MABR降解有机物及其处理生活污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无泡曝气膜生物反应器(MABR)是将膜技术与生物技术结合起来产生的一种新型膜生物反应器。MABR不仅具有极高的氧气利用率和很高的为微生物供氧能力,而且具有操作过程能耗低的特点。由于曝气过程中没有气泡形成,MABR运行过程中废水中的易挥发性物质不会被吹脱进入空气,也不会由于表面活性剂的存在而产生气泡。
     本论文设计出了新颖的MABR膜组件和反应器装置,利用合成废水对MABR去除有机物和去除氨氮的机理及过程进行了深入研究,并对利用MABR进行生活污水处理进行了探讨。
     首先通过比较分析选择和制备了薄壁小内径的聚丙烯中空纤维膜作为微生物膜的载体,研制了一套实验室小型MABR装置。实验中采用循环挂膜法,实现了MABR系统的快速启动并探讨了载体表面微生物膜的形成过程。利用合成污水主要成份可控的特点较为系统地考察了实验条件对COD去除的影响。研究结果表明:本论文所研制的MABR装置对废水中的COD具有迅速的去除能力和显著的去除效果,同时对废水中的氨氮具备良好的去除能力。通过对不同膜内腔供氧压力条件下去除有机物的跟踪测试,揭示了MABR去除COD和去除氨氮的规律,指出掌握合适的操作条件对于有效脱除废水中的氨氮是非常重要的。
     在此基础上,重点考察了微生物膜的驯化、反应过程pH值、中空纤维供氧压力、水利停留时间、废水循环速度、反应温度等因素对MABR进行生活污水处理效果的影响。实验过程中,尽管每次生活污水进水水质差别很大,但经过MABR处理后,出水COD浓度通常保持在30mg/L以下,污水中的悬浮物也被有效降至15mg/L以下,污水中的氨氮得到了有效去除。
     通过MABR处理合成废水和生活污水的实验研究表明,MABR能够在单一反应器内同时实现COD去除和氨氮的硝化与硝酸盐氮反硝化。相比传统的污水处理工艺,MABR具有氧利用率高、节能、高效、多功能一体化、污泥量少、连续运行、集成可控、占地少等诸多优势,具有很好的应用前景。
Membrane aerated biofilm reactor (MABR) is a new type of membrane bioreactors developed by combining membrane technology and biotechnology in recent years,. MABR not only has a high utilization of oxygen and a high oxygen supply capacity for organisms, but also operates with energy-saving. Moreover, it is because of no bubble formation in the aeration process, there are not any volatile organic compounds stripped into the air during MABR wastewater treatment.
     A novel membrane module and a MABR reactor device were designed in this study. The mechanisms of MABR organic compounds and ammonia nitrogen removal were studied. Further more, MABR sewage treatment was discussed.
     By Comparative analysis, polypropylene hollow fiber membrane with a thin wall and small diameter were selected and prepared as biofilm supports. A set of small laboratory MABR device was developed. A quick start of MABR system was achieved by circulating the culture solution through the hollow fiber bundle in the reactor and the formation process of the biofilm on the hollow fiber surface was discussed. The effects of operation conditions on the COD removal were investigated by running the MABR system consisting of the synthetic wastewater in which all the major components are controllable. The results indicated that the MABR installation developed in this project showed a rapid remove capacity of COD in wastewater and significant removal in quantity, and a good ability in the removal of ammonia in wastewater. The laws of the MABR conduct COD and ammonia nitrogen removal were revealed by the track test running at different oxygen pressure in the lumen side of hollow fibers. It is pointed out that the appropriate operating conditions are very important for effectively removing ammonia in wastewater.
     On this basis, the effects of the biofilm domestication, pH, oxygen pressure in hollow fibers, HRT, wastewater recycling rate and temperature on the MABR sewage treatment were mainly investigated. The effluent COD concentration was usually maintained at 30 mg/L below and the sewage SS was effectively reduced to 15 mg/L below even if influent quality varied greatly during the MABR experiments. Meanwhile, ammonia in wastewater was effectively removed.
     The both studies of the synthetic wastewater MABR treatment and domestic sewage MABR treatment identify that MABR could achieve COD removal and simultaneously ammonia nitrogen nitrification and nitrate nitrogen denitrification in a single reactor at the same time. Compared to conventional wastewater treatment processes, MABR has many advantages, such as high oxygen utilization, energy conservation, high efficiency, multi-functional integration, less sludge, continuous operation, integration and easily controllable and others, and has good prospects.
