热处理和变形对锰铜合金微观组织和阻尼性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对锰铜合金存在的阻尼性能低和阻尼性能延时变劣等主要问题,提出了本文的研究内容和技术路线。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子背散射衍射系统(EBSD)和动态机械热分析仪(DMA)等测试方法,
     研究了热处理和变形工艺对轧制态CuMn50合金的微观组织和阻尼性能的影响。研究840℃保温0.5h后不同冷速及后续时效时间对锰铜合金微观结构和阻尼性能的影响。结果表明:随着冷速提高,阻尼性能降低,缓慢冷却有利于富锰区的产生,起到了时效的作用,使合金具有较高的阻尼性能;炉冷试样时效后,阻尼性能进一步提高,时效时间对炉冷试样的微观结构和阻尼性能几乎没有影响;水冷试样时效后,随着时效时间的增大,合金的晶粒先变得粗大随后析出第二相α-Mn,阻尼性能先增大到峰值随后略为减低,420℃时效8h后,合金的阻尼性能达到最好。
     通过研究锰铜合金热循环处理工艺试样的微观结构和阻尼性能,发现热循环10次试样的组织中,片状马氏体孪晶片层变细,而且沉淀析出了α-Mn沉淀物,从而使得热循环10次试样的阻尼性能大幅下降;与热循环10次相比,热循环30次试样在测试温度范围内合金的阻尼值增大,这是因为在α-Mn沉淀物形成的富锰区产生了新的马氏体。
     研究了预变形对锰铜合金微观结构和阻尼性能的影响。锰铜合金的振幅-阻尼曲线随预变形量的变化不大。预变性试样的微观结构和温度-阻尼曲线结果表明,随着预变形的增大,由于锰含量偏低,诱发生成的新马氏体并不多,所以合金的阻尼性能也增加不大;随着预变形的进一步增大,马氏体相变孪晶逐渐增多,使得锰铜合金出现了明显的低温孪晶弛豫峰。
     随着弯曲变形次数的增加,首先在外加应力的作用下,诱发形成马氏体,马氏体片的相互接触使得马氏体与母相界面的数量减少,可动性也会降低,从而导致内耗略微下降;当弯曲变形次数进一步增大,马氏体组织在相变温度附近产生小角度晶界和孪晶等亚结构,这些亚结构的可动性对合金的阻尼性能做出贡献,使得合金在90℃(马氏体相变点附近)的阻尼性能提高。
For major problems of manganese copper alloys, this study proposed research content and technical routes. The phase structures, microstructure and damping capacity of rolled CuMn50 alloy were tested using x-ray diffractometer, scanning electron microscopy, electronic back scatters diffraction system and dynamic mechanical thermal analyzer. The effect of heat treatment and deformation on damping capacity and microstructure of rolled CuMn50 alloy was study.
     The effect of different cooling rates and aging time on the manganese-copper alloy microstructure and damping capacity were researched. The damping capacity of rolled CuMn50 alloy decreased with the cooling rate increasing, the slow cooling rate is conducive to the production of manganese-rich, played a role in aging. After aged at 420℃for different time, the damping capacity of furnace cooling specimens is further increased, however, aging time did not affect the damping properties of the sample. After aged at 420℃for different time, with the aging time increases, the grain first becomes coarse, followed by precipitation of second phaseα-mn, and the damping capacity of water cooling specimens increased to the peak value first and then slightly reduced with the aging time increasing. When the aging temperature is about 420℃,the aging time is about 8h,the best damping capacity of water cooling specimens is obtained.
     The microstructure and damping properties of the manganese-copper alloy by thermal cycling treatment process were researched. In the tissue of thermal cycle 10 times samples, plate martensite twins became thinner, and the precipitation of theα-Mn deposits, these make the damping properties of the thermal cycle 10 times sample dropped significantly. In the thermal cycle 30 times sampleα-Mn-rich manganese deposits formed martensite, the damping values higher than the thermal cycle 10 times sample.
     The microstructure and damping capacity of pre-deformation on the Mn-Cu alloy were study. The amplitude-damping properties of pre-deformed samples vary unsignificantly, The temperature-damping performance of the pre-deformation sample changes significantly with the pre-deformation increase, due to the low manganese content, induced martensite formation is not much, so the damping properties of the alloy also increased unsignificantly. With the further increase of pre-deformation, the twin martensite gradually increased, making the manganese-copper alloy high emerge the low-temperature relaxation peak twins.
