BiFeO_3的铁电,压电和光学性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多铁材料拥有丰富的物理性质,广泛应用于各种通讯、探测、控频和存储器件中。近来的研究发现它在光伏领域也有巨大的应用潜力,很可能会成为一种新型的太阳能电池材料或光敏材料。本论文采用第一原理方法对多铁BiFeO_3的铁电、压电、弹性和光学性质进行研究,并讨论其中的机制和潜在应用。
     首先,我们研究了BiFeO_3的极化强度在[111]单轴应力下的变化以及在这个过程中结构的稳定性。发现在应力从8变化到-8GPa的过程中,BiFeO_3的极化强度近线性地从75.45μC/cm2变化到97.08μC/cm2。这是由在单轴应力下Bi原子出现了较大的相对位移且Bi原子的玻恩有效电荷增大引起。同时,我们研究了BiFeO_3体系的弹性常数在应力下的变化,发现体系在8到-8GPa的单轴应力范围内是稳定的,当应力为11GPa时体系是不稳定的。
     然后,我们进一步研究了BiFeO_3体系在应力下光学性质的变化。我们发现在单轴压应力或双轴拉应力下,BiFeO_3的能带隙减小,并且带隙的值可以调节到适合光伏应用的最佳值1.4eV(光吸收谱和太阳光谱的交叠增大BiFeO_3;此外,还发现在单轴压应力下BiFeO_3的带隙从间接带隙变为直接带隙,进一步增强了能带边的光吸收。这些能带结构的变化主要是由于实空间中的z轴的压应变引起了倒空间中相应的轴的拉伸,从而引起了能带的展宽和能带隙的减小等变化。
     多铁BiFeO_3可以以四方结构存在于薄膜中,这种四方结构拥有巨大c/a比率和极化率,有广阔的应用前景。我们在论文的最后部分讨论了四方BiFeO_3的弹性、压电和光学性质。发现当体积小于113/atom(或大于173/atomBiFeO_3时,c44趋于零,暗示着结构这时是不稳定的。发现四方相比菱形相软。同时,我们给出了四方BiFeO_3的体弹性模量、剪切模量、杨氏模量、泊松比、弹性各向异性比率和压电系数。此外,我们发现和菱形BiFeO_3相比,四方BiFeO_3的介电函数出现了整体蓝移的现象,并且电荷转移激发比菱形相的高约0.3eV,这是由FeO6氧八面体的对称性被破坏造成的。我们还发现四方BiFeO_3是一个负单轴晶体并且在折射率谱中呈现出明显的双折射现象。
Multiferroic materials with rich physical properties are widely used in various com-munication devices, detectors, frequency control devices and storage devices, etc. It’sfound that multiferroic materials also have huge application potential in the field of pho-tovoltaic (PV) recently and are likely to become a kind of new type of solar cell materialsor photosensitive materials. We study the ferroelectric, piezoelectric and elastic, and op-tical properties of tetragonal BiFeO_3using first-principles density functional theory andwe also discuss its mechanism and potential applications.
     Firstly, we studied the change of polarization of BiFeO_3under [111] uniaxial stressand the stability of the structure in the process. We found that the polarization P increasesalmost linearly from75.45μC/cm2to97.08μC/cm2during the stress changing from8to-8GPa, due to the relative lager displacement of Bi atoms and the increases of Bornefective charge of Bi atoms. At the same time, we studied the change of elastic constantsof BiFeO_3under uniaxial stress. It is found that the structure is stable in the stress rangeof8to-8GPa, while at σ33=11GPa the structure is unstable.
     Then, we further studied the change of optical properties of BiFeO_3under uniaxialstress or biaxial stress. We found that the bandgap reduced and the value of bandgapcan be adjusted to the ideal value of1.4eV for PV application (the overlap of the lightabsorption spectrum and the solar spectrum increases); In addition, we also found that thebandgap of BiFeO_3has become a direct band gap from indirect band gap under uniaxialcompressive stress, which further strengthen the light absorption of the band edge. Thesechanges in the band structure are mainly due to the compression of z-axis in the real space.Since the compression of z-axis in the real space causes the tension of the correspondingaxis in the reciprocal space and it further causes the band broadening and the decrease ofthe band gap, etc.
