二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近百年来气候的急剧变化引起人们对温室气体排放问题的注意,为了遏制全球增暖趋势,收集人类集中排放的CO_2并进行地下隔离成为减排对策之一。目前CO_2深部隔离储存的地点和方式可有以下几种选择:已废弃、无商业开采价值的油气田、深部煤层、深海隔离、深含水层隔离等。其中CO_2深部地下含水层储存,因其具有隔离储存空间大、封闭隔离时间长、分布广易于在排放点位置就近选择的优点,成为目前最受瞩目及最具潜力的隔离方法之一。
     位于挪威北海中部Sleipner地区的Utsira砂层是世界上第一个以商业为目的大型超临界CO_2深含水层隔离的项目,从1996年开始每年向地下注入约100万吨CO_2,项目开展起来的6年时间里进行过3次时延地震,其监测资料对科学研究而言具有十分重要的意义。基于发表的数据和资料,本文拟对此进行更深入的研究工作,继续修改流动模型机制和提出适应于二相渗流分布的岩石物理学模型,为Sleipner地区CO_2深含水层隔离的时延地震某些流体异常提供新的机制解释。
     针对超临界CO_2地中隔离的多组分多相渗流特点,构建了考虑局部非热均衡效应的非等温两相渗流THM耦合框架,开发了有限元模拟程序,以SACS计划设立的用于各国模拟程序对比的概化模型为BMT(Bench Mark Test)进行程序验证和核准,得到了考虑毛细管力和相对渗透率的两相非混溶渗流CO_2饱和度分布时间演化规律。由于模拟框架考虑了固液三相非等温的热传递过程,这为将来模型应用考虑相变情况的预留了拓展空间。
     考虑超临界CO_2与地下水的粘度差异,CO_2深含水层隔离二相渗流可能产生粘性指进现象。对超临界CO_2在含水层中运移的两相流界面非稳定粘性指进现象进行了渗流力学机制分析,在二相流THM耦合模型中引入流度比判断条件下渗透率概率扰动项,将其引入非等温两相渗流的有限元模拟中,得到了CO_2在运移过程中的细部发育特征,特别的是CO_2中间饱和度区域将出现粘性指进引起的两相密集交错带;基于对由介质孔隙结构(如渗透率分层和毛管力作用)导致的优势流(或称沟槽流)指进形态的模拟,本文对三种指进的差异及其共同作用下CO_2在深含水层中驱替运移特征进行了比较分析。
     针对裂隙性多孔介质,率先提出了含裂隙非均匀介质的地震波传播中波致流体弛豫的尺度效应概念。就不同的裂隙空间分布进行符合波传播特点的渗透率尺度效
It seems certain that the change in CO_2 concentration in the atmosphere is due to human energy production from fossil fuels. The global warming issue has sparked public interest on all levels. To reduce CO_2 emissions, one must either reduce CO_2 production, or find alternative disposal schemes. Several different sequestration schemes — injection into deep oceans, un-minable coal seams, depleted oil reservoirs and saline aquifers, have been proposed to reduce atmospheric emissions. Sequestration of CO_2 by injection into deep geological aquifers appears to be the best choice in terms of resident storage time, storage capacity and proximity to emission cites.
    The Norwegian oil company, Statoil, is injecting approximately one million tonnes per year of recovered CO_2 into the Utsira Sand, a saline formation under the sea associated with the Sleipner West Heimdel gas reservoir. The large contrast in seismic impedence between water and supercritical CO_2 in Utsira sand has been successfully monitored with repeated surface seismic measurements in 1999,2001 and 2002. Based on these published time-lapse data, this thesis focuses on the developement of two-phase flow model and rock physics model in order to further characterize the CO_2 plume e.g. with respect to the distribution of CO_2 saturation in seismic section, the geophysical abnormity signature caused by immiscible pore fluids, and to find or analyse some new machanisms.
    Fluid flow simulation is performed using FEM (finite element methord) modeling for considering the THM couling effect on the two phase flow process. A coupled thermoporoelastic model of non-isothermal flow and deformation in elastic porous media with two immiscible porous fluids (CO_2 and groundwater) is presented, accounting for porosity change, compressibility and thermal expansion of convective heat flow. The govening equations are based on the equations of equilibrium, Darcy's law, Fourier's law and the conservation equations of mass and energy. Three phases and constituents (solid rock skeleton, liquid water and liquid or supercritical CO_2) are identified with no consideration of the supercritical CO_2 phase change in short time about saveral years after CO_2 injection. Thermal non-equilibrium between the phases is assumed throughout with a advantage in the convenience in model modifying to get the CO_2 phase changing effect. The simulating results can provide fluid pressures, relative saturation, and distribution of the fluids in the reservoir. The simulating code is validated on two BMT case with different codes from GEO-SEQ participate research teams.