     With the number of bending deformation increase, the applied stress induced the formation of martensite, makes martensite film contact with each other and reduce the number of martensite-parent phase interfaces, mobility would be also reduced, leading to damping capacity decreased slightly. When further increasing the number of bending deformation, martensite produced the small angle grain boundaries and twins and other sub-structure near the phase transition temperature, the mobility of sub-structure contribute to damping properties of the alloy,and make the damping performance of the alloy (near the martensitic transformation) improve at 90℃.
引文
[1]刘广,张振忠,张少明,沈晓冬,马立群.高阻尼镁锆合金的研究进展及展望[J].材料导报, 2006, 20(7):425-428.
    [2]李沛勇,戴圣龙.材料阻尼及阻尼合金的研究现状[J].材料工程, 1999(8):44-48.
    [3]赵稼祥.加强发展军用功能材料[J].材料工程, 1995, 3(31):1.
    [4]王敬丰,凌闯,潘复生,汤爱涛,丁培道.合金元素对镁合金阻尼性能影响的研究进展[J].兵器材料科学与工程, 2009(3):90-95.
    [5]徐金璋.减振合金的开发现状和展望[J].上海钢研, 2002(3):48-51.
    [6]方前锋,朱震刚.高阻尼材料的阻尼机理及性能评估[J].物理, 2000, 29(9):541-545.
    [7]田莳.金属物理性能[M].北京:航空工业出版社. 1994.
    [8]方正春.减振材料的最近发展[J].材料开发与应用, 1993, 8(1):10-16.
    [9]窦光宇.减振合金噪声的克星[J].金属世界, 2000(5):32.
    [10]蔚晓嘉,郑渝,康国柱.不同成分锰铜合金热处理后的组织与减振性能[J].第九次全国热处理大会论文集(一), 2007:157-159.
    [11]邓华铭.锰基高阻尼合金的研究进展[J].金属功能材料, 2000, 7(2):1-6.
    [12] Langham J M. A new high-damping alloy [J] . Foundry Trade Journal , 1968 , 124 (6) : 989 -999.
    [13] Ingerson Qf. Process Engineering and Manufacturing Techniques For Producing Incramute I Castings [J]. INCRA Rep, 1973:32.
    [14]方正春.螺旋桨用高阻尼合金研究[J].中国造船, 1996(1):78-83.
    [15]雷运涛,韩顺昌.稀土元素Ce对Mn―Cu合金阻尼性能的影响[J].材料开发与应用, 1999, 14(6):1-3.
    [16] Hiroshi E. Development of vibration damping materials [J].Journal of Japanese Socity of Mechnical Engineering,1993,96(893):63-66.
    [17]葛庭燧.固体内耗理论基础[M].北京:科学出版社. 2000.
    [18] Zener C.M. Elasticity and anelasticity of metals [J]. The Journal of Physical Chemistry, 1948, 53(9):1468.
    [19]丁文江.镁合金科学与技术[M].北京:科学出版社. 2007.
    [20]刘楚明,纪仁峰,周海涛,陈明安.镁及镁合金阻尼特性的研究进展[J].中国有色金属学报, 2005, 15(9):1319-1325.
    [21]邱成军,王元化,王义杰.材料物理性能[M].哈尔滨:哈尔滨工业大学出版社. 2007.
    [22] Levinson Dw, Dj Mcpherson. Phase relations in magnesium-lithium-aluminum alloys [J]. TransASM, 1956, 48:689.
    [23]王敬丰,魏文文,潘复生,汤爱涛,丁培道.金属阻尼材料研究的新进展及发展方向[J].材料导报, 2009, 23(13):15-19.
    [24]冯端.金属物理学第三卷(金属力学性质) [M].北京:科学出版社. 1999.
    [25]王从曾.材料性能学[M].北京:北京工业大学出版社. 2001.
    [26]杜娟.纳米ZrO_2马氏体相变相关问题的研究[D].上海: 2007.
    [27] Langham J M. A new high-damping alloy [J]. Foundry Trade Journal , 1968 , 124 (6) : 989-999.
    [28]王丽萍,葛青文. Zn, Al对Mn―Cu减振合金减振性能的影响[J].中国有色金属学报, 1998, 8(1):78-84.