     The tetragonal BiFeO_3is found in thin-film with huge c/a ratio and broad applica-tion prospect. We discussed the elastic, piezoelectric and optical properties of BiFeO_3inthe last part of the thesis. When the volume is less than113/atom (or greater than17
     3/atom), the c44of tetragonal phases tend to zero and the structures become unstable.The tetragonal phases are predicted to be softer than the rhombohedral antiferromagneticphase. Other elastic properties, including bulk modulus, shear modulus, Young’s modu- lus, Poisson’s ratio and elastic anisotropy ratios are also investigated. Besides, we foundthat the dielectric functions are blue-shifted compared with that of rhombohedral BFO,and charge transfer excitations that are~0.3eV higher than those of the rhombohedralcounterpart, caused by the damage of symmetry of FeO6octahedral. We also found thatthe tetragonal BiFeO_3is a negative uniaxial crystal and shows significant birefringencephenomenon.
引文
[1] Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys.,2005,77(4):1083–1130.
    [2] Scott J F. Applications of modern ferroelectrics. Science,2007,315(5814):954–959.
    [3] Spaldin N A, Cheong S W, Ramesh R. Multiferroics: Past, present, and future. Phys. Today,2010,63(10):38–43.
    [4] Wu S M, Cybart S A, Yi D, et al. Full Electric Control of Exchange Bias. Phys. Rev. Lett.,2013,110(6).
    [5] Wen H D, Chen P, Cosgrif M P, et al. Electronic Origin of Ultrafast Photoinduced Strain inBiFeO3. Phys. Rev. Lett.,2013,110(3).
    [6] Streubel R, Kohler D, Schafer R, et al. Strain-mediated elastic coupling in magnetoelectricnickel/barium-titanate heterostructures. Phys. Rev. B,2013,87(5).
    [7] Thomson R I, Jain P, Cheetham A K, et al. Elastic relaxation behavior, magnetoelastic cou-pling, and order-disorder processes in multiferroic metal-organic frameworks. Phys. Rev. B,2012,86(21).
    [8] Rizwan S, Zhang S, Yu T, et al. Piezoelectric enhancement of giant magnetoresistance inspin-valves with diferent magnetic anisotropies. J. Appl. Phys.,2013,113(2).
    [9] Morita T. Miniature piezoelectric motors. Sensors and Actuators a-Physical,2003,103(3):291–300.
    [10] Chu R Q, Xu Z J, Li G R, et al. Ultrahigh piezoelectric response along some special cleavageplane in BaTiO3single-crystals. Acta Phys. Sinica,2005,54(2):935–938.
    [11] Sharma P, McQuaid R G P, McGilly L J, et al. Nanoscale Dynamics of Superdomain Bound-aries in Single-Crystal BaTiO3Lamellae. Adv. Mater.,2013,25(9):1323–1330.
    [12] Kalinkin A N, Skorikov V M. Toroidal spin ordering in BiFeO(3), GaFeO(3), and Cr(2)O(3)in the Faddeev model with a magnetic field. Inorg. Mater.,2009,45(2):189–192.
    [13] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3multiferroic thin film heterostructures.Science,2003,299(5613):1719–1722.
    [14] You L, Yasui S, Ehara Y, et al. Domain tuning in mixed-phase BiFeO3thin films using vicinalsubstrates. Appl. Phys. Lett.,2012,100(20).
    [15] Neaton J B, Ederer C, Waghmare U V, et al. First-principles study of spontaneous polarizationin multiferroic BiFeO3. Phys. Rev. B,2005,71(1):014113.
    [16] Ricinschi D, Yun K Y, Okuyama M. A mechanism for the150mu C cm(-2) polarization ofBiFeO3films based on first-principles calculations and new structural data. J. Phys.: Condens.Matter,2006,18(6):L97–L105.
    [17] Wu J G, Qiao S, Wang J, et al. A giant polarization value of Zn and Mn co-modified bismuthferrite thin films. Appl. Phys. Lett.,2013,102(5).
    [18] Seidel J, Singh-Bhalla G, He Q, et al. Domain wall functionality in BiFeO3. Phase Transitions,2013,86(1):53–66.
    [19] Reddy V A, Pathak N P, Nath R. Domain switching in spray pyrolysis-deposited nano-crystalline BiFeO3films. Phys. Scr.,2012,86(6).
    [20] Valasek J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev.,1921,17(4):475–481.
    [21] Yang J C, He Q, Suresha S J, et al. Orthorhombic BiFeO3. Phys. Rev. Lett.,2012,109(24).
