复合式膜生物反应器的EPS分布特性及膜污染控制原理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文为国家自然科学基金重点项目和重大国际合作项目的部分研究内容,采用复合式膜生物反应器(HMBR)进行城市生活污水处理的实验研究,重点研究了反应器的EPS分布特性及膜污染控制原理。与常规膜生物反应器(CMBR)相比,HMBR借助于活性污泥中悬浮生长的微生物和载体表面生物膜中附着生长的微生物的综合作用,体现出了良好的膜污染控制能力。论文的主要工作及成果如下:
     1.通过HMBR和CMBR的对比试验,研究了生物载体投加对污染物去除的强化作用。结果表明,对有机物而言,HMBR的COD和BOD_5去除率分别为94.2%和98.5%,比CMBR均提高了3.8%;对营养物质而言,HMBR的NH_4~+-N、TN和TP去除率分别为97.2%、51%和81.5%,比CMBR分别提高了4.2%、13.7%和1.7%,说明HMBR显著提高了反应器的反硝化效能;HMBR对浊度的去除率与CMBR基本相同,但对色度的去除率比CMBR提高了8.2%;生物载体投加后总体生物量的增加和生物膜中附着生长微生物的作用是HMBR污染物去除效率提高的主要原因。
     2.比较了HMBR和CMBR的膜阻力变化情况。结果表明,生物载体投加后随着生物膜的形成和成熟,化学清洗后一个周期内跨膜压差(TMP)的增长速度明显减慢。与生物载体投加前TMP增长到20 kPa的运行时间57天相比,生物载体投加后TMP增长到20 kPa的运行时间延长到了92天,而下一个周期运行140天之后TMP仅增长到16 kPa,说明HMBR有效地控制了膜污染,大幅度地延长了膜的过滤周期。
     3.分析比较了HMBR和CMBR的胞外多聚物(EPS)分布特性。结果表明,在溶解性EPS(S-EPS)、松散附着性EPS(LB-EPS)和紧密附着性EPS(TB-EPS)这3种胞外多聚物中,无论采用哪种提取剂进行提取,TB-EPS都是EPS的主要成分,占EPS总量的比例均在60%以上,而S-EPS和LB-EPS所占的比例差别不大。HMBR能够有效去除S-EPS和LB-EPS,二者的含量均比CMBR的条件下降低了42%左右;TB-EPS含量也有所降低,但降低幅度仅在2%左右。
     4.分析了附着性EPS(B-EPS,包括LB-EPS和TB-EPS)和S-EPS含量对膜阻力的影响。对于B-EPS,发现其含量直接影响反应器中活性污泥的物理性质,即随着B-EPS含量的降低,污泥的絮凝性和沉淀性提高,粒径增大,絮体结构趋于密实。与TB-EPS相比,LB-EPS含量对污泥物理性质的影响更为明显。经过相同运行时间后对HMBR和CMBR的滤饼层阻力R_c进行的测定结果表明,前者仅为后者的43%。由此推断,通过对B-EPS的去除以改善活性污泥的物理性质,进而减缓滤饼层阻力的增长速度是HMBR有效控制膜污染的重要原因。对于S-EPS,可认为在HMBR运行条件下其含量的降低对滤饼层阻力的影响不大,而主要是减缓了膜孔阻力R_p的增长速度(经过相同运行时间后HMBR膜孔阻力的实测结果为CMBR的56%),这是HMBR有效控制膜污染的另一个重要原因。
     5.对HMBR和CMBR膜阻力的构成情况进行了实测分析,发现经过一定时间运行后滤饼层阻力R_c比膜孔阻力R_p高一个数量级,而R_p与膜固有阻力R_m′处于同一数量级,说明R_c是影响跨膜压差TMP变化的主要因素。为此,建立了HMBR和CMBR的滤饼层阻力模型,并运用该模型对反应器中TMP的变化规律进行了模拟计算,结果表明:在忽略R_m′和R_p的情况下,运行初期阶段TMP的计算值低于实测值,说明此时膜固有阻力和膜孔阻力对TMP变化的影响较大;运行中期阶段TMP的计算值与实测值基本吻合,说明此时R_c是TMP变化的主要影响因素;后期阶段TMP的计算值低于实测值,且计算结果没有出现实测值中TMP最后加速上升的情况,说明R_p有可能在过滤后期成为TMP变化的主要影响因素。然而,模拟计算的结果很好地再现了HMBR有效减缓TMP增长速度,延长膜过滤周期的作用。同时通过计算与实测结果的比较可知,将膜过滤周期控制在R_c起主要作用的阶段内将有效抑制TMP的加速上升,是通过运行优化控制膜污染的可选策略。
This work was supported by the National Natural Sciences Foundation of China (50138020) and the National Natural sciences Foundation of China(50621140001).A hybrid membrane bioreactor(HMBR) which was developed by introducing the biofilm carriers into a conventional membrane bioreactor(CMBR) was exploited in the treatment of municipal wastewater and attention was mainly focused on its extracellular polymeric substances(EPS) distribution characteristics and membrane fouling control mechanism.Comparing with the CMBR which has only suspended biomass in the reactor,the HMBR has additional attached biomass and thus represented a good performance of membrane fouling control.Results are summarized as follows:
