more prominent.5. By the linear fitting analysis for the damping properties of the foundry Zn-27A1 alloys and the Zn-27A1 alloys after modification, solution treatment and natural ageing, The fitting expression of the variation of the damping of Zn-27A1 alloy with the temperature and frequency was obtained. The comparison the results from experiment with the results from linear fitting showed that the expression was comparatively right. The equation can be used to predict the damping properties of alloy under any temperature within the scope of the working temperature and frequency.6. The Zn-27A1 alloy is a multi-phase alloy. The damping mechanism of high-damping Zn-27A1 alloy was studied by analyzing the micostructures and the damping properties. The damping(internal friction) of Zn-27A1 alloy is linear, reversible, anelastic and dynamic hysteresis mechanical damping. The energy dissipation results from the viscous sliding between grain boundaries or phase interfaces and micro-plastic deformation of a ph
引文
[1] 李沛勇,戴圣龙,刘大博.材料阻尼及阻尼合金的研究现状.材料工程.1999(8):44-48.
    [2] 张忠明,刘宏昭,王锦程 等.材料阻尼及阻尼材料的研究进展.功能材料.2001,32(3):227-230.
    [3] 杨根仓.现代阻尼材料的发展与展望.航空科学技术.1994,(3):12-30.
    [4] 方前锋,朱震刚,葛庭燧.高阻尼材料的阻尼机理及性能评估.物理.2000,29(9):541-545
    [5] E. J. Lavernia, R. J. Perez, and J. Zhang. Damping Behavior of Discomtinuously Reinforced Al Alloy Metal-Matrix Composites. Metalurgical and Materials Transaitions. A. 1995, 26A(11): 2803-2818.
    [6] Ritchie I G, PAN Z-L. High-damping Metals and Alloys. Metallurgical Transactions A. 1991, 22A: 607-616.
    [7] 田莳,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994.
    [8] 江东亮,闻建勋,陈国民,张骥华.新材料(现代高技术丛书).上海:上海科学技术出版社,1994.
    [9] 张忠明,刘宏昭,王锦程 等.金属材料阻尼性能测试系统.西安理工大学学报.2000,16(2):133-137.
    [10] Nowick A. S, Berry B. S. Anelastic Relaxation in Crystalline Solids. New Yoke: Academic Press. 1972.
    [11] 葛庭燧.扭摆内耗仪的发明和内耗研究的开拓与发展.力学进展.1994,24(3):336-352.
    [12] S. Elomari, R. Boukhili, M. D. Skibo et al. Dynamic Mechanical Analysis of Presstrained Al_2O_3/Al Metal-Matrix Composite. Journal of Materials Sciences. 1995, 30 (12): 3037-3045.
    [13] LEE Young-Kook, JUN Joong-Hwan, CHOI Chong-Sool. Damping Capacity In Fe-Mn Binary Alooys. ISU International, 1997, 37(10): 1023-1030.
    [14] R. D. Adams, M. A. O. Fox. Principal Mechanisims of Damping in Cast Irons. Journal of the Iron & Steel Institute. 1973, 211(part 1): 37-43.
    [15] M. A. O. Fox, R. D. Adams. Correlation of the Damping Capacity of Cast Iron with Its Mechanical Properties and Microstructure. The Journal of Mechanical Engineering Science. 1973, 15(2): 81-94.
    [16] Y. S. Chen, T. J. Hsu, S. L. Chen. Vibration Damping Characteristies of Laminated Steel Sheet. Metallurgical Transactions A. 1991, 22(3): 653-656.
    [17] Ritchie I G, PAN Z-L, Goodwin F E. Characterization of the Damping Properties of Die-cast Zinc-aluminum Alloys. Metallurgical Transactions A. 1991, 22: 617-622.
    [1
    
    [18] 高光慧,顾敏,贾禄坤.减振合金种类、特性及其应用.国外金属材料.1989,1:12-18.
    [19] K. Sugimoto, T. Mori, S. Shiode. Effect of Composition on the Internal Friction and Young's Modulus in-Phase Mn-Cu Alloys. Metal Science Journal, 1973, (7): 103-108.
    [20] P. Venkateswararao, D. K. Chatterjee. Structural Studies on the Alloying Behaviour of Gamma Mn and the Development of a High Damping Capacity Mn-Cu Alloys. Journal of Materials Science, 1980, 15(1): 139-148.