    [29] Baik S.H. High damping Fe-Mn martensitic alloys for engineering applications [J]. Nuclear engineering and design, 2000, 198(3):241-252.
    [30] Bozorth R.M. Ferromagnetism [M]. Wiley-IEEE Press. 1993.
    [31] Cochardt A. Magnetomechanical damping [J]. Magnetic properties of metals and alloys, 1959:251.
    [32] Cochardt Aw. The origin of damping in high-strength ferromagnetic alloys [J]. Journal of Applied Mechanics, 1953, 20:196-200.
    [33] Smith G.W., J.R. Birchak. Internal Stress Distribution Theory of Magnetomechanical Hysteresis - An Extension to Include Effects of Magnetic Field and Applied Stress [J]. Journal of Applied Physics, 1969, 40(13):5174-5178.
    [34] Laddha S., Dc Van Aken. On the application of magnetomechanical models to explain damping in an antiferromagnetic copper-manganese alloy [J]. Metallurgical and Materials Transactions A, 1995, 26(4):957-964.
    [35]方正春.锰铜基减振合金及其在工程中的应用[J].特种铸造及有色合金, 1987, 2:38-40.
    [36]方正春,哈学基.舰船螺旋桨用2310高阻尼合金的研究[J].材料开发与应用, 1989(1):14-25.
    [37]蔚晓嘉,康国柱,郑渝,郝虎在.火法冶炼锰基减振合金热处理后的组织性能[J].太原理工大学学报, 2008, 39(2):158-160.
    [38] Jensen Jw, D.F. Walsh. Manganese-Copper Damping Alloys [J]. Govt Rep, Bureau of Mines, 1965:55.
    [39] Goodwin Rj. Manganese-copper alloys of high damping capacity [J]. Metal Science, 1968, 2(1):121-128.
    [40] Perkins J. Tweed Microstructures and Evolution of High Clamping in Cu--Mn Based Alloys [J]. Phase Transformations'87, 1987:165-168.
    [41] Ritchie I., K. Sprungmann, M. Sahoo. Internal Friction in Sonoston-A High DampingMn/Cu-based Alloy for Marine Propeller Applications [J]. 1985, 3(10):409-411.
    [42] Laddha S., D.C. Van Aken, H.T. Lin. The effect of carbon on the loss of room-temperature damping capacity in copper-manganese alloys [J]. Metallurgical and Materials Transactions A, 1997, 28(1):105-112.
    [43] Birchon D., De Bromley, D. Healey. Mechanism of Energy Dissipation in High-Damping-Capacity Manganese-Copper Alloys [J]. Metal Science, 1968, 2(1):41-46.
    [44] Sugimoto K., T. Mori, S. Shiode. Effect of Composition on the Internal Friction and Young's Modulus in Gamma-Phase Mn-Cu Alloys [J]. Metal Science, 1973, 7(1):103-108.
    [45] Worrell F.T. Twinning in tetragonal alloys of copper and manganese [J]. Journal of Applied Physics, 1948, 19(10):929-933.
    [46] Siefert A.V., F.T. Worrell. The Role of Tetragonal Twins in the Internal Friction of Copper Manganese Alloys [J]. Journal of Applied Physics, 1951, 22(10):1257-1259.
    [47] Aoyagi T., K. Sumino. Mechanical Behaviour of Crystals with Twinned Structure [J]. physica status solidi (b), 1969, 33(1):317-326.
    [48] Sugimoto K. Internal friction phenomena associated with diffusionless phase transformations in alloys [J]. Le Journal de Physique Colloques, 1981, 42(C5):971-982.
    [49] Ke Y. Internal friction peaks associated with the coherency of the decomposition products of high-carbon and low-carbon martensite [J]. Acta Physica Sinica, 1964, 20(1):702-802.
    [50] Smith Jh, Er Vance. Decomposition of Gamma-Phase Manganese Copper Alloys [J]. Journal of Applied Physics, 1969, 40(12):4853-4858.
    [51] Street R. Magnetic Properties of Manganese Copper Alloys [J]. Journal of Applied Physics, 1960, 31(5):S310-S317.
    [52] Ke Ts, Lt Wang, Hc Yi. Internal friction in manganese-copper and manganese-copper- aluminium alloys [J]. Le Journal de Physique Colloques, 1987, 48(C8):8-8.