     1.Through the comparative experimental study between the CMBR and HMBR, the contaminants removal enhancements by the biocarriers was studied.Results showed that,the HMBR can remove the organic substances effectively,COD and BOD5 removal was 94.2%and 98.5%,respectively,which was both enhanced by 3.8% comparing with the CMBR;the HMBR can remove the nutrients effectively,NH_4~+-N, TN and TP removal was 97.2%,51%and 81.5%,respectively,which was enhanced by 4.2%,13.7%and 1.7%,respectively,comparing with the CMBR;the turbidity removal by the HMBR was as same as the CMBR while the color removal by the HMBR was enhanced by 8.2%comparing with the CMBR;the additional biofilm and the increased total biomass in the reactor was the main reason that the HMBR can enhance the contaminants removals.
     2.The membrane resistances in the CMBR and HMBR was compared and results showed that,with the increase of attached biomass in the HMBR,the transmembrane pressure(TMP) increased much slower than that of the CMBR.When the TMP reached to 20 kPa,the CMBR lasted only for 57 days,while the HMBR lasted for 92 days in the first period after chemical cleaning.In the second period,the TMP in the HMBR was only 16 kPa when the reactor was operated for 140 days.These evidence indicated that the HMBR can retard membrane fouling effectively.
     3.The EPS distribution characteristics in the CMBR and HMBR was studied and results showed that,among three EPS namely the soluble one(S-EPS),the loosely bond one(LB-EPS) and the tightly bond one(TB-EPS),TB-EPS was the main component without reference to the extraction method and accounted for more than 60%of the total.The S-EPS and LB-EPS in the HMBR were both decreased by about 42%and the TB-EPS in the HMBR was decreased by about 2%comparing with the CMBR,indicating that the HMBR can remove EPS effectively,especially for S-EPS and LB-EPS.
     4.The effect of bound EPS(B-EPS) and S-EPS on the membrane resistance was analyzed and results showed that,B-EPS had a tightly correlation with sludge physical properties.With the decrease of B-EPS,the sludge bioflocculation and settleability was enhanced,the floc diameter was increased and the floc was more compact.B-EPS was subdivided into LB-EPS and TB-EPS.LB-EPS had a more tightly correlation with the sludge properties than TB-EPS.After the same operational period,the cake layer resistance R_c in the HMBR accounted for 43%of that in the CMBR.It can be concluded that,the decrease of B-EPS enhanced the sludge properties and finally slowered the increase of the cake layer resistance,this was the main reason that the HMBR can retard membrane fouling effectively.For S-EPS,its decrease was supposed to affect the pore resistance Rp significantly.After the same operational period,R_p in the HMBR accounted for 56%of that in the CMBR.This was another important reason that the HMBR can retard membrane fouling effectively.