    [22] Yao Y B, Zhang B, Chen L, et al. Polarization-tuned diode behaviour in multiferroic BiFeO3thin films. J. Phys. D: Appl. Phys.,2013,46(5).
    [23] Park J M, Nakashima S, Sohgawa M, et al. Ferroelectric and Piezoelectric Properties of Poly-crystalline BiFeO3Thin Films Prepared by Pulsed Laser Deposition under Magnetic Field.Jpn. J. Appl. Phys.,2012,51(9).
    [24]陈纲,寥理几,郝伟.晶体物理学基础.2ed.,北京:科学出版社,1992.
    [25] http://baike.baidu.com/view/249682.htm..
    [26] Wo¨hrle D, Meissner D. Organic Solar-Cells. Adv. Mater.,1991,3(3):129–138.
    [27] Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic efect in BiFeO3.Science,2009,324(5923):63–6.
    [28] Yang X L, Su X D, Shen M R, et al. Enhancement of Photocurrent in Ferroelectric Films Viathe Incorporation of Narrow Bandgap Nanoparticles. Adv. Mater.,2012,24(9):1202–1208.
    [29] Lofland S E, McDonald K F, Metting C J, et al. Epitaxy, texturing, and second-harmonicgeneration in BiFeO3thin films. Phys. Rev. B,2006,73(9):092408.
    [30] Yang S Y, Martin L W, Byrnes S J, et al. Photovoltaic efects in BiFeO(3). Appl. Phys. Lett.,2009,95(6):062909.
    [31] Basu S R, Martin L W, Chu Y H, et al. Photoconductivity in BiFeO(3) thin films. Appl. Phys.Lett.,2008,92(9):091905.
    [32] Yi H T, Choi T, Choi S G, et al. Mechanism of the Switchable Photovoltaic Efect in Ferro-electric BiFeO3. Adv. Mater.,2011,23(30):3403.
    [33] Shang S L, Sheng G, Wang Y, et al. Elastic properties of cubic and rhombohedral BiFeO3fromfirst-principles calculations. Phys. Rev. B,2009,80(5):052102.
    [34] Lebeugle D, Colson D, Forget A, et al. Very large spontaneous electric polarization in BiFeO3single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett.,2007,91(2):022907.
    [35] Kundys B, Viret M, Colson D, et al. Light-induced size changes in BiFeO3crystals. Nat.Mater.,2010,9(10):803–5.
    [36] Catalan G, Scott J F. Physics and Applications of Bismuth Ferrite. Adv. Mater.,2009,21(24):2463–2485.
    [37] Christen H M, Nam J H, Kim H S, et al. Stress-induced R-M(A)-M(C)-T symmetry changesin BiFeO(3) films. Phys. Rev. B,2011,83(14):144107.
    [38] Wu Z G, Cohen R E. Pressure-induced anomalous phase transitions and colossal enhancementof piezoelectricity in PbTiO3. Phys. Rev. Lett.,2005,95(3):037601.
    [39] Zeches R J, Rossell M D, Zhang J X, et al. A strain-driven morphotropic phase boundary inBiFeO3. Science,2009,326(5955):977–80.
    [40] Baek S H, Jang H W, Folkman C M, et al. Ferroelastic switching for nanoscale non-volatilemagnetoelectric devices. Nat. Mater.,2010,9(4):309–314.
    [41] Ederer C, Spaldin N A. Influence of strain and oxygen vacancies on the magnetoelectric prop-erties of multiferroic bismuth ferrite. Phys. Rev. B,2005,71(22):224103.
    [42] Teague J R, Gerson R, James W J. Dielectric Hysteresis in Single Crystal Bifeo3. Solid StateCommun.,1970,8(13):1073.
    [43] Dudarev S L, Botton G A, Savrasov S Y, et al. Electron-energy-loss spectra and the structuralstability of nickel oxide:An LSDA+U study. Phys. Rev. B,1998,57(3):1505–1509.
    [44] Newnham R E, Kramer J J, Schulze W A, et al. Magnetoferroelectricity in Cr2BeO4. J. Appl.Phys.,1978,49:6088.
    [45] Zubko P, Gariglio S, Gabay M, et al. Interface Physics in Complex Oxide Heterostructures.Annu. Rev. Condens. Matt. Phys.,2011,2:141–165.
    [46] Zhao Q X, Ma J K, Wei D Y, et al. Epitaxial SrRuO(3)/BiFeO(3)/SrRuO(3) heterostructuresputtered at low temperature. J. Cryst. Growth,2011,316(1):71–74.