    [53] Huchun Yi, Ge Tingsui. Effect of Aging on Internal Friction, Elastic Modulus and Mechanical Properties of Ternary Mn-Cu-Al Alloys [J]. Acta Metallurgica Sinica (English Edition), 1989, 2(2):100-107.
    [54] Yiting W., X. Cunyi, C. Hui. Low-frequency internal friction of as-cast manganese-copper alloys [J]. Le Journal de Physique Colloques, 1985, 46(C10):413-416.
    [55]方正春.高阻尼合金及其工程中的应用[J].舰船科学技术, 1984, 9:17-25.
    [56] Langham J M. A new high-damping alloy [ J] . Foundry Trade Journal , 1968 , 124 (6) : 989 -999.
    [57] Hiroshi E. Development of vibration damping materials [J].Journal of Japanese Socity of Mechnical Engineering,1993,96(893):63-66.
    [58] Bacon Ge, Iw Dunmur, Jh Smith, R Street. The antiferromagnetism of manganese copper alloys [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1957:223-238.
    [59]邓华铭,钟志源.γMn基合金反铁磁畸变与高阻尼孪晶的形成[J].上海交通大学学报, 2002, 36(1):28-31.
    [60]郭二军,王丽萍,姚秀荣,朱兴松. ZMnD―1J锰铜阻尼合金的时效组织[J].中国有色金属学报, 2003, 13(2):387-392.
    [61]龚勤慧. CuZnAl系阻尼合金的研究[D]. 2007.
    [62]陆文龙,姜银方.热处理对挤压态Mn―Cu阻尼合金性能的影响[J].特种铸造及有色合金, 2002(6):10-11.
    [63] Smith Jh, Er Vance. Decomposition of Gamma-Phase Manganese Copper Alloys [J]. Journal of Applied Physics, 2009, 40(12):4853-4858.
    [64] Laddha S, Dc Van Aken, Ht Lin. The effect of carbon on the loss of room-temperature damping capacity in copper-manganese alloys [J]. Metallurgical and Materials Transactions A, 1997, 28(1):105-112.
    [65]张志方,张志东. Mn―Cu合金马氏体相变与沉淀的内耗[J].金属学报, 1991, 27(1):7-10.
    [66]王玉柱,马辉.低锰锰铜合金的内耗与相变特征[J].哈尔滨科学技术大学学报, 1989, 13(004):74-77.
    [67]陈一胜,刘萍,闫丰,魏梅红.铜阻尼合金的研究和发展现状[J].上海金属, 2007, 29(3):54-58.
    [68] Tian Q., F. Yin, T. Sakaguchi, K. Nagai. Internal friction behavior of twin boundaries in tensile-deformed Mn-15 at.% Cu alloy [J]. Materials Science and Engineering: A, 2006, 442(1-2):433-438.
    [69]于学勇. Fe-Mn系高阻尼合金阻尼性能的研究[D]. 2004.
    [70]黄姝珂,刘建辉,李昌安,周丹晨,李宁,文玉华.预变形对Fe-Mn合金层错几率和阻尼性能的影响[J].金属学报, 2009, 45(8):937-942.
    [71]滕劲,李宁,文玉华,黄姝珂,丁胜.预变形对FeMnCr合金阻尼性能的影响[J].铸造技术, 2008, 29(4):466-469.
    [72]于学勇,李宁,胥永刚,董守军,邱绍宇,邹红.预变形量对Fe-14.04 Mn-0.22 C合金阻尼性能的影响[J].金属热处理, 2004, 29(10):24-26.
    [73]戴鹏,吴明在,宫晨利.热弹性马氏体相变中的高温内耗峰[J].稀有金属, 2009, 33(6):795-798.
    [74]王力田,葛庭燧. MnCu合金马氏体相变和马氏体的内耗[J].金属学报, 1988, 24(3):A147-A154.
    [75]谢存毅.铸态MnCu合金的非线性内耗[J].理化检验:物理分册, 1994, 30(4):30-32.
    [76]朱成忠,宫晨利,闵祥敏.热弹性马氏体相变滞弹性弛豫的研究[J].合肥工业大学学报:自然科学版, 2010, 33(1):36-37.
    [77]刘家玺.金属内耗的工程应用—减振及高减振合金[J].四川大学学报(工程科学版), 1983(2):149-156.