     5.The constituents of total membrane resistance in the CMBR and HMBR was studied and results showed that,among three membrane resistances namely intrinsic membrane resistance R_m,pore resistance R_p and cake layer resistance R_c,the last one was the main fraction and accounted for more than 70%of the total.Therefore,a cake layer resistance model in the HMBR and CMBR was founded respectivly and was exploited to simulate the variation of TMP in the reactor.Results showed that,when R_m and R_p was ignored,the model calculation was more lower than the experimental results in the first period of filtration,indicating that R_m and R_p affected membrane fouling significantly in this period;the model calculation was nearly equal to the experimental results in the second period of filtration,indicating that R_c was the main fraction of the total in this period;in the end of filtration,the model calculation was more lower than the experimental results and Rp probably turned into the main fraction that affected TMP variation in this period.However,the model calculation reproduced that the HMBR can retard membrane fouling effectively and can prolong the filtration period.At the same time,through the contrast between the model calculation and experimental results,it can be concluded that if the membrane was operated in the period when Rc was the main fraction of the total,the TMP increase can be controlled effectively.
引文
[1]Defiance L.,Jaffrin M.Y.Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:application to a membrane bioreactor used for wastewater treatment [J].J.Membr.Sci.,1999,152:203-210.
    [2]Behac J.P.,Boutin P.,Mercier B.,et al.Traitement des eau usees,Eyrolles.Paris,1984.
    [3]Dijk L.van,Ronchen G.C.G..Membrane bioreactors for wastewater treatment:the state of the art and new developments[J].Wat.Sci.Tech.,1997,35:35-41.
    [4]郑祥,樊耀波.膜生物反应器在水处理中的研究及应用[J].环境污染治理技术与设备,2001,1(5):12-19.
    [5]岑运华.膜生物反应器在污水处理中的应用[J].水处理技术,1991,17(5):319-323.
    [6]金兆丰,徐竟成,余志荣等.城市污水回用技术手册[M].北京:化学工业出版社,2004.354-411.
    [7]Smith C.,Gregorio D.D.,Talcott R.M.The use of membranes for activated sludge separation.In:24~(th) annual Purdue Industrial Waste Conference.Lafayette,Indiana,USA:Purdue University,1969.1300-1310.
    [8]金兆丰,余志荣,徐竟成,等.污水处理组合工艺及工程实例[M].北京:化学工业出版社,2003.90-91.
    [9]韩剑宏,于玲红,张克峰.中水回用技术及工程实例[M].北京:化学工业出版社,2004.160-161.
    [10]Stephenson T.,Judd S.,Jefferson B.,et al.Membrane Bioreactors for Wastewater Treatment.London.IWA Publishing,2000.
    [11]于水利,赵方波.膜生物反应器技术发展沿革与展望[J].工业用水与废水,2006,37(2):1-6.
    [12]王琳,王宝贞.分散式污水处理与回用[M].北京:化学工业出版社,2003.235-238.
    [13]林哲.膜分离活性污泥法的研究[J].城市环境和城市生态,1994,7(1):6-11.
    [14]樊耀波.膜-生物反应器净化石油化工污水的研究[J].环境科学学报,1997,17(1):68-74.
    [15]王连军.膜-生物反应器组合工艺稳定运行特性的研究[J].环境工程,2000,3:19-21.
    [16]吴志超.巴西基酸生产废水膜生物工艺处理试验研究[J].中国环境科学,1999,19(2):163-168.
    [17]何义亮.厌氧MBR处理高浓度食品废水的应用[J].环境科学,1999,20(6):53-55.
    [18]管运涛.两相厌氧膜-生物系统处理有机废水的研究[J].环境科学,1998,19(6):56-59.
    [19]桂萍.一体式膜生物反应器污水处理特性及膜污染机理研究:[学位论文].北京:清华大学,1999.
    [20]吴志超.膜生物工艺和活性污泥法处理巴西基酸生产废水的对比试验研究[J].中国给水排水,2000,16(3):57-60.
    [21]Heran M.,Durante F.,Lebegue J.,et al.Air lift relevance in a side-stream MBR system[J].Desalination,2006,199:485-486.
    [22]Melin T.,Jefferson B.,Bixio D.,et al.Membrane bioreactor technology for wasterwater treatment and reuse[J].Desalination,2006,187:271-282.
    [23]Gunder B.and Krauth K.Replacement of secondary clarification by membrane separation-results with tubular,plate and hollow fibre modules[J].Wat.Sci.Technol.,1999,40(4-5):311-320.