    However, when CO_2 is injected underground, it forms fingers extending into the rock pores saturated with water, brine or petroleum. This flow instability phenomenon, known as viscous fingering, is significant for CO_2 sequestration because it will govern the available volume for CO_2 storage in the deep formation and the most important, from
引文
1. Amir Ghaderi, Martin Landrol, PRE-STACK ESTIMATION OF TIME-LAPSE SEISMIC VELOCITY CHANGES- AN EXAMPLE FROM THE SLEIPNER CO2-SEQUESTRATION PROJECT
    2. Araktingi U.G., Orr Jr FM, Viscous fingering in heterogeneous porous media. SPE Paper 18095, 1988
    3. Arts, R. J., Zweigel, P. and Lothe, A.E.2000. Reservoir geology of the Utsira Sand in the Southern Viking Graben area - a site for potential CO2 storage. 62~(nd) EAGE meeting, Glasgow, paper B20.
    4. Baklid A. et. al., 1996. Sleipner Vest CO_2 Disposal, CO_2 Injection into a shallow Underground aquifer. 1996 SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, SPE paper 36600: 1-9.
    5. Bachu S., Gunter W. D., et al, Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, Vol.35(4): 269-279,1994.
    6. Bachu S., Shaw J.C., et al., Evaluation of the CO2 sequestration capacity in Alberta's oil and gas reservoirs at depletion and the effect of underlying aquifers. Journal of Canadian Petroleum Technology, Vol.(42):51-61, 2003
    7. Baines S., Worden R., Geological CO2 Disposal: Understanding the Long Term Fate of CO2 in Naturally Occurring Accumulations. Fifth International Greenhouse Gas Control Conference, 13-16 August, Cairns, Australia, 2000
    8. Batzle M., Han D., Castagna J., Attenuation and velocity dispersion at seismic frequencies. Soc. Expl. Geoph., Expanded Abstracts, 1687-1690, 1996
    9. Batzle M., Hofmann R., Han D., Castagna J., Fluids and frequency dependent seismic velocities of rocks. The Leading Edge, February, pp. 168-171, 2001
    10. Beran M. J., Statistical continuum theories. John Wiley & Sons, New York, 1968
    11. Bernabe Y., Bruderer-Weng C., Maineult A., Permeability fluctuations in heterogeneous networks with different dimensionality and topology. J. Geophys. Res., 108, 2351, 2003
    12. Berryman J. G., Long-wavelength propagation in composite elastic media I. Spherical inclusions, J. Acoust. Soc. Am., Vol.68: 1809-1819, 1980a
    13. Berryman J. G., Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions, J. Acoust. Soc. Am., Vol.68: 1820-1831, 1980b
    14. Berryman J. G., Mixture theories for rock properties: in Rock Physics and Phase Relations, edited by T. J. Ahrens, AGU, Washington, DC, pp. 205-228, 1995
    15. Berryman J. G., Origin of Gassmann's equations, Geophysics, Vol.64: 1627-1629, 1999
    16. Best AL, McCann C, Seismic attenuation and pore-fluid viscosity in clay-rich reservoir sandstones. Geophysics, 60(5): 1386-1397, 1995
    17. Biot M. A., General theory of three-dimensional consolidation. J. Appl. Phys., Vol.12: 155-164, 1941
    18. Biot M.A., Theories of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range. J. Acoust. Soc. Am., Vol.28: 168-178, 1956
    19. Biot M.A., Theories of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range, J. Acoust. Soc. Am., Vol.28: 179-191, 1956
    20. Biot M. A., Willis D. G., et.al., The elastic coefficients of the theory of consolidation. J. App. Mech., Vol.24: 594-601, 1957
    21. Blair S. C, Berge P. A., Berryman J. G., Using two-point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass. J. Geophys. Res., Vol.101: 20359-20375, 1996
    22. Blunt M., King P., Scaling structure of viscous fingering. Phys.Rev.A,Vol.(37): 3935- 3941,1988
    23. Bonnet J., Lenormand R., Constructing Micromodels for the Study of Multiphase Flow in Porous Media. Revue de L'Inst Franc du Pet, Vol(42):477-480, 1977
    24. Bourbie T., Zingsner B., Hydraulic and acoustic properties as a function of porosity in Fontainbleau sandstone. J. Geophys. Res., Vol.90:11524-11532, 1985
    25. Brevik I., Eiken, O., Arts, R.J., Lindeberg, E. and Causse, E.2000. Expectations and results from seismic monitoring of CO2 injection into a marine aquifer. 62nd EAGE meeting, Glasgow, paper B-21.
    26. Brie A., Pampuri F., Marsala A.F., Meazza, O., 1995. Shear sonic interpretation in gas-bearing sands, SPE 30595
    27. Bromhal G.S., Ferer M., Smith D.H., Pore-Level Modeling of Carbon Dioxide Sequestration in Oil Fields: A Study of viscous and Buoyancy Force., Proceedings of 1st National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001
    28. Bruner W.P., Comment on seismic velocities in Dry and saturated Cracked Solids by Richard J. O'Connell and. Bernard Budianskey. Journal of Geophysical Research, 81: 2573-2576, 1976
    29. Budiansky B., O'Connell R. J., Elastic moduli of a cracked solid. Int. J. Solids Struct., Vol.12: 81-97, 1976
    30. Cappa J., Rice D., Carbon dioxide in Mississippian Rocks of the Paradox Basin and adjacent areas, Colorado, Utah, New Mexico, and Arizona. U.S. Geological Survey Bulletin, 2000-H, 1995
    31. Chand, S. & Minshull, TA, Seismic constraints on the effects of gas hydrate on sediment physical properties and fluid flow: a review, Geofluids, Vol.3: 275-289, 2003
    32. Chen J. D., Some Mechanisms of Immiscible Fluid Displacement in Small Networks. J. Colloid and Interface Science, Vol.110(2), 488-503, 1986
    33. Chen Jing-Den, Wilkinson D., Pore-Scale Viscous Fingering in Porous Media. Phys. Rev. Lett. Vol.55(7):1892-1895, 1985
    34. Class H., Bielinski A., Numerical modeling of nonisothermal multiphase multicomponent processes, Workshop on Aquifer Storage of CO2, November 6 and 7, 2003 at Departments of Physis and mathematics, University of Bergen,2003