    [47] Zhang W L, Eitel R E. Low-Temperature Sintering and Properties of0.98PZT-0.02SKN Ce-ramics with LiBiO(2) and CuO Addition. J. Am. Ceram. Soc.,2011,94(10):3386–3390.
    [48] Zhang J X, Xiang B, He Q, et al. Large field-induced strains in a lead-free piezoelectricmaterial. Nature Nanotech.,2011,6(2):97–101.
    [49] Prasad C S R L, Sreenivasulu G, Kiran S R, et al. Electrical and Magnetic Properties ofNanocrystalline BiFeO(3) Prepared by High Energy Ball Milling and Microwave Sintering. J.Nano. Nanotechn.,2011,11(5):4097–4102.
    [50] Liu B, Hu B B, Du Z L. Hydrothermal synthesis and magnetic properties of single-crystallineBiFeO(3) nanowires. Chem. Commun.,2011,47(28):8166–8168.
    [51] Sosnowska I, Peterlinneumaier T, Steichele E. Spiral Magnetic-Ordering in Bismuth Ferrite.J. Phys.: Condens. Matter,1982,15(23):4835–4846.
    [52] Dzialoshinskii I E. Thermodynamic Theory of Weak Ferromagnetism in AntiferromagneticSubstances. Sov. Phys. Jetp-Ussr,1957,5(6):1259–1272.
    [53] Bai F M, Wang J L, Wuttig M, et al. Destruction of spin cycloid in (111)(c)-oriented BiFeO3thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization.Appl. Phys. Lett.,2005,86(3).
    [54] Bea H, Bibes M, Petit S, et al. Structural distortion and magnetism of BiFeO3epitaxial thinfilms: A Raman spectroscopy and neutron difraction study. Philos. Mag. Lett.,2007,87(3-4):165–174.
    [55] Popov Y F, Zvezdin A K, Vorobev G P, et al. Linear Magnetoelectric Efect and Phase-Transitions in Bismuth Ferrite, Bifeo3. Jetp Lett.,1993,57(1):69–73.
    [56] Sosnowska I, Schafer W, Kockelmann W, et al. Crystal structure and spiral magnetic orderingof BiFeO3doped with manganese. Appl. Phys. a-Mater.,2002,74:S1040–S1042.
    [57] Moriya T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev.,1960,120(1):91–98.
    [58] Wang C, Jin K J, Xu Z T, et al. Switchable diode efect and ferroelectric resistive switching inepitaxial BiFeO(3) thin films. Appl. Phys. Lett.,2011,98(19).
    [59] Fennie C J. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett.,2008,100(16).
    [60] Dieguez O, Gonzalez-Vazquez O E, Wojdel J C, et al. First-principles predictions of low-energy phases of multiferroic BiFeO(3). Phys. Rev. B,2011,83(9):094105.
    [61] Mazumdar D, Shelke V, Iliev M, et al. Nanoscale switching characteristics of nearly tetragonalBiFeO3thin films. Nano Lett.,2010,10(7):2555–61.
    [62] Guo R, Cross L E, Park S E, et al. Origin of the High Piezoelectric Response in PbZr1xTixO3.Phys. Rev. Lett.,2000,84:5423–5426.
    [63] Ahart M, Somayazulu M, Cohen R E, et al. Origin of morphotropic phase boundaries inferroelectrics. Nature,2008,451(7178):545–U2.
    [64] Dieguez O, Iniguez J. First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3-BiCoO3multiferroic solid solutions. Phys. Rev. Lett.,2011,107(5):057601.
    [65] Simoes A Z, Garcia F G, Riccardi C S. Piezoresponse behavior of niobium doped bismuthferrite thin films grown by chemical method. J. Alloy. Compound.,2010,493(1-2):158–162.
    [66] Rorvik P M, Grande T, Einarsrud M A. One-Dimensional Nanostructures of FerroelectricPerovskites. Adv. Mater.,2011,23(35):4007–4034.
    [67] Dong W, Guo Y P, Guo B, et al. Photovoltaic properties of BiFeO3thin film capacitors byusing Al-doped zinc oxide as top electrode. Mater. Lett.,2013,91:359–361.
    [68] Matsuda M, Fishman R S, Hong T, et al. Magnetic Dispersion and Anisotropy in MultiferroicBiFeO3. Phys. Rev. Lett.,2012,109(6).