    [24]Hong S.P.,Bae T.,Tak T.,et al.Fouling control in activated sludge submerged hollow fibre membrane bioreactors[J].Desalination,2002,143:219-228.
    [25]Rogelio V.B.,Frederico C.F.,Ruben F.J.,et al.A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration(OSN) membranes[J].Desalination,2006,199:429-431.
    [26]Brik M.,Schoeberl P.,Chamam B.,et al.Advanced treatment of textile wastewater towards reuse using a membrane bioreactor[J].Process Biochemistry,2006,41:1751-1757.
    [27]Rott U.,Minke R.Overview of wastewater treatment and recycling in the textile processing industry[J].War.Sci.Technol.,1999,40(1):137-144.
    [28]Chu L.,Zhang X.,Yang F.,et al.Treatment of domestic wasterwater by using a microaerobic membrane bioreactor[J].Desolination,2006,189:181-192.
    [29]Yang W.,Cicek N.,Ilg J.State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America[J].Journal of Membrane Science,2006,270:201-211.
    [30]Yamamoto K.,Hiasa M.,Mahmood T.,et al.Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank[J].Wat.Sci.Tech.,1989,21:43-54.
    [31]Ueda T.,Hata K.,Kikuoka Y..Treatment of domestic sewage from rural settlements by a membrane bioreactor[J].Water Sci.Technol.,1996,34(9):189-196.
    [32]Grasmick A.,Heran M.,Wisniewski C.MBR:Biofouling,hydrodynamics and module configuration.Workshop and Membranes Processes,Ad(?)laide,Australia,2005.
    [33]Ueda T.,Hata K.Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration[J].Wat.Res.,1999,33(12):2888-2892.
    [34]Orantes J.,Wisniewski C.,Heran M.,et al.Influence of total sludge retention on the performance of a submerged membrane bioreactor.Seoul,Korea:IWA,2004.
    [35]Dijk L.,Ronchen G.C.G.Membrane bioreactors for wastewater treatment:the state of the art and new developments[J].Wat.Sci.Tech.,1997,35(10):35-41.
    [36]许振良.膜法水处理技术[M].北京:化学工业出版社,2001.30-34.
    [37]Rautenbach R.(著),王乐夫(译).膜工艺-组件和装置设计基础[M].北京:化学工业出版社,1998.64-79.
    [38]Shang C.,Wong H.M.,Chen G.Bacteriophage MS-2 removal by submerged membrane bioreactor[J].Wat.Res.,2005,39:4211-4219.
    [39]Xing C.H.,Tardieu E.,Qian Y.,et al.Ultrafiltration membrane bioreactor for urban wastewater reclamation[J].J.Membr.Sci.,2000,177:73-82.
    [40]Petersen R.J.Composite reverse osmosis and nanofiltration membranes[J].J.Membr.Sci.,1993,83:81-150.
    [41]Delgado S.,Diaz F.,Villarroel R.,et al.Nitrification in a hollow-fibre membrane bioreactor[J].Desalination,2002,146:445-449.
    [43]Unlu A.,Hasar H.,Kinaci C.,et al.Real role of an ultrofiltration hollow-fibre membrane module in a submerged membrane bioreactor[J].Desalination,2005,181:185-191.
    [44]Futselaar H.,Schoonewille H.,Meer V.D.W.Direct capillary nanofiltration - a new high-grade purification concept[J].Desalination,2002,145:75-80.
    [45]Dockko S.,Yammato K.Wastewater treatment using directly submerged nanofiltration membrane bioreactor(NF MBR),in:Proceedings of the International Conference on Membrane Technology for Wastewater Reclamation and Reuse,Tel-Aviv,Isarel,2001,pp.21-28.
    [46]Choi J.H.,Dockko S.,Yammato K.A novel application of a submerged nanofiltration membrane bioreactor(NF MBR) for wastewater treatment[J].Desalination,2002,146:413-420.
    [47]Choi J.H.,Dockko S.,Fukushi K.,et al.Comparison of treatment efficiency of submerged nanofiltration membrane bioreators using cellulose triacetate and polyamide membrane[J].Wat.Sci.Technol.,2005,51(6-7):305-312.