    [21] E. Hiroshi. Development of Vibration Damping Materials. Journal of Japanese Socity of Mechnical Engineering, 1993, 96(893): 63-66.
    [22] 方正春.锰铜基减振合金及其在工程中的应用.特种铸造及有色合金.1987,(2):38-40.
    [23] 谭延昌.减振合金及其应用.仪表材料.1986,17(6):380-387.
    [24] Mcdonald S L, Perkins J. The 'Quiet' Alloys. Machine Design. 1978, 50(8): 202-206.
    [25] Sahoo M, Barry J R, Crawford G. Foundry Characteristics and Mechanical Properties of a High-Damping Propeller Alloy. AFS Transactions., 1985, (93) 133-144.
    [26] Cleave D A V. New Alloys Succeed in Damping Noise Levels. Iron Age Metalworking International, 1977, 16 (10): 34-35.
    [27] 蒋凯雁,张关钧.锌铝合金的发展、性能及应用.有色设备.1995,(1):19-23.
    [28] 顾敏,高光慧.具有高减振(高阻尼)特性的Al系合金及其用途.上海金属(有色分册).1990,11(5):13-19.
    [29] 刘永红,张忠明,刘宏昭等.锌铝合金的研究现状及应用概况.铸造技术,2001,(1):
    [30] Durman M, Murphy S, An Electron Metallographic Study of Pressure Die-cast Commercial Zinc-Aluminium Based Alloy ZA27. Journal of Materials Science. 1997 (32): 1603-1611.
    [31] 施忠良,林萍华.锌铝合金的应用与发展.江苏冶金.1992(6):42-47.
    [32] 罗兵辉,柏振海,谢佑卿.高阻尼金属的发展及应用.材料导报,1997,11(5):24-27.
    [33] Apelian D, Paliwal M, Herrschaft D C. Casting with Zinc Alloys, Journal of Metals, 1981(11): 12-20.
    [34] Lyon R, B. Sc., M. I. M. et al. The Properties and Applications of ZA Alloys. The British Foundryman, 1986: 344-349.
    [35] Gervais E, Levert H, Bess M. The Development of a Family of Zinc-Base Foundry Alloys. Transaction of the American Foundrymens Society. 1980(88): 183-194.
    [36] Gervais E, Barnhurst R J, Loong C A. An Analysis of Selected Properties of ZA Alloy. Journal of Metals. 1985(11)43-47.
    [37] Sahoo M, Whiting L V. Foundry Characteristics of Sand Cast Zn-Al Alloys. Transaction of the American Foundrymens Society. 1984(92): 861-870.
    
    [38] Gervais E. General Outline of Aluminum Zinc-Based Alloy. Transaction of the American Foundrymens Society. 1986, (94): 183-194.
    [39] M. Meeus et al. Proceedings International Symposium on Zinc-Aluminum casting alloys. 25th Annual Conference of Metallurgists. 1986: 171-198.
    [40] Savaskan T, Murphy S. Decomposition of Zn-Al Alloys on Quench-ageing. Materials Science and Technology. 1990(6): 695-703.
    [41] F. Ashrafizadeh et al. Solidification Structures and Mechanical Properties of Zn-27Al Alloy Cast in Metal Moulds. Materials Science and Technology. 1987, 3(8): 665-670.
    [42] Zhu Y H, Torres-Villaseor G, Pia C. Complex Microstructural Changes in As-cast Eutectoid Zn-Al Alloy. Journal of Materials Sciences. 1994(29): 1549-1552.
    [43] J. Negrete, L. Valdes, G. Torres-Villasenorl. Microstructure and Mechanical Properties of Zn-Al alloys at Room Temperature. Metallurgical Transactions A, 1983, 14(9): 1931-1934.
    [44] P. G. Boswell, G. A. Chadwick. Eutectoid Decomposition of Zn-Al Splat-Quenched and Bulk Specimens. Acta Metallurgica. 1977, 25(7): 779-792.
    [45] C. P. Ju, R. A. Fournelle. Cellular Precipitation and Discontinupus Coarsening of Cellular Precipitate in An Al-29at.%Zn Alloy. Acta Metallurgica. 1985, 33(1): 71-81.
    [46] A. E. W. Smith, G. A. Hare. Controlling the Zinc-Aluminium Eutectoid Reaction. The Journal of the Institute of mentals. 1973, 101(12): 320-328.
    [47] M. J. Barber, P. E. Jones. A Family of Foundry Alloys. Foundry Trade Journal. 1980, 148(3180): 114-131.