    35. Corey A.T. The Interrelation Between Gas and Oil Relative Permeabilities, Producers Monthly, pp. 38-41, 1954.
    36. Dahle H.K., Espedal M.S., Ewing R.E., Saevareid O., Characteristic adaptive subdomain methods for reservoir flow problems. Numerical Methods for Partial Differential Equations, Vol(6):279-309, 1990
    37. David C, Menendez B., Darot M., Influence of stressinduced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int. J. Rock Mech. Min. Sci., 36: 433-448, 1999
    38. Domenico S.N., Effect of brine-gas mixture on velocity in an unconsolidated gas reservoir. Geophysics, Vol.41: 882-894, 1976
    39. Domenico S.N., Elastic properties of unconsolidated sand reservoirs. Geophysics, Vol.42: 1339-1368, 1977
    40. Doughty C, Pruess K., Modeling Supercritical Carbon Dioxide Injection in Heterogeneous Porous Media. Vadose Zone J, Vol.3(3):837-847, 2004
    41. Doughty C, Pruess K., Modeling supercritical CO2 injection in heterogeneous porous media. Presented at the TOUGH Symposium 2003, Lawrence Berkeley National Lab., Berkeley, Calif., May 12-14, and submitted to special issue of Vadose Zone Journal, 2003
    42. Doughty C, Pruess K., A Similarity Solution for Two-Phase Water, Air and Heat Flow Near a Linear Heat Source in a Porous Medium. J. of Geophys. Res, 97 (B2):1821-1838, 1992
    43. Dullien F.A.L., Porous Media-Fluid Transport and pore structure. Academic Press, New York, 1979
    44. Dumore JM, Development of gas saturation during solution gas drive in an oil layer below a gas cap. SPEJ, pp. 211-218, 1970
    45. Dutta, N. C, Seriff, A. J., et.al., On White's model of attenuation in rocks with partial gas saturation. Geophysics, Vol.44: 1806-1812, 1979
    46. Dvorkin J., Nolen-Hoeksema R., Nur A., The Squirt-flow mechanism: macroskopic description. Geophys., Vol.59: 428-438, 1994
    47. Dvorkin J. ,Nur A., Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophys., Vol.58: 524-533,1993Fladmark G. E., Secondary oil migration, mathematical and numerical modeling in some simulator. Technical Report R-077857, Norsk Hydro, Bergen, 1997
    48. Eiken O., Brevik, I., Arts. R., Lindeberg, E. and Fagervik, K. 2000. Seismic monitoring of CO2 injected into a marine aquifer. SEG Calgary 2000 International Conference and 70th Annual Meeting, Calgary, paper RC-8.2.
    49. Eshelby J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London, A241: 376 - 396, 1957
    50. Fink, CR & GD Spence. 1999. Hydrate distribution off Vancouver Island from multifrequency single-channel seismic reflection data. J. Geophys. Res. 104:2909-2922
    51. Fredrich J. T., Wong T.-F., Micromechanics of thermally induced cracking in three crustal rocks. J. geophys. Res., 91: 12 743-12 764, 1986
    52. Garrido I., Oian E., Chaib M., et al., Implicit Treatment of Compositional Flow. Computational Geosciences, Vol.8(1):1-21,2004
    53. Garcia J.E., Pruess K., Flow Instabilities During Injection of CO2 into Saline Aquifers. PROCEEDINGS, TOUGH Symposium 2003
    54. Garcia J.E., Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers, Doctor of Philosophy in Engineering - Civil and Environmental Engineering University of California, Berkeley
    55. Geertsma J., Smit D.C., Some aspects of elastic wave employed in the design of an acoustic imaging system for propagation in fluid-saturated porous solids. Geophysics, Vol.26:169-181, 1961
    56. Glass R.J., Parlange J.Y., Steenhuis T.S., Wetting front instability, 1, Theoretical discussion and dimensional analysis, Water Resour.Res., Vol.25:l 187-1194, 1989a..
    57. Glass R.J., Steenhuis T.S., Parlange J.Y., Wetting front instability, 2, Experimental determination of relationships between system parameters and two dimensional unstable flow field behavior in initially dry porous media. Water Resour. Res., Vol.25(6):1195-1207, 1989b.
    58. Glass R. J., Steenhuis T.S., Parlange J.Y., Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone. J. Contam. Hydrol, Vol.3(2):207-226, 1988
    59. Glass R.J., Steenhuis T.S., Parlange J.Y., Immiscible displacement in porous media: Stabolity analysis of three-dimensional, axisymmetric disturbances with application to gravity-driven wetting front instability. Water Resour. Res., Vol.27(4): 1947-1956, 1991.