    [48]Shim J.K.,Yoo I.K.,Lee Y.M.Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J].Process Biochem.,2002,38:279-285.
    [49]Muhammad H.,Malack A.Determination of biokinetic coefficients of an immersed membrane bioreactor[J].J.Membr.Sci.,2006,271:47-58.
    [50]Xing C.H.,Tardieu E.,Qian Y.,et al.Ultrafiltration membrane bioreactor for urban wastewater reclamation[J].J.Membr.Sci.,2000,177:73-82.
    [51]Mtinch E.V.,Ban K.,Watts S.,et al.Suspended carrier technology allows upgrading highrate activated sludge plants for nitrogen removal via process intensification[J].Wat.Sci.Tech.,2000,41(4-5):5-12.
    [52]杨殿海,王峰,夏四清.废水处理工艺中同步硝化/反硝化研究进展[J].上海环境科学,2003,22(12):878-882.
    [53]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展[J].中国给水排水,2000,16(2):20-24.
    [54]Chang I.S.,Clech P.L.,Jefferson B.,et al.Membrane fouling in membrane bioreactors for wastewater treatment[J].J.Envir.Eng.,2002,128:1018-1029.
    [55]Nagaoka H.,Yamanishi S.,Miya A.Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system[J].Wat.Sci.Tech.,1998,38:497-504.
    [56]Artiga P.,Oyanedel V.,Garrldo J.M.,et al.An innovative biofilm-suspended biomass hybrid membrane bioreactor for wastewater treatment[J].Desalination,2005,179:171-179.
    [57]Jun B.H.,Miyanaga K.,Tanji Y.,et al.Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment[J].Biochemical Engineering Journal,2003,14:37-44.
    [58]Ivanovic I.,Leiknes T.,φdegaard H.Influence of loading rates on production and characteristics of retentate from a biofilm membrane bioreactor(BF-MBR)[J].Desalination,2006,199:490-492.
    [59]Yang Q.,Chen J.,Zhang F.Membrane fouling control in a submerged membrane bioreactor with porous,flexible suspended carriers[J].Desalination,2006,189:292-302.
    [60]白昊阳,邢国平,徐斌,田宝义,王晓华.复合MBR处理洗浴废水并回用[J].中国给水排水,2004,20(9):90-92.
    [61]张军,聂梅生,王宝贞.复合膜生物反应器的生物学研究[J].中国给水排水,2002,18(2):53-55.
    [62]孙选举,陈季华,杨期勇,沈廷.复合式MBR处理涤纶碱减量废水的试验研究[J].工业水处理, 2006,26(3):36-38.
    [63]王春玲,奚旦立,李燕,彭民建.复合式MBR处理印染废水[J].污染防治技术,2003,16(4):28-31.
    [64]李军,江定国,刘红,何建平,等.复合式膜生物反应器处理生活污水[J].中国环境科学,2006,26(3):271-274.
    [65]常颖,王宝贞,高欣.复合式膜生物反应器的小区污水回用试验研究[J].哈尔滨工业大学学报,2003,35(2):25-29.
    [66]Thoeye C.,Weemaes M.,Geenens D.,et al.Ongoing and plarmed water reuse related projects in Flanders,Belgium.IWA Regional Symposium on Water Recycling in Mediterranean Region,Iraklio,Greece,2002.26-29.
    [67]STOWA.Vergelijkend onderzoek MBR en zandfiltratie RWZI Maasbommel(in Dutch,Comparing research MBR and sand filtration WWTP Maasbommel),STOWA report 2004-28,November 2004.
    [68]STOWA.Van Stonehenge tot MBR,waarin een groot land 'klein' kan zijn.(in Dutch,From Stonehenge to MBR,in which a large country can be 'small'),STOWA report 2004-WO2,October 2004.
    [69]Roest H.F.,Lawrence D.P.,Bentem A.G.N.Membrane Bioreactors for Municipal Wastewater Treatment,IWA Publishing,London,UK,2002.
    [70]Melin T.,Dohman M.Membrantechnik in der Wasserautbereitung und Abwasserbehandlung,Proc.5th Aachener Tagung,Aachen,Germany,30 September-1 October 2003.