引文
[1]刘茉娥,蔡邦肖,陈益棠,膜技术在污水治理及回用中的应用,北京:化学工业出版社,2004
    [2]唐受印,戴友芝,汪大翠,废水处理工程,北京:化学工业出版社,2004
    [3]胡勇有,刘绮,水处理工程,广州:华南理工大学出版社,2006
    [4]刘雨,赵庆良,郑兴灿,生物膜法污水处理技术,北京:中国建筑工业出版社,2000
    [5]刘贯一,超滤膜做载体的生物接触氧化工艺研究,中国给水排水,2000,16(8):4~7
    [6]K. Brindle , T. Stephenson , The Application of Membrane Biological Reactors for the Treatment of Wastewaters , J. Biotechnology and Bioengineering , 1996, 49(6): 601~610
    [7]T. Stephenson , K. Brindle , S. Judd , B. Jefferson , Membrane Bioreactors for Wastewater Treatment Book , Cranfield University(UK) , IWA Publishing,2000
    [8]M. Pankhania , T. Stephenson , M. J. Semmens , Hollow fibre bioreactor for wastewater treatment using bubbleless membrane aeration , Water research , 1994 , 28(10):2233~2236
    [9]S. J. Yeh , C. R. Jenkins , Pure oxygen fixed film reactor ,Journal of Environmental Engineering , 1978 , 104(4):611~623
    [10]H. Onishi , R. Numazawa , H. Takeda , Process and apparatus for wastewater treatment , US Patent , No.4181604,1980
    [11]T. B. Vick Roy , H. W. Blanch , C. R. Wilke , Microbial hollow fiber bioreactors , Trends of Biotechnol , 1983,1(4):135~139
    [12]郑斐,朱文亭,生物膜法新工艺—无泡曝气膜生物反应器,工业用水与废水,2004,35(3):9~12
    [13]P. A. Wilderer , J. Brautigam , I. Sekoulov , Application of gas permeable membranes for auxiliary oxygenation of sequencing batch reactors. Conserv.Recycling , 1985 , 8:181~192
    [14]C. Rothemund , A. Camper , P. A. Wilderer , Biofilms growing on gas permeable membranes , Water science and technology , 1994 , 29:447~454
    [15]Pierre Cote , Bubble-free aeration using membranes :mass transfer analysis , Journal of membrane science , 1989 , 47(1):91~96
    [16]Michael J. Semmens , Bubbleless aeration , Water engineering and management , 1991 , 138(4):18~19
    [17]D. L. Timberlake , S. E. Strand , K. J. Williamson ,Combined aerobic heterotrophic oxidation , nitrification in a permeable support biofilm , WaterResearch, 1998, 22:1513~1517
    [18]M. Pankhania , K. Brindle,T. Stephenson , Membrane aeration bioreactors for wastewater treatment : completely mixed and plug-flow operation ,Chemical engineering journal , 1999 , 73:131~136
    [19]K. Brindle , T. Stephenson , M. J. Semmens , Pilot-Plant Treatment of a High-Strength Brewery Wastewater Using a Membrane-Aeration Bioreactor , Water Environment Research , 1999 , 71:1197~1204
    [20]K. Brindle , T. Stephenson , Nitrification in a bubbleless oxygen mass transfer membrane bioreactor , Water Science and Technology , 1996 , 34(9):261~267
    [21]K. Yamagiwa , A. Ohkawa , O. Hirasa , Simultaneous organic carbon removal and nitrification by biofilm formed on oxygen enrichment membrane , Journal of chemical engineering of Japan , 1994 , 27(5):638~643
    [22]Tariq Ahmed , Michael J. Semmense , Use of sealed hollow fibers for bubbleless membrane aeration : experimental studies , Journal of membrane science , 1992,69 :1~10
    [23]Tariq Ahmed , Michael J. Semmense , Michael A. Voss , Oxygen transfer characteristics of hollow-fiber , composite membranes , Advances in Environmental Research,2004 , 8 :637~646
    [24]M. J. Semmens , K. Dahm , J. Shanahan , A. Christianson , COD and nitrogen removal by biofilms growing on gas permeable membranes , Water research , 2003,37:4343~4350
    [25]K. Yamagiwa , M. Abe , M. Shibai , M. Yoshida , A. Ohkawa , M. Furusawa , Nitrificaiton performance of membrane-attached nitrifying biofilm ,Journal of chemical engineering of japan , 2004 , 37(11):1423~1426
    [26]K. Yamagiwa , M. Yoshida , A. Ito , A. Ohkawa , A new oxygen supply method for simultaneous organic carbon removal and nitrification by a one-stage biofilm process , Water science and technology , 1998 , 37(4-5):117~124
    [27]Tariq Ahmed , Michael J. Semmense , The use of independently sealed microporous hollow fiber membranes for oxygennation of water : model development , Journal of membrane science , 1992,69:11~20