    60. Gomez-Hernandez J J., Effective parameter estimation for flow and transport in the subsurface. Journal of Hydrology. Special publication, Vol.183(1-2): 1-190, 1996
    61. Gregory A. R., Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics, Vol.41: 895-921, 1976
    62. Gunter W.D., Bachu S., Law D. H., Marwaha V.S., et al., Technical and economic feasibility of CO_2 disposal in aquifers within the Alberta sedimentary basin, Canada. Energy Conversion and Management, Vol.37(6-8): 1135-1142, 1996
    63. Hadley K., Comparison of calaulated and observed crack densities and seismic velocities in Westerly granite. J. Geophys. Res., 81: 3484-3494, 1976
    64. Hastings M, Australia: Gorgon Gas Project - Ugly by name. Indelible Marketing Services,30 Jan 2005.
    65. Hastings M., Carbon sequestration-the hottest topic on the planet. Indelible Marketing Services, 30 Jan 2005
    66. Henyey F.S., Pomphrey N., Self-consistent elastic moduli of a cracked solid. Geophysical Research Letters, Vol.9(4): 903-906, 1982
    67. Herakovich C. T. , Baxter S. C, Influence of pore geometry on the effective response of porous media. J. Mater. Sci., Vol.31(7): 1595-1609, 1999
    68. Hill R., The elastic behavior of a crystalline aggregate. Proc.Phys.Soc. London, A65: 349-354, 1952
    69. Hill R., A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, Vol.13: 213-222, 1965
    70. Hitchon B. (Ed.), Aquifer Disposal of Carbon Dioxide, Hydrodynamic, and Mineral Trapping—Proof of Concept. Geoscience Publishing Ltd., Sherwood Park, Alberta, Canada, 1996
    71. Holloway S., Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option, Energy, xx :1—16, 2004
    72. Holloway S., Chadwick, R. A., Kirby, G.A., Pearce, J. M., Gregersen, U., Johannessen, P. N., Kristensen, L., Zweigel, P., Lothe, A. and Arts, R. 2000. Saline Aquifer CO2 Storage (SACS) -Final Report: Work Area 1 (Geology). BGS report, 31pp. Commercial - in confidence.
    73. Holloway S. (editor) 2003 SACS Best Practice Manual.Statoil Research Center, Trondheim, Norway
    74. Homand-Etienne F., Houpert R., Thermally induced microcracking in granites: characterization and analysis. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 26: 125-134, 1989
    75. Houghton J.T., Ding Y., Griggs D.J. et al., Climate Change 2001: The Scientific Basis. Cambridge University Press, 2001
    76. Hristopulos D. T., Christakos G., Variational calculation of the effective fluid permeability of heterogeneous media. Phys. Rev. E., Vol.55: 7288-7298, 1997
    77. Hudson J. A., Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. Astron. Soc, Vol.64: 133-150, 1981
    78. Hudson J. A., A higher order approximation to the wave propagation constants for a cracked solid. Geophys. J. R. Astron. Soc. Vol.87: 265-274, 1986
    79. Hudson J. A., Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks. Geophys. J. Int., Vol.102: 465-469, 1990
    80. Johnson D. L., Koplik J., Dashen R., Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid. Mech., Vol. 176(2): 379-402, 1987
    81. Halsey T.C., Diffusion-limited aggregation as branched growth. Phys. Rev. Lett. Vol.72:1228-1231, 1994
    82. Halsey T. C, Leibig M., Theory of branched growth, Phys. Rev., Vol.A46:7793-7809, 1992
    83. Hilfer R., Oren P. E., Dimensional analysis of pore scale and field scale immiscible displacement. Transport in Porous Media, 53-72, 1996
    84. Holtz M.H., 2003, Pore-scale influences on saline aquifer CO_2 sequestration, the American Association of Petroleum Geologists Annual Meeting, Salt Lake City, Utah, May 11-14, 2003
    85. Homsy G.M., Viscous fingering in porous media. Ann.Rev. Fluid Mech., Vol.19(2):271, 1987
    86. Hughes S., Murphy P., Use of a Monte Carlo method to simulate unstable and immiscible flow through potous media. SPE Reservoir Eng., 1129-1136, 1988
    87. Ioannidis M.A., Kwiecien M.J., Chatzis I., Statistical analysis of the porous microstructure as a method for estimating reservoir permeability. J.Petr.Sc.Eng., Vol.16(2):251-256, 1996
    88. Jiao C.Y., Hotzl H., A experimental study of mis-cible displacements in porous media with variation of fluid density and viscosity. Trans. Porous Media, Vol.54: 125, 2004
    89. Keller J. B., Flow in random porous media: Transport in Porous Media. Vol.43(3): 395-406, 2001
    90. Kirkpatrick Scott., Classical Transport in Disordered Media: Scaling and Effective-Medium Theories. Phys. Rev. Lett., Vol.27: 1722-1725, 1971
    91. Knight R., Nolen-Hoeksema R., A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophys Res. Lett., Vol.17: 1529-1532, 1990
    92. Knight R., Dvorkin J., Nur A., et.al., Acoustic signatures of partial saturation. Geophysics, Vol.63: 132-138, 1998