    [69] Escorihuela-Sayalero C, Dieguez O, Iniguez J. Strain Engineering Magnetic Frustration inPerovskite Oxide Thin Films. Phys. Rev. Lett.,2012,109(24).
    [70] Born M, Oppenheimer R. Quantum theory of molecules. Annalen Der Physik,1927,84(20):0457–0484.
    [71] Fock V. Approximation method for the solution of the quantum mechanical multibody prob-lems. Z. Phys.,1930,61(1-2):126–148.
    [72] Kohn W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals.Rev. Mod. Phys.,1999,71(5):1253–1266.
    [73] Thomas L H. The calculation of atomic fields. Proceedings of the Cambridge PhilosophicalSociety,1927,23:542–548.
    [74] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B,1964,136(3B):B864.
    [75] Runge E, Gross E K U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev.Lett.,1984,52(12):997–1000.
    [76] Theophilou A K. Energy Density Functional Formalism for Excited-States. J. Phys.: Condens.Matter,1979,12(24):5419–5430.
    [77] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Efects.Phys. Rev.,1965,140(4A):1133.
    [78] Perdew J P, Wang Y. Accurate and Simple Analytic Representation of the Electron-GasCorrelation-Energy. Phys. Rev. B,1992,45(23):13244–13249.
    [79] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys.Rev. Lett.,1996,77(18):3865–3868.
    [80] Becke A D. Density-Functional Thermochemistry.3. The Role of Exact Exchange. J. Chem.Phys.,1993,98(7):5648–5652.
    [81] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density. Phys. Rev. B,1988,37:785–789.
    [82] Perdew J P, Emzerhof M, Burke K. Rationale for mixing exact exchange with density func-tional approximations. J. Chem. Phys.,1996,105(22):9982–9985.
    [83] Ernzerhof M, Scuseria G E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlationfunctional. J. Chem. Phys.,1999,110(11):5029–5036.
    [84] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential(vol118, pg8207,2003). J. Chem. Phys.,2006,124(21):219906.
    [85] Heyd J, Scuseria G E. Efcient hybrid density functional calculations in solids: Assessmentof the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys.,2004,121(3):1187–1192.
    [86] Martin R M. Elactronic structure: Basic theory and practical methods. Cambridge: Cambridgeuniversity press,2004.
    [87]徐光宪,黎乐民,王德民.量子化学(中册).北京:科学出版社,1985.
    [88] Delley B. An All-Electron Numerical-Method for Solving the Local Density Functional forPolyatomic-Molecules. J. Chem. Phys.,1990,92(1):508–517.
    [89] Dolg M, Wedig U, Stoll H, et al. Energy-Adjusted Abinitio Pseudopotentials for the1st-RowTransition-Elements. J. Chem. Phys.,1987,86(2):866–872.
    [90] Hamann D R, Schluter M, Chiang C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett.,1979,43(20):1494–1497.
    [91] Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism.Phys. Rev. B,1990,41(11):7892–7895.
    [92] Blochl P E. Projector augmented-wave method. Phys. Rev. B,1994,50(24):17953–17979.
    [93] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method.Phys. Rev. B,1999,59:1758–1775.
    [94] Kresse G, Furthmuller J. Efcient iterative schemes for ab initio total-energy calculations usinga plane-wave basis set. Phys. Rev. B,1996,54(16):11169–11186.
    [95] http://www.gaussian.com..
    [96] Yi H T, Choi T, Choi S G, et al. Mechanism of the Switchable Photovoltaic Efect in Ferro-electric BiFeO(3). Adv. Mater.,2011,23(30):3403–3407.
    [97] Jiang A Q, Wang C, Jin K J, et al. A Resistive Memory in Semiconducting BiFeO(3) Thin-FilmCapacitors. Adv. Mater.,2011,23(10):1277.
    [98] Ravindran P, Vidya R, Kjekshus A, et al. Theoretical investigation of magnetoelectric behaviorin BiFeO3. Phys. Rev. B,2006,74(22):224412.
    [99] Pintilie L, Vrejoiu I, Rhun G L, et al. Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films. J. Appl. Phys.,2007,101(6).
    [100] Davis M, Damjanovic D, Setter N. Electric-field-, temperature-, and stress-induced phasetransitions in relaxor ferroelectric single crystals. Phys. Rev. B,2006,73(1):014115.