    [48] Savas M A, Altintas S. The Microstructural Control of Cast and Mechanical Properties of Zinc-Aluminum Alloys. Journal of Materials Sciences. 1993, 28: 1775-1780.
    [49] 舒震.硅合金化耐磨锌合金.机械工程材料,1987,63(6):16-18.
    [50] 于修德,於冬娥.RE对ZA—27合金机械性能的抗磨损性能的影响.铸造技术,1990(4).:17-21
    [51] 梁梅芬.高强度铸造锌合金在干摩擦条件下磨擦磨损特性之研究.固体润滑,1991,11(2):114-119
    [52] 谢敬佩,祝要民.高耐磨、高阻尼锌铝合金研究.特种铸造及有色合金.1999(2):10-13.
    [53] Gervais E et al. Properties and Die Casting of the Zn-27%Al-2%Cu-0.01%Mg Alloy Die Casting Engineer. 1981, 25 (5): 44-49.
    [54] 马大观.铸造锌铝合金——ZA新系列.机械工程材料,1981,5(4)34-38.
    [55] 邹亮清.高强度减摩耐磨锌基合金ZMJ-Ⅱ轴瓦在黄埔号船上的应用.柴油机·Diesel Engine,2000,(2):39-42.
    [56] R. Lyon. High Strength Zinc Alloys for Engineering Applications in the Motor Car. Metals and Materials, 1985(1): 55-57.
    [5
    
    [57] Kidd Alloy ZA-27. Alloy Digest, 1982(9).
    [58] Durman M, Murphy S, An Electron Metallographic Study of Pressure Die-cast Commercial Zinc-Aluminium Based Alloy ZA27. Journal of Materials Science. 1997 (32): 1603-1611.
    [59] 张伟.国内外高铝锌基合金的研究现状和进展.铸造技术.1993(2):36-39.
    [60] Bowden J W, Ramaswami B. Interface Sliding, and Cracking During Fatigue Deformation of a Superplastic Aluminium-Zinc Eutectoid Alloy, Metallurgical Transactions A. 1990, 21: 2497-2504.
    [62] Lee P P, Savaskan T, Laufer E. Wear Resistance and Microstructure of Zn-Al-Si and Zn-Al-Cu Alloys. Wear. 1987. 117: 79-89.
    [62] Murphy S, Savaskan T. Comparative Wear Behaviour of Zn-Al-Based Alloys in an Automotive Engine Application. Wear. 1984, 98: 151-161.
    [63] 王培毅,张玫,刘世楷.锌铝系列合金的发展及研究概况.金属科学与工艺.1990,9(1):108-117.
    [64] Zhang Z M, Wang J C, Xu D H, et al. Influence of RE Content on the Damping Capacity of Alloy ZA27. Journal of Rare Earths. 1999, 17(2): 122-125.
    [65] Goodwin F E. Zinc Alloys for High Damping Applications—A First Progress Report. SAE Transaction, Section2: Journal of Materials. 1988, 97: 153-156.
    [66] Ritchie I G, PAN Z-L, Goodwin F E. Characterization of the Damping Properties of Die-cast Zinc-aluminum Alloys. Metallurgical Transactions A. 1991, 22: 617-622.
    [67] Liu Y C, Yang G C, Lu Y L, et al. Damping Behavior and tribological Property of As-spray Deposited High Silicon Alloy ZA27. Journal of Materials Processing Technology. 1999, 87: 53-58.
    [68] Gu M Y, Chen Z Y, Wang Z M, et al. Damping Characteristic of Zn-Al Matrix Composites. Scripta Metallurgica et Materialia. 1994, 30(10): 1321-1326.
    [69] Michihiro Tagami, Tatsuo Ohtani, Tadashi Usami. Effects of Heat Treatment, Contents of Cu and mg, and Roiling Reduction on the Damping Capacity and Mechanical Properties of Zn-22%Al Alloy, J. Jpn Inst. Light Metals. 1988, 38(2): 107-113.
    [70] Otani T, Hoshino K, Kurosawa T. Damping Capacity and Mechanical Properties of Zn-Al Alloy Castings, Journal De Physique, C5, 1981: 935-940.
    [71] Otani T, Sakai T, Hoshino K, Kurosawa T. Damping Capacity of Zn-Al Alloy Castings, Journal De Physique, C10, 1985: 417-420.
    [72] 赵显欧,韩青有,王佩君 等.稀土改善锌基合金抗蚀性的实验研究.中国稀土学报,1992,10(3):243-246.