    93. Knox P.R., Doughty C, Hovorka S.D., Impacts of buoyancy and pressure gradient on field scale geological sequestration of CO2 in saline formations, the AAPG Annual Meeting 2003, Salt Lake City, Utah, May 11-14, 2003
    94. Koide H., Ohsumi T., Uno M., Matsuo S., Watanabe T., Hango S., Japanese R&D project for CO_2 geological sequestration, in J. Gale and Y. Kaya Eds., Greenhouse Gas Control Technologies (GHGT-6), Pergamon Publishing, pp.317-320, 2004
    95. Kumar S., Fladmark G.E., Dahle H., Modeling of CO2 sequestration in the Utsira Formation using the Athena Simulator, Workshop on Aquifer Storage of CO2, November 6 and 7, 2003 at Departments of Physis and mathematics, University of Bergen,
    96. Kushch V. I., Sangani A. S., Stress intensity factor and effective stiffness of a solid containing aligned penny-shaped cracks. Int. J. Solids Struct., Vol.37: 6555-6570, 2000
    97. Landau L., Lifshitz E., Theorie de l'elasticite, Editions Mir, Moscow, 1967
    98. Law D.H.-S., and Bachu S., Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin. Energy Convers. Mgmt. Vol.(37):1167-1174, 1996
    99. Lenormand R., Touboul E., Zarcone C, Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech, Vol.l89:165-187, 1988
    100. Le-RAVALEC. M., GUEGUEN Y., High- and low-frequency elastic moduli for a saturated porous/cracked rock - Differential self-consistent and poroelastic theories. Geophysics, Vol.61: 1080-1094, 1996
    101. Li Qi., Wu Zhishen, Bai Yilong, Yin Xiangchu, Murakami Yutaka, Effects of pore fluid flow on fault stability around CO_2 geological disposal site. 4~(th) ACES Workshop, Beijing, 2004
    102. Li Qi., Wu Zhishen., Li X.C., Ohsumi T., Koide H. Numerical simulation on crust deformation due to CO_2 sequestration in deep aquifers. Journal of Applied Mechanics, JSCE, Vol(5):591-600, 2002
    103. Li Qi., Wu Zhishen, Murakami Yutaka, Bai Yilong, Yin Xiangchu, Li Xiaochun, Thermo- hydro-mechanical modeling of CO_2 sequestration system around fault environment. 4~(th) ACES Workshop, Beijing, 2004
    104. Lindeberg E., Causse, E. and Ghaderi, A. 1999. Evaluation of to what extent CO2 accumulations in the Utsira formations are possible to quantify by seismic by August 1999. SINTEF Petroleum Research report 54.5148.00/01/99, 13p. Restricted, 1999
    105. Liu XY, Xi DY, Zhang CY, Phenomenological study on viscosity in thermal-activated relaxation for saturated rock, 2nd International Conference on New Development in Rock Mechanics and Rock Engineering, OCT 10-12, 2002, NEW DEVELOPMENT IN ROCK MECHANICS AND ROCK ENGINEERING PROCEEDINGS (ISBN 1-58949-021-5), 125-128,2002
    106. Louis C, A Study of Ground Water Flow in Jointed Rock and Its Influence on the Stability of Rock Masses. Rock Mechanics Report No. 10, Imperial College, London, 1969
    107. LOvoll G., Meheust Y., Toussaint R., et. al., Growth activity during fingering in a porous hele-shaw cell. Phys. Rev. E, 70:026301, 2004
    108. McCarthy J.J., Canziani O.F., Leary N.A., et al. Climate Change 2001:Impacts,Adaptation and Vulnerability. Cambridge University Press, 2001
    109. McPherson B.J.O.L, Cole B.S., Multiphase CO2 flow, transport and sequestration in the Powder River basin, Wyoming, USA. J. Geochem. Explo., Vol.50:65-70, 2000
    110. Menendez B., David C, Darot M., A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser microscopy. Phys. Chem. Earth, Vol.A24: 627-632, 1999
    111. Montoto M., Martinez-Nistal A., Rodriguez-Rey A., Ferna'ndez-Merayo N., Soriano P., Microfractography of granite rocks under confocal scanning laser microscopy. J. Microscopy, Vol.177: 138-149, 1995
    112. Murphy W.F., Winkler K.W., Kleinberg R.L., et.al., Acoustic relaxation in sedimentary rocks: Dependence on Grain contact and fluid saturation. Geophysics, Vol.51: 757-766, 1986
    113. Muller T. M., Gurevich B., A first-order statistical smoothing approximation for the coherent wave field in random porous media. J. Acoust. Soc. Am., Vol.117(4): 1796-1805, 2005
    114. Nishizawa O., Seismic velocity anisotropy in a medium containing orientated cracks—transversely isotropic case. J. Phys Earth, 30: 331-347, 1982
    115. Nur A., Critical porosity and the seismic velocities in rocks. EOS, Transactions AGU, 73: 43-66, 1992
    116. Nur A., Mavko G., Dvorkin J., Galmudi D., et.al., Critical porosity: a key to relating physical properties to porosity in rocks. Leading Edge, 17: 357-362, 1998
    117.O'Connell R. J., Budiansky B., et.al., Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., Vol.79: 4626-4627, 1974
    118.O'Connell R. J., Budiansky, B., et.al., Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res., Vol.82: 5719-5735,1977