    [101] Gonzalez-Vazquez O E, Iniguez J. Pressure-induced structural, electronic, and magnetic efectsin BiFeO(3). Phys. Rev. B,2009,79(6):064102.
    [102] Valant M, Kolodiazhnyi T, Arcon I, et al. The Origin of Magnetism in Mn-Doped SrTiO3.Adv. Funct. Mater.,2012,22(10):2114–2122.
    [103] Duan Y F, Li J B, Li S S, et al. Abnormal ferroelectric response and enhancement of piezo-electricity of PbTiO(3) under uniaxial compression. J. Appl. Phys.,2008,103(8):083713.
    [104] Kozlenko D P, Belik A A, Belushkin A V, et al. Antipolar phase in multiferroic BiFeO3at highpressure. Phys. Rev. B,2011,84(9):094108.
    [105] Jang H W, Baek S H, Ortiz D, et al. Strain-induced polarization rotation in epitaxial (001)BiFeO3thin films. Phys. Rev. Lett.,2008,101(10):107602.
    [106] Born M, Huang K. Dynamical theory of Crystal Lattices. New York: Oxford University Press,1988.
    [107] Kumar A, Scott J F, Katiyar R S. Electric control of magnon frequencies and magnetic momentof bismuth ferrite thin films at room temperature. Appl. Phys. Lett.,2011,99(6):062504.
    [108] Perdew J P, Ruzsinszky A, Csonka G I, et al. Restoring the density-gradient expansion forexchange in solids and surfaces. Phys. Rev. Lett.,2008,100(13):136406.
    [109] Stroppa A, Picozzi S. Hybrid functional study of proper and improper multiferroics. Phys.Chem. Chem. Phys.,2010,12(20):5405–5416.
    [110] Blochl P E, Jepsen O, Andersen O K. Improved Tetrahedron Method for Brillouin-Zone Inte-grations. Phys. Rev. B,1994,49(23):16223–16233.
    [111] Elsasser C, Fahnle M, Chan C T, et al. Density-functional energies and forces with Gaussian-broadened fractional occupations. Phys. Rev. B,1994,49(19):13975–13978.
    [112] King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids. Phys. Rev. B,1993,47(3):1651–1654.
    [113] Vanderbilt D, King-Smith R D. Electric polarization as a bulk quantity and its relation tosurface charge. Phys. Rev. B,1993,48(7):4442–4455.
    [114] Le Page Y, Saxe P. Symmetry-general least-squares extraction of elastic data for strainedmaterials from ab initio calculations of stress. Phys. Rev. B,2002,65(10):104104.
    [115] Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of theperovskite BiFeO3. Acta Crystallogr. Sect. B,1990,46(6):698–702.
    [116] Lebeugle D, Colson D, Forget A, et al. Very large spontaneous electric polarization in BiFeO3single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett.,2007,91(2):022907.
    [117] Picozzi S, Ederer C. First principles studies of multiferroic materials. J. Phys.: Condens.Matter,2009,21(30):303201.
    [118] Toledano P, Fejer M M, Auld B A. Non-Linear Elasticity in Proper Ferroelastics. Phys. Rev.B,1983,27(9):5717–5746.
    [119] Cahn R W. Materials science-Melting from within. Nature,2001,413(6856):582–583.
    [120] Chynoweth A G. Surface Space-Charge Layers in Barium Titanate. Phys. Rev.,1956,102:705–714.
    [121] Yang S Y, SeidelJ, Byrnes S J, et al. Above-bandgap voltages from ferroelectric photovoltaicdevices. Nat. Nano,2010,5(2):143–147.
    [122] Qin M, Yao K, Liang Y C. High efcient photovoltaics in nanoscaled ferroelectric thin films.Appl. Phys. Lett.,2008,93(12):122904.
    [123] Fridkin V M. Bulk photovoltaic efect in noncentrosymmetric crystals. Crystallogr. Rep.,2001,46(4):654–658.
    [124] Chen P, Podraza N J, Xu X S, et al. Optical properties of quasi-tetragonal BiFeO3thin films.Appl. Phys. Lett.,2010,96(13):131907.
    [125] Condit H R, Grum F. Spectral Energy Distribution of Daylight. J. Opt. Soc. Am. A.,1964,54(7):937–44.
    [126] Samsonidze G, Cohen M L, Louie S G. Compensation-doped silicon for photovoltaic applica-tions. Phys. Rev. B,2011,84(19):195201.