    [73] 张忠明,王锦程,徐东辉 等.铝、铜、镁对铸态锌基合金组织和阻尼性能的影响.中 国有色金属学报.1997,9(增刊):1-6.
    [7
    
    [74] M. Sahoo. L. V. Whiting, D. W. G. White. Control of Underside Shrinkage in Zinc-Aluminum Froundry Alloys by the Addition of Trace Elements. AFS Transactions, 1985, 93: 475-480.
    [75] 谭银元.复合变质剂对ZA27合金组织和性能的影响.南京理工大学学报.2002,26(5)547-551.
    [76] 顾敏,高光慧.Zn-Al阻尼合金的研究.特种铸造及有色合金.1992,3:1-3.
    [77] 李晨曦,吴世常,王青澄 等,ZA27合金的变质处理.沈阳工业大学学报.1998,20(3):73-92.
    [78] 徐晓峰,倪峰,魏世忠 等.变质高铝锌合金的铸态塑韧化机理.材料开发与应用.2000,15(3):8-12.
    [79] A. F. Skenazi, J. Pelerin, D. Coutsouradidis et al. Some Recent Developments in the Improvement of the Mechamical Properties of Zinc Foundry. Alloys. Metal. 1983, A37(9): 898-902.
    [80] 陈美玲,葛继平,张利明等.微量元素对ZA合金铸态组织和力学性能的影响.大连铁道学院学报.1995,16(3):85-89.
    [81] 许春香,赵沛廉.混合稀土对ZA27合金高温力学性能的影响.材料科学与工艺.1999,7(3):105-108
    [82] 田卫平,亢若谷,彭茂公 等,稀土对锌铝合金ZnAl-27性能的改善.云南冶金.2002,31(4):45-57.
    [83] 韩树楷,刘彧,施忠良.稀土对高强锌合金耐磨性和耐蚀性的影响.中国稀土学报.1996,14(1):47-51.
    [84] 刘彧.韩树楷.施忠良.ZA27合金耐蚀性能实验研究.兵器材料科学与工程.1995,18(5):15-19.
    [85] 施忠良,顾明元,吴人洁.Ce对ZA27合金组织和性能影响的研究.上海交通大学学报1996,30(2):93-97.
    [86] 魏晓伟,沈保罗.稀土对ZA27合金压蠕变的影响.材料科学与工程学报.2003,21(3):411-415
    [87] ZHAO Pei-Lian, ZHAO Xing-guo, ZHAO Hao-feng. Effect of Rare Earth on the High Temperature Properties of ZA27 Alloy. Journal of The Chinese Rare Earth Society. 1988, 16 (1): 41-44.
    [88] Savaskan T, Murphy S. Decomposition of Zn-Al Alloys on Quench-ageing. Materials Science and Technology. 1990(6): 695-703.
    [89] Lehvy H, Lesperance G. Ageing Characteristic of Dendritic and Non-dendritic(stircast)Zn-Al Alloy(ZA27). Journal of Materials Science. 1981(1): 559-568.
    
    [90] Barker M J, Jones P E. An New Family of Foundry Alloys. Foundry Trade. 1980, 148: 114-124.
    [91] WANG Hong-min, CHEN Quan-de, WU Yi-gui et al. Microstructure and Properties of Supersaturated ZA27 Allry During Natural Ageing. Journal of Material Science. 1992(27): 1212-1216.
    [92] 王狂飞,白聿钦.热处理工艺对ZA27合金组织与性能的影响.机械工程材料.1999,23(1):23-26.
    [93] 张忠明,郭学锋,刘宏昭.ZA27合金250℃时效时间对阻尼性能的影响.材料热处理学报.2003,24(2):1-4.
    [94] 王狂飞,何丽娟.热处理工艺对ZA27铸造合金组织及性能的影响.河北理工学院学报.1999,21(4):32-37
    [95] 刘耀文,陈全德等.人工时效对铸造ZA27Ce合金阻尼性能的影响.材料工程.2001(6):18-20.
    [96] 王狂飞,赵小娟.ZA27合金的淬火时效特性.金属热处理.1998,5:34-36.
    [97] Kenneth J. Altorfer. Zinc Alloys Compete with Bronze in Bearing and Bushings. Metal Progress. 1982, 122(6): 29-31.