    119. Ogunsola O., Ramer E., Smith D.H., (2000) .Analysis of Viscous Fingering in Two-Dimensional Flow Cell by Fractral Dimension,. Fuel Division preprint, Washington, DC, August 20-24, 2000
    120. Orr F.M., Johns R.T., Dindoruk B., Development of Miscibility in Four-Component CO2 Floods, SPE Res. Eng., May, pp. 135-142, 1993
    121. O'Sullivan M.J., A Similarity Method for Geothermal Well Test Analysis, Water Resour. Res., Vol(17):390-398, 1981
    122. Pearce J., Rochelle C, CO2 storage: mineral reactions and their influences on reservoir permeability-a comparison of laboratory and field studies. In Riemer P., Eliasson B., and Wokaun, A., eds., Greenhouse Gas Control Technologies, Elsevier, p. 1087,1999
    123. Pinczewski W. V., Paterson L., Upscaling Downunder. Transport in Porous Media. Special publication, Vol.46: 117-190, 2002
    124. Pride S. R., Berryman J. G., Harris J. M., et.al., Seismic attenuation due to wave-induced flow. J. Geophys. Res., Vol.109, No. B1, B01201, 2004
    125. Pride S. R. et al., Acquisition/processing-permeability dependence of seismic amplitudes: The Leading Edge. Vol.22: 518-525, 2003
    126. Pruess K., Garcia J., Solutions of test problems for disposal of CO2 in saline aquifers. Lawrence Berkeley National Laboratory Report LBNL-51812, December 2002
    127. Pruess K., Garcia J., Kovscek T., Oldenburg C, Rutqvist J., Steefel C, Xu T., Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2, Energy, Vol(29): 1431-1444, 2004
    128. Pruess K., Tsang C.F., Law D. H.-S., Oldenburg C.M., Intercomparison of simulation models for CO2 disposal in underground storage Reservoirs. Lawrence Berkeley National Laboratory Report, LBNL-47353, October 2000
    129. Pruess K., Tsang C.F., Law D. H.-S., Oldenburg C.M., An intercomparison study of simulation models for geologic sequestration of CO2. Proceedings, First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001
    130. Rauzi S., Carbon Dioxide in the St. Johns - Springerville Area, Apache County, Arizona. Arizona Geological Survey, Open-File Report 99-2, 1999
    131. Reeves H.W., Abriola L.M., An iterative compositional model for subsurface multiphase flow. Journal of Contaminant Hydrology, vol(15):249-276, 1994
    132. Renard P, Marsily G de., Calculating equivalent permeability: A review. Advances in Water Resources, Vol.20(5-6): 253-278, 1997
    133. Reuss A., Berechung der Fliessgrenze von Mischkristallen. Z. Angew. Math. Mech. Vol.9, No.55, 1929
    134. Riaz A., Meigurg E., Three-dimensional miscible displacement simulations in homogeneous porous media with gravity override,J. Fluid Mech., vol(494):95-117, 2003
    135. Rice R. W., Comparison of physical property-porosity behaviour with minimum solid area models. J. Mater. Sci., Vol.31: 1509-1528, 1996
    136. Riedel M., Spence G.D., Chapman N.R., Hyndman R.D., Deep sea gas hydrates on the northern Cascadia margin, Leading Edge, Vol.20(1), 87-91, 109. 2001
    137. Romm E.S., Hydraulic properties of fractured rocks. Nedra, Moscow, 1966 (in Russian)
    138. Rosenbaum J.H., Synthetic Microseismograms: Logging in Porous Formations. Geophysics, Vol. 39: 14-32, 1974
    139. Roth G., Sheep Mountain and Dike Mountain Fields, Colorado. In Fasset, J., ed., Oil and Gas Fields of the Four Corners Area, Four Corners Geological Society, vol(3):740-749, 1983
    140. Rutqvist J, Tsang C-F. A study of caprock hydromechanical changes associated with CO2 injection into a brine aquifer formation. Environmental Geology, Vol.42(2-3):296-305, BNL-48145, 2002
    141. Rutqvist J., Wu Y. S., Tsang C. F., Bodvarsson G., A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, Int. J. of Rock Mechanics & Mining Sciences, Vol(39):429-442, 2002
    142. Sander L.M., Di. usion-limited aggregation: a kinetic critical phenomenon?, Contemporary Physics, Vol.41(4):203-218, 2000
    143. Saripalli K.P., Modeling the Sequestration of CO_2 in Deep Geological Formations, Proc. of First National Conference on Carbon Sequestration, 2001
    144. Schulze-Makuch D., Carlson D. A., Cherkauer D. S., Malik P., Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water, Vol.37: 904-918, 1999
    145. Scott M. Klara et al. Integrated collaborative technology development program for CO2 sequestration in geologic formations —United States Department of Energy R&D. Energy Conversion and Management, Vol.44:2699-2712, 2003
    146. Snow D.T., Anisotropic Hydraulic conductivity of Fractured Media, Water Resources Res., Vol.5(6): 1273-1289, 1969
    147. Spycher N., Pruess K., and Ennis-King J., CO2-H2O Mixtures in the Geological Sequestration of CO2.I. Assessment and calculation of mutual solubilities from 12 to 100℃ and up to 600 bar. Geochimica Cosmochim. Acta, Vol. 67, 3015-3031. (LBNL-50991), 2003.