    [127] Belik A A, Yusa H, Hirao N, et al. Structural Properties of Multiferroic BiFeO(3) under Hy-drostatic Pressure. Chem. Mater.,2009,21(14):3400–3405.
    [128] Guo H, Chen K, Oh Y, et al. Mechanics and Dynamics of the Strain-Induced M1-M2StructuralPhase Transition in Individual VO2Nanowires. Nano Lett.,2011,11(8):3207–3213.
    [129] Lan H S, Chan S T, Cheng T H, et al. Biaxial tensile strain efects on photoluminescence ofdiferent orientated Ge wafers. Appl. Phys. Lett.,2011,98(10):101106.
    [130] Shi H L, Chu M F, Zhang P. Optical properties of UO(2) and PuO(2). J. Nucl. Mater.,2010,400(2):151–156.
    [131] Standard G173-03A. Standard Tables for Reference Solar Spectral Irradiances: Direct Normaland Hemispherical on37Tilted Surface. ASTM International, West Conshohocken, PA,2008.
    [132] Shockley W, Queisser H J. Detailed Balance Limit of Efciency of P-N Junction Solar Cells.J. Appl. Phys.,1961,32(3):510–519.
    [133] Ubic R. Revised Method for the Prediction of Lattice Constants in Cubic and PseudocubicPerovskites. J. Am. Ceram. Soc.,2007,90(10):3326–3330.
    [134] Wang S Z, Xiong G C, He Y M, et al. High Misfit Epitaxial-Growth-SuperconductingYba2cu3o7-X Thin-Films on (100)Baf2Substrates. Appl. Phys. Lett.,1991,59(12):1509–1511.
    [135] Bea H, Dupe B, Fusil S, et al. Evidence for Room-Temperature Multiferroicity in a Compoundwith a Giant Axial Ratio. Phys. Rev. Lett.,2009,102(21):217603.
    [136] Chen Z H, Prosandeev S, Luo Z L, et al. Coexistence of ferroelectric triclinic phases in highlystrained BiFeO(3) films. Phys. Rev. B,2011,84(9):094116.
    [137] Dupe B, Prosandeev S, Geneste G, et al. BiFeO3films under tensile epitaxial strain from firstprinciples. Phys. Rev. Lett.,2011,106(23):237601.
    [138] Yun K Y, Ricinschi D, Kanashima T, et al. Giant ferroelectric polarization beyond150muC/cm(2) in BiFeO3thin film. Jpn. J. Appl. Phys. Part2,2004,43(5A):L647–L648.
    [139] Liu H J, Yang P, Yao K, et al. Origin of a Tetragonal BiFeO3Phase with a Giant c/a Ratio onSrTiO3Substrates. Adv. Funct. Mater.,2012,22(5):937–942.
    [140] Liu H J, Yang P, Yao K, et al. Growth rate induced monoclinic to tetragonal phase transition inepitaxial BiFeO(3)(001) thin films. Appl. Phys. Lett.,2011,98(10):102902.
    [141] Shen J Y, Johnston S, Shang S L, et al. Calculated strain energy of hexagonal epitaxial thinfilms. J. Cryst. Growth,2002,240(1-2):6–13.
    [142] Blochl P E, Jepsen O, Andersen O K. Improved Tetrahedron Method for Brillouin-Zone Inte-grations. Phys. Rev. B,1994,49(23):16223–16233.
    [143] Shang S L, Wang Y, Liu Z K. First-principles elastic constants of alpha-and theta-Al2O3.Appl. Phys. Lett.,2007,90(10):101909.
    [144] Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Societyof London Section A,1952,65(389):349–355.
    [145] Pugh S F. Relations between the elastic moduli and the plastic properties of polycryst allinepure metals. Philos. Mag.,1954,45:823.
    [146] Wu Z J, Zhao E J, Xiang H P, et al. Crystal structures and elastic properties of superhard IrN2and IrN3from first principles (vol76, art no054115,2007). Phys. Rev. B,2007,76(5):054115.
    [147] Vinet P, Rose J H, Ferrante J, et al. Universal Features of the Equation of State of Solids. J.Phys.: Condens. Matter,1989,1(11):1941–1963.
    [148] Zhu J L, Feng S M, Wang L J, et al. Structural stability of multiferroic BiFeO3. High PressureRes.,2010,30(2):265–272.