    [98] Nowick A S. Anelastic Effects Arising from Precipitation in Aluminum-Zinc Alloys. Journal of Applied Physics. 1957, 22(7): 925-933.
    [99] Nuttall K. The Damping Characteristics of a Superplastic Zn-Al Eutectoid Alloy. Journal of the Institute of Metals. 1971, (99): 266-270.
    [100] Torisaka Y, Kojima S. Superplasticity and Internal Friction of a Superplastic Zn-22%Al Eutectoid Alloy. Acta Metall. Mater.. 1991, 39(5): 947-954.
    [101] Zhu X F. Stable Damping Associated with Linear Viscous Motion of the Interface in a Multiphase Al-Zn Alloy. Journal of Applied Physics. 1990, 67(12): 7287-7291.
    [102] Zhu X F, Zhang L D. Ageing Damping Associated with Discountinuous Transformation in Al-Zn and Al-Zn-Mg-Cu Alloys. Journal of Physics Cindensed Matter. 1992, 4: 1263-1268.
    [103] Zhu X F, Zhang L D. Internal Friction and Modulus Associated with Nonequilibrium Diffusion-type Phase Transformation in an Al-Zn Alloy. Journal of Physics F: Metallurgical Physics. 1988, 18: L159-L162.
    [104] 刘耀文,寇宏超,吴逸贵 等.过饱和ZA27Ce合金自然时效过程中的阻尼变化.洛阳工学院学报.1997,18(1):13-17.
    [105] 张忠明,王锦程,刘宏昭 等.过饱和ZAC27合金的阻尼性能与组织演变.中国有色金属学报.2000,10(3):306-312.
    [106] Koichi Sugimoto. High-Damping Alloys-A Review on BasicProblems and Applications. Materials Transactions, JIM. 1975, (7): 491-498.
    [1
    
    [107] Hakaru Masumoto, Masakatsu Hinai, Showhachi Sawaya. Influence of Cold-Working on Damping Characteristics of Al-Zn Alloys. Journal of the Japan Institute of Metals. 1982, 46(9): 929-934.
    [108] 刘军民,张进修.共析转变过程中内耗与复模量行为的对比.金属学报.1996,32(8):785-790.
    [109] 孙培林.阻尼合金减振元件厚度与减振效果的研究.振动、测试与诊断.1995,15(1):57-61.
    [110] 曹挺杰,田斌年,成杰.降低齿轮噪声试验—阻尼材料和齿轮结构的作用.河海大学学报.1992,20(5):57-62.
    [111] 张忠明,王锦程,吕衣礼 等.混合稀土对ZA27合金阻尼性能的影响.中国稀土学报.1999,17(1):46-49.
    [112] 刘立新,安阁英,李庆春.三元合金稳态平面前沿凝固的溶质再分配.金属科学与工艺.1987,(3)79-86.
    [113] 侯增寿,卢光熙.金属学原理,上海科学技术出版社,1993.
    [114] 孙勇.ZA-27合金组织与机械性能研究.西南交通大学硕士研究生论文,1986.
    [115] 赖祖涵.金属的晶体缺陷与力学性质.冶金工业出版社,1988.
    [116] 哈宽富.金属力学性质的微观理论.科学出版社,1983.
    [117] Zhang J M, Perez R J, Wang C R, et al. Effects of Secondary Phase on the Damping Behaviour of Metals, Alloys and Matrix Composites. Materials science and Engineering R, 1994, 13 (8): 325-389.
    [118] Schoeck G, Bisogni E. Internal Friction in Al-Ag Alloys. Phys. Stat. Sol. 1969, 32: 31-40.
    [119] Schoeck G. Internal Friction Due to Precipitation. Phys. Stat. Sol. 1969, 32: 651-658.
    [120] 葛庭燧.固体内耗理论基础.科学出版社,2000.
    [121] 张忠明,王锦程,刘宏昭 等.ZA27合金的稳态阻尼及其拟合.西安理工大学学报.2001,17(3)230-234.
    [122] 李亦东,于翘.阻尼结构与高聚物阻尼材料.材料科学与工程.1995,13(2):1-13.
    [123] 刘习军,贾启芬,张文德.工程振动与测试技术.天津大学出版社.1999.
    [124] 曹树谦,张文德,萧龙翔.振动结构模态分析.天津大学出版社,2001.
    [125] 戴德沛.阻尼减振降噪技术.西安:西安交通大学出版社,1986.
    [126] 戴德沛.阻尼技术的工程应用.北京:清华大学出版社,1991.