    148. Spycher N., Sonnenthal E., and J. Apps, Prediction of fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada. J. of Contaminant Hydrology, Vol. 62-63, 653-674, 2003
    149. Spycher N. and Pruess K., CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in chloride brines at 12-100℃ and up to 600 bar. Geochimica Cosmochim. Acta, in press. (LBNL-56334), 2005
    150. Stevens S.H., Fox C.E., Melzer L.S., McElmo Dome and St. Johns Natural CO_2 Fields: Analogs for Geologic Sequestration. Fifth International Greenhouse Gas Control Conference, 13-16 August, Cairns, Australia., 2000
    151. Stevens S. H., Pearce J. M et al., Natural Analogs for Geologic Storage of CO2:An Integrated Global Research Program , First National Conference on Carbon Sequestration U.S. Department of Energy National Energy Technology Laboratory, May 15-17, 2001 Washington, D.C.
    152. Streit J.E., Hillis R.R., Building geomechanical models for the safe underground storage of carbon dioxide in porous rock, in J. Gale and Y. Kaya Eds., Greenhouse Gas Control Technologies (GHGT-6), Pergamon Publishing, 495-500, 2004
    153. Tapponnier P., Brace W.F., Development of stress-induced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13: 103-112, 1976
    154. Torp T.A., & J. Gale 2002. Storing CO_2 in Geological Reservoirs: The Sleipner and SACS Projects, GHGT6 Paper, GHGT6-Greenhouse Gas Technology Conference 6, 2002, Kyoto, Japan.
    155. Tsang C-F, Benson S.M., Kobelski B., Smith R.E., Scientific considerations related to regulation development for CO_2 sequestration in brine formations, Environmental Geology, Vol.42(2-3): 275-281,2002
    156. Tsang C.F., Moreno L., Tsang Y.W., Birkholzer J., Dynamic Channeling of Flow and Transport in Saturated and Unsaturated Hetereogeneous Media, American Geophysical Union (AGU) Geophysical Monograph, 42 "Flow and Transport in Fractured Rock", eds. T. Nicholson and T.C. Rasmussen, 2001
    157. Van der Meer L.G.H., Arts, R.J. and Peterson, L. 2000. Prediction of migration of CO2 injected into a saline aquifer: Reservoir history matching to a 4D seismic image with a composition Gas/Water model. 5th International Conference on Greenhouse Gas Control Technologies, Cairns (Australia), August 2000.
    158. Van Genuchten M.Th., A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., Vol(44):892-898, 1980
    159. Van Genutchen M.T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., Vol(44):892-898, 1980
    160. Voigt W., Lehrbuch der Kristallphysik. Teubner, Leipzig, p. 962, 1928
    161. Vo-Thanh D., Influence of fluid chemistry on shear wave attenuation and velocity in sedimentary rocks. Geophys. J.Int., Vol.121: 737-749, 1995
    162. Walsh J. B., New analysis of attenuation in partially melted rock. J. Geophys. Res. Vol.74: 4333-4337, 1969
    163. Wang Z., Cates M. E., Langan R. T., Seismic monitoring of CO_2 flood in a carbonate reservoir: Rock Physics Study. Geophysics, Vol.63: 1604-1617, 1998
    164. Wen X H, Gomez-Hernandez J J., Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, Vol.183: ix-xxxii, 1996
    165. White J. E., Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40: 224-232, 1975
    166. Wit A. De, Miscible density fingering of chemical fronts in porous media: Nonlinear simulations. PHYSICS OF FLUIDS, Vol.16(1):163-173, 2004
    167. Witten T. A., Sander L. M., Diffusion-limited aggregation, a kinetic critical phenomenon [J]. Phys. Rev. Let t., Vol.47:1400-14031, 1981
    168. Wong T.-K, Micromechanics of faulting in Westerly granite. Int.J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.19: 49-64, 1982