    [71]Jefferson B.,Laine A.,Stephenson T.,et al.Advanced biological unit process for domestic water recycling[J].Water Sci.Technol.,2001,43(10):211-218.
    [72]Kim J.H.,Park P.K.,Lee C.H.A novel hybrid system for the removal of endocrine disrupting chemicals:Nanofiltration and homogeneous catalytic oxidation[J].J.Membr.Sci.,2008,312:66-75.
    [73]Rogelio V.B.,Frederico C.F.,Ruben F.J.,et al.A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration(OSN) membranes[J].J.Membr.Sci.,2008,317:50-64.
    [74]Geng Z.,Hall E.R.A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorous removal processes[J].Wat.Res.,2007,41:4329-4338.
    [75]Choi J.H.,Fukushi K.,Yamamoto K.A submerged nanofiltration membrane bioreactor for domestic wastewater treatment:the performance of cellulose acetate nanofiltration membranes for long-term operation[J].Separation and Purification Technology,2007,52:470-477.
    [76]Chae S.R.,Shin H.S.Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor(VSMBR) treating municipal wastewater at various temperatures[J].Process Biochem.,2007,42:193-198.
    [77]Chang W.K.,Hu A.Y.J.,Homg R.Y.Membrane bioreactor with nonwoven fabrics as solid-liquid separation media for wastewater treatment[J].Desalination,2007,202:122-128.
    [78]Delgado S.,Diaz F.,Villarroel R.,et al.Nitrification in a hollow-fibre membrane bioreactor[J].Desalination,2002,146:445-449.
    [79]Unlu A.,Hasar H.,Kinaci C.,et al.Real role of an ultrafiltration hollow-fibre membrane module in a submerged membrane bioreactor[J].Desalination,2005,181:185-191.
    [80]Baker R.W.,Parker M.Membrane technology and applications.McGrawHill,NewYork,2000.
    [81]Low S.C.,Juan H.H.,Siong L.K.A combined VSEP and membrane bioreactor system[J].Desalination,2005,183:353-362.
    [82]Yamagiwa K.,Oohira Y.,Ohkawa A.Simultaneous removal of carbonaceous and nitrogenous pollutants by a plunging liquid jet bioreactor with crossflow filtration operated under intermittent aeration[J].Bioresource Technol.,1995,53:57-62.
    [83]于丁一,宋澄章,李航宇.膜分离工程及典型设计实例[M].北京:化学工业出版社,2005.120-121.
    [84]陈欢林.环境生物技术与工程[M].北京:化学工业出版社,2003.277-278.
    [85]Nagaoka H.,Yamanishi S.A Miya.Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system[J].Wat.Sci.Tech.,1998,38(4-5):497-504.
    [86]Negaresh E.,Le-Clech P.,Chen V.Fouling mechanisms of model extracellular polymeric substances in submerged membrane reactor[J].Desalination,2006,200(1-3):715-717.
    [87]Chang I.S.,Lee C.H.Membrane filtration characteristics in membrane coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling[J].Desalination,1998,120(3):221-233.
    [88]Song L.Flux decline in crossflow microfiltration and ultrofiltration:mechanisms and modeling of membrane fouling[J].Journal of Membrane Science,1998,139:183-200.
    [89]Psoch C.,Schiewer S.Anti-fouling application of air sparging and backflushing for MBR[J].J. Membr.Sci.,2006,283(1-2):273-280.
    [90]刘国信,刘禄声.膜法分离技术及应用[M].北京:中国环境科学出版社,1992.149-151.
    [91]高以煊,叶凌碧.膜分离技术基础[M].北京:科学出版社,1989.
    [92]王学松.膜分离技术及其应用[M].北京:科学出版社,1989.
    [93]刘茉娥,陈欢林.新型膜分离技术基础(第二版)[M].杭州:浙江大学出版社,1999.
    [94]许振良.膜法水处理技术[M].北京:化学工业出版社,2001.142-166.
    [95]Harris J.L.,Dobos M.Enhanced ultrafiltration flux rates by enzymatic hydrolysis in protein recovery from wheat starch effluent[J].J.Membr.Sci.,1989,41:87-102.