    [149] Zhang J X, Xiang B, He Q, et al. Large field-induced strains in a lead-free piezoelectricmaterial. Nature Nanotech.,2011,6(2):98–102.
    [150] Born M, Huang K. Dynamical theory of Crystal Lattices. New York: Oxford University Press,1988.
    [151] Ranganathan S I, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys. Rev. Lett.,2008,101(5):055504.
    [152] Chung D H, Buessem W R. in Anisotropy in Single Crystal Refractory Compounds, volume2.New York: Plenum,1968.
    [153] Christen H M, Nam J H, Kim H S, et al. Stress-induced R-M(A)-M(C)-T symmetry changesin BiFeO(3) films. Phys. Rev. B,2011,83(14):144107.
    [154] Bellaiche L, Garc′a A, Vanderbilt D. Finite-Temperature Properties of Pb(Zr1xTix)O3Alloysfrom First Principles. Phys. Rev. Lett.,2000,84:5427–5430.
    [155] Tutuncu H M, Srivastava G P. Electronic structure and lattice dynamical properties of diferenttetragonal phases of BiFeO(3). Phys. Rev. B,2008,78(23).
    [156] Dong H F, Wu Z G, Wang S Y, et al. Improving the optical absorption of BiFeO3for pho-tovoltaic applications via uniaxial compression or biaxial tension. Appl. Phys. Lett.,2013,102(7).
    [157] Ujimoto K, Yoshimura T, Ashida A, et al. Direct piezoelectric properties of (100) and (111)BiFeO3epitaxial thin films. Appl. Phys. Lett.,2012,100(10).
    [158] Rovillain P, Cazayous M, Sacuto A, et al. Piezoelectric measurements on BiFeO3single crystalby Raman scattering. J. Magn. Magn. Mater.,2009,321(11):1699–1701.
    [159] Daumont C, Ren W, Infante I C, et al. Strain dependence of polarization and piezoelectricresponse in epitaxial BiFeO3thin films. J. Phys.: Condens. Matter,2012,24(16):162202.
    [160] Cheng Z X, Wang X L, Du Y, et al. A way to enhance the magnetic moment of multiferroicbismuth ferrite. J. Phys. D: Appl. Phys.,2010,43(24):242001.
    [161] Bhushan B, Basumallick A, Bandopadhyay S K, et al. Efect of alkaline earth metal dopingon thermal, optical, magnetic and dielectric properties of BiFeO(3) nanoparticles. J. Phys. D:Appl. Phys.,2009,42(6):065004.
    [162] Liu H J, Yang P, Yao K, et al. Origin of a Tetragonal BiFeO3Phase with a Giant c/a Ratio onSrTiO3Substrates. Adv. Funct. Mater.,2012,22(5):937–942.
    [163] Yang X L, Su X D, Shen M R, et al. Enhancement of Photocurrent in Ferroelectric Films Viathe Incorporation of Narrow Bandgap Nanoparticles. Adv. Mater.,2012,24(9):1202–1208.
    [164] Allibe J, Bougot-Robin K, Jacquet E, et al. Optical properties of integrated multiferroicBiFeO(3) thin films for microwave applications. Appl. Phys. Lett.,2010,96(18):182902.
    [165] Choi S G, Yi H T, Cheong S W, et al. Optical anisotropy and charge-transfer transition energiesin BiFeO(3) from1.0to5.5eV. Phys. Rev. B,2011,83(10):100101.
    [166] Chen P, Podraza N J, Xu X S, et al. Optical properties of quasi-tetragonal BiFeO3thin films.Appl. Phys. Lett.,2010,96(13):131907.
    [167] Ihlefeld J F, Podraza N J, Liu Z K, et al. Optical band gap of BiFeO(3) grown by molecular-beam epitaxy. Appl. Phys. Lett.,2008,92(14):142908.
    [168] Ricinschi D, Yun K Y, Okuyama M. A mechanism for the150mu C/cm(2) polarization ofBiFeO3films based on first-principles calculations and new structural data. J. Phys.: Condens.Matter,2006,18(6):L97–L105.
    [169] Bea H, Ziegler B, Bibes M, et al. Nanoscale polarization switching mechanisms in multiferroicBiFeO(3) thin films. J. Phys.: Condens. Matter,2011,23(14):142201.
    [170] Ekuma C E, Jarrell M, Moreno J, et al. First principle electronic, structural, elastic, and opticalproperties of strontium titanate. Aip Adv.,2012,2(1):012189.