    [28]Pierre Cote , Jean-Luc Bersillon , Alain Huyard , Gerard Faup,Bubble-free aeration using membranes: process analysis , Journal of water pollution control federation,1988 , 60(11):1986~1992
    [29]郑斐,无泡曝气膜生物反应器的初步研究,硕士学位论文,天津大学,2004
    [30]A. G. Livingston , A novel membrane bioreactor for detoxifying industrial wastewaters:Ⅰ.Biodegradation of phenol in a synthetically concocted wastewater, Journal of Biotechnology and Bioengineering , 1993 , 41:915~926
    [31]de. Beer , A. Schramm , CM. Santegoeds , M. Kuhl , A nitrite microsensor for profiling environmental biofilms, Appl Environ Microbiol , 1997 , 63(3):973–977
    [32]K. Hibiya , A. Terada , S. Tsuneda , A. Hirata , Simultaneous nitrification anddenitrification by controlling vertical and horizontal microenvironment in a membrane-aerated bioflim reactor ,Journal of biotechnology , 2003 , 100:23~32
    [33]H. Satoh , H. Ono , B. Rulin , Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors , Water Research , 2004 , 38(6):1633~1641
    [34]Alina C. Cole , Michael J. Semmens , Timothy M. Lapara , Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater , Desalination , 2002 , 146(1-3):421~426
    [35]O. Debus , O. Wanner , Degradation of xylene by a biofilm growing on a gas permeable membrane , water science and technology , 1992 , 26:607~616
    [36]N. J. Essilia , M. J. Semmens , V. R. Voller , Modelling biofilm on gas permeable supports:concentration and activity profiles, J.Environ.Eng(ASCE), 1997 , 26:250~267
    [37]E. Caesy , B. Glennor , G. Hamon , Oxygen mass transfer characterisation in a mebrane attached biofilm, Journal of Biotechnology and Bioengineering ,1999 , 62:183~192
    [38]宋国华,BAF和MBR在石化废水深度处理中的应用,石油化工安全环保技术,2007,23(5) :56~57
    [39]王媛媛,贾文璟,杨轶珣,王超阳,膜生物反应器处理含油废水研究进展,化工时刊,2007,21(9):50~53
    [40]姬广磊,季萍,膜生物反应器在高浓度有机废水处理中的应用,环境科学与技术,2002,25(2):35~36
    [41]任防振,徐国勋,兼氧/好氧膜生物反应器处理食品废水研究,2007,29(3):258~288,293
    [42]任艳双,谭欣,赵林等,内循环膜生物反应器处理啤酒废水,化工进展,2005,294:1054~1058
    [43]郑祥,朱小龙,樊耀波,膜生物反应器处理毛纺废水的中试研究,环境科学,2001,22(4):79~82
    [44]刘鹏飞,朱文亭,刘旦玉,无泡曝气膜生物反应器去除高氨氮废水的试验研究,给水排水,2006,32(8):48~51
    [45]李慧,郑斐,朱文亭,利用中空纤维膜无泡供氧,水处理技术,2005,31(9):42~44
    [46]黄承武,高春梅,彭民建,无泡曝气膜生物反应器处理麻脱胶废水,重庆大学学报(自然科学版),2007
    [47]沈志松,钱国芬等,无泡式中空纤维膜发酵供氧的初步研究,膜科学与技术,1998,18(6):42~48
    [48]王猛,柴晓利等,膜生物反应器处理生活废水无泡供氧研究,环境污染与防治,2002,24(6):355~356
    [49]柴晓利,赵由才,膜生物反应器处理生活废水无泡供氧的研究,上海环境科学,2001,20(10):482~485
    [50]陈涛,张国亮,化工传递过程原理,北京:化学工业出版社,2001
    [51]Zhang qi , E. L. Cussler , Microporous hollow fibers for gas absorption:Ⅰ.Mass transfer in the liquid , Journal of membrane science , 1985 , 23(3):321~332
    [52]Zhang qi , E. L. Cussler , Microporous hollow fibers for gas absorption:Ⅱ.Mass transfer across the membrane , Journal of membrane science , 1985 , 23(3):333~335
    [53]H. Krenlen , C. A. Smolders , G. F. Versteeg , Van Swaij WPM , Determination of mass transfer rates in wetted and non-wetted microporous membranes , Chem Eng Sci 1993 , 48:2093~2103
    [54]M. W. Reij , JT . F. Keurentjes , S. Hartmans , Membrane bioreactors for waste gas treatment , Journal of Biotechnology , 1998 , 59:155~167
    [55]国家环保总局,水和废水监测分析方法(第四版),北京:中国环境科学出版社,2002
    [56]美国公共卫生协会,水和废水标准检验法(第十五吧),北京:中国建筑工业出版社,1985
    [57]K. Dolowy , A physical theory of cell-cell and cell-substraum interaction.In:Curtis A.S.G.and Pitts.I.D.(ed) Cell adhension and Mobility , London:Cambridge University Press , 1980
    [58]S. L. Daniels , Mechanisms involved in adsorption of microorganisms to solid surface .In:Bitton G. and Marshall K.G(eds). Adsorption of Microorganisms to Surface, New York:John Willey &Sons Inc, 1998
    [59]郑兴灿,李亚新,污水除磷脱氮技术,北京:中国建筑工业出版社,1998
    [60]Richard. Sedlak, Phosphorus and Nitrogen Removal from Municipal Wastewater—Principles and Practice.Second Edition ,New York:Lewis Publishers , 1991
    [61]胡家骏,环境工程微生物学,北京:高等教育出版社,1996