    [96]Schwartz T.C.,Herring B.R.The first year's performance of a membrane bioreactor compared with conventional wastewater treatment of domestic waste,Proceedings of WEFTEC,2001.
    [97]Matsumoto K.,Katsutyama S.,Ohya H.Cross-flow filtration of yeast by microporous ceramic membrane with backwashing[J].J.Ferment.Technol.,1988,66:199-205.
    [98]Bellara S.,Cui Z.,Pepper D.Gas sparging to enhance permeate flux in ultrafiltration using hollow fiber membranes[J].J.Membr.Sci.,1996,121:175-184.
    [99]Albasi C.,Bessiere Y.,Desclaux S.,et al.Filtration of biological sludge by immersed hollow-fiber membranes:influence of initial permeability choice of operating conditions[J].Desalination,2002,146:427-431.
    [100]Kang I.J.,Yoon S.H.,Lee C.H.Comparison of the filtration characteristics of organic and inorganic membranes in a membranecoupled anaerobic bioreactor[J].Water Res.,2002,36:1803-1813.
    [101]Rosenberger S.,Kruger U.,Witzig R.,et al.Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water[J].Water Res.,2002,36:413-420.
    [102]Ma H.,Hakim L.F.,Bowman C.N.,et al.Factors affecting membrane fouling reduction by surface modification and backpulsing[J].J.Membr.Sci.,2001,189:255-270.
    [103]Fane A.G.,Chang S.,Chardon E.Submerged hollow fiber membrane module-design options and operational considerations[J].Desalination,2002,146:231-236.
    [104]Chang S.,Fane A.G.The effect of fibre diameter on filtration and flux distribution-relevance to submerged hollow fibre modules[J].J.Membr.Sci.,2001,184:221-231.
    [105]Cho B.D.,Fane A.G.Fouling transients in nominally sub-critical flux operation of a membrane bioreactor[J].J.Membr.Sci.,2002,209:391-403.
    [105]Ognier S.,Wisniewski C.,Grasmick A.Membrane bioreactor fouling in sub-critical filtration conditions:a local critical flux concept [J].J.Membr.Sci.,2004,229:171-177.
    [107]Liu R.,Huang X.,Sun Y.F.,et al.Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor [J].Process Biochem.,2003,39:157-163.
    [108]Yu K.C.,Wen X.H.,Bu Q.J.,et al.Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated wastewater [J].J.Membr.Sci.,2003,224:69-79.
    [109]Le-Clech P.,Jefferson B.,Chang I.S.,et al.Critical flux determination by the flux-step method in a submerged membrane bioreactor [J].J.Membr.Sci.,2003,227:81-93.
    [110]Hong S.P.,Bae T.H.,Tak T.M.,et al.Fouling control in activated sludge submerged hollow fiber membrane bioreactors [J].Desalination,2002,143:219-228.
    [112]Chang I.S.,Judd S.J.Air sparging of a submerged MBR for municipal wastewater treatment [J].Process Biochem.,2002,37:915-920.
    [113]Bouhabila E.H.,Ben Aim R.,Buisson H.Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment) [J].Desalination,1998,118:315-322.
    [114]Chua H.C.,Arnot T.C.,Howell J.A.Controlling fouling in membrane bioreactors operated with a variable throughput [J].Desalination,2002,149:225-229.
    [115]Park H.,Choo K.H.,Lee C.H.Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor [J].Sep.Sci.Technol.,1999,34:2781-2792.
    [116]Seo G.T.,Moon CD.,Chang S.W.,et al.Long term operation of high concentration powdered activated carbon membrane bioreactor for advanced water treatment [J].Water Sci.Technol.,2004,50:81-87.
    [117]Seo G.T.,Ahan H.I.,Kim J.T.,et al.Domestic wastewater reclamation by submerged membrane bioreactor with high concentration powdered activated carbon for stream restoration [J].Water Sci.Technol.,2004,50:173-178.
    [118]Fan X.J.,Urbain V.,Qian Y.,et al.Ultrafiltration of activated sludge with ceramic membranes in a cross-flow membrane bioreactor process [J].Water Sci.Technol.,2000,41:243-250.