    169. Wood M., Simmons C.T., Hutson J.L., A break-through curve analysis of unstable density-driven flow and transport in homogeneous porous media. Water Resour. Res., Vol(40), W03505, 2004
    170. Wu T. T., The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Solids Structures, Vol.2: 1-8, 1966
    171. Xi Daoying, Liu Xiaoyan, Zhang Chengyuan, The Frequency (or time)-Temperature Equivalence of Relaxation in Saturated Rocks. Pure & Applied Geophysics, (accepted)
    172. Xu T., Rutqvist J., Apps J., and Garcia J., Numerical modeling of aquifer disposal of CO2. Paper SPE-83695, SPE Journal,, 2003
    173. Xu T., Sonnenthal E., Spycher N., Pruess K., Brimhall G, Apps J., Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 2. Applications to supergene copper enrichment and hydrothermal flows. American Journal of Science, Vol.301:34-59, 2001
    174. Zimmerman R.W., The elastic moduli of a solid with spherical pores: New self-consistent method. International Journal of Rock Mechanics and Mining Science, Vol.21: 339-343, 1984
    175. Zimmerman R.W., Elastic moduli of a solid containing spherical inclusions. Mech. Mater., Vol.12: 17-24, 1991
    176. Zimmerman W. B., Homsy G. M., A Viscous fingering in miscible displacements: Unication of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear finger propagation. Phys. Fluids A, Vol.4: 1099-1102,1992
    177. Zimmerman W. B., Homsy G. M.,Three dimensional viscous fingering: a numerical study. Physics of Fluids A, Vol.4(9): 1901-1921, 1992
    178. Zimmerman W. B., Homsy G. M., Nonlinear viscous fingering in miscible displacement with anisotropic dispersion. Physics of Fluids A, Vol. 3(8): 1859, 1991
    179. Zweigel P., Hamgorg M., Arts R., Lothe A. E., et al., Simulation of migration of injected CO2 in the Sleipner case by means of a secondary migration modelling tool—A contribution to the Saline Aquifer CO2 Storage project (SACS). SINTEF Petroleum Research report, 2000
    180.柴军瑞,仵彦卿,岩体渗流场与应力场耦合分析的多重裂隙网络模型,岩石力学与工程学报,Vol.19(6):712-717,2000
    181.陈小宏,牟永光,四维地震油藏监测技术及其应用,石油地球物理勘探,vol.33(6):707-715,1998
    182.方芳,刘俊明,扩散限制聚集模型.科技进展,Vol.26(4):200-205,1991
    183.黄绪德,油气层的速度问题,石油物探,vol.36(4):1-15
    184.李小春,小出仁等,二氧化碳地中隔离技术及其岩石力学问题.岩石力学与工程学报,Vol.22(6):989-994,2003
    185.毛云新,何家雄,张树林,张玉芬,莺歌海盆地泥底辟带昌南区热流体活动的地球物理特征及成因天然气地球科学,Vol.16(1),2005
    186.彭勃,韩宏学 等,流动模拟法预测三维孔隙介质的渗透率,大庆石油地质与开发,Vol.21(6):19-24,2002
    187.孙春岩,章明昱,牛滨华,黄新武,天然气水合物地震空白带现象正演模型研究,地学前缘(中国地质大学,北京),Vol.10(1):199-204
    188.田开铭,万力,各向异性裂隙介质渗透性的研究与评价,北京:学苑出版社,1989
    189.席道瑛,刘斌,谢端,刘卫,易良坤,张斌,孔隙流体饱和砂岩的衰减和频率的相关性,石油地球物理勘探,Vol.33(1):66~70,1998
    190.席道瑛,程经毅,席军,饱和砂岩滞弹性弛豫热激活过程机理探讨,石油地球物理勘探,Vol.33(3):348~354,1998
    191.席道瑛,刘卫,易良坤,谢端,邱文亮,张斌,在不同饱和流体条件下大理岩砂岩应力波的衰减,Vol.15(增刊):456~459,1996
    192.席道瑛,易良坤,张斌,李娟,双相介质中引力波的衰减规律,17(4):429~433,1998
    193.席道瑛,程经毅,易良坤等,饱和砂岩中衰减,模量和速度的流体效应,石油勘探,Vol.38(3):45~49,1999
    194.席道瑛,胡天跃,易良坤,李纲,含粘滞流体砂岩的动态力学行为,岩石力学和工程学报,Vol.18(6):631~634,1999
    195.席道瑛,刘斌,刘卫,易良坤,饱和多空岩石弛豫衰减对时间和温度的依赖性,地球物理学报,Vol.43(6):827~834,2000
    196.席道瑛,田象燕,高尔根等,低频衰减特性和理论模型的发展,岩石力学和工程学报, Vol.22(5):851~856,2004
    197.席道瑛,张程远,刘小燕,白石羽,饱和岩石的时温等效关系,物探化探计算技术,Vol22(2):127-131,2000
    198.席道瑛,易良坤,田象燕,Biot理论的微相修正对S波特性的影响,地球物理学报,Vol.46(6):815~820.2003
    199.席道瑛,陈普刚,应力或热疲劳对花岗岩凯塞效应的影响,地震地质,Vol.17(2):160-166,1995
    200.席道瑛,谢端,破碎大理岩热开裂引起的声发射,实验地球物理研究文集,地球物理学报编辑委员会,地震出版社,Vol.32,Supp.1:527-531,1989
    201.席道瑛,易良坤,田象燕,Biot理论的唯象修正对S波特性的影响,地球物理学报,Vol.46(6),814—820,2003
    202.易良坤,唯象的孔隙介质波动理论及其实验证据,中国科学技术大学硕士学位论文,1999
    203.易良坤,席道瑛,刘小燕,孔隙介质热激活弛豫波动理论,岩石力学与工程学报,Vol.22(05):803-809,2003
    204.云美厚,油田注水开采地震监测理论研究,石油物探,Vol.363):46-55,1997
    205.张建华,罗俊,屈世显,刘振华等,粘性指进的实验、模拟与多分形研究.科技通报,Vol.14(5):315-320,1998
    206.周宏伟,谢和平,2001,孔隙介质细观渗流DLA效应的实验研究.石油学报,Vol.22(3):52-57,2001
    207.邹立芝,潘俊,杨昌兵,张海燕,含水层水力参数的尺度效应研究现状,长春科技大学学报,Vol.24(1):66-69,1994