    [119]Jiang T.,Kennedy M.D.,Meer W.G.J.,et al.The role of blocking and cake filtration in MIBR fouling [J].Desalination,2003,157:335-343.
    [120]Xing C.H.,Wen X.H.,Qian Y.,et al.Fouling and cleaning in an ultrafiltration membrane bioreactor for municipal wastewater treatment[J].Sep.Sci.Technol.,2003,38:1773-1789.
    [121]Shim J.K.,Yoo I.K.,Lee Y.M.Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J].Process Biochem.,2002,38:279-285.
    [122]φdegaard H.Innovations in wastewater treatment:the moving bed biofilm process[J].Water Science & Technology,2006,53(9):17-33.
    [123]曹斌.复合生物反应器-膜分离技术处理城市污水的试验研究[博士学位论文].西安:西安建筑科技大学,2005.
    [124]Huang X.,Gui P.,Qian Y.Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor[J].Process Biochem.,2001,36:1001-1006.
    [125]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M]。北京:中国环境科学出版社,2002.105-284.
    [126]王建龙,吴立波,钱易.复合生物反应器处理废水特性的研究[J].中国给水排水,1998,14(2):29-32.
    [127]Frolund B.,Palmgren R.,Keiding K.,et al.Extraction of extracellular polymers from activated s G ludge using a cation exchange resin[J].Water Res,1996,30(8):1749-1758.
    [128]Gaudy A.F.Colorimetric determination of protein and carbohydrate[J].Ind.Water Wastes,1962,7:17-22.
    [129]Frolund B.,Griebe T.,Nielsen P.H.Enzymatic activity in the activated-sludge floc matrix[J].Appl Microbiol.Biot.,1995,43(4):755-761.
    [130]Blumenkrantz N.,Asboe-Hansen G.New methods for quantitative determination of uronic acids[J].Anal.Biochem.,1973,54(2):484-489.
    [131]Sun Y.,Clinkenbeard K.D.,Clarke C.,et al.Pasteurella haemolytica leukotoxin induced apoptosis of bovine lymphocytes involves DNA fragmentation[J].Vet.Microbiol.,1999,65:153-166.
    [132]Li X.Y.,Yang S.F..Influence of loosely bound extracellular polymeric substances(EPS) on the flocculation,sedimentation and dewaterability of activated sludge[J].Water Res.,2007,41:1022-1030.
    [133]袁宏林,刘永军,王晓昌,等.生物造粒流化床污水处理反应器微生物群落结构及其动态变化[J].微生物学杂志,2007,27(2):36-40.
    [134]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.214-215.
    [135]Marrot B.,Barrios-Martinez A.,Moulin P.,et al.Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor [J].Biochem.Eng.J.,2006,30:174-183.
    [136]Lante A.,Crapisi A.,Krastanov A.,et al.Biodegradation of phenols by laccase immobilised in a membrane reactor [J].Process Biochem.,2000,36(1-2):51-58.
    [137]Laitinen N.,Luonsi A.,Vilen J.Landfill leachate treatment with sequencing batch reactor and membrane bioreactor [J].Desalination,2006,191:86-91.
    [138]Emori H.,Mikawa K.,Hamaya M.,et al.Innovative biological nitrogen removal process using entrapped nitrifiers.In:Immobilised Cells:Basics and Applications,Elsevier Science,Amsterdam,1996,pp.546-555.
    [139]Pochanna K.,Keller J.,Lant P.Model development for simultaneous nitrification and denitrification [J].Wat.Sci.Tech.,1999,39:235-243.
    [140]Galil N.,Stahl N.,Novak J.T.,et al.The influence of mixing on physical characteristics of biological flocs [J].J.Water Pollut.Control Fed.,1991,63:768-772.
    [141]Zhang B.,Yamamoto K.,Ohgaki S.,et al.Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation [J].Wat.Sci.Technol.,1997,35:37-44.
    [142]Henriques I.D.S.,Holbrook R.D.,Kelly II R.T.,et al.The impact of floc size on respiration inhibition by soluble toxicants-a comparative investigation [J].Water Res.,2005,39:2559-2568.
    [143]陈欢林.环境生物技术与工程[M].北京:化学工业出版社,2003.211-212.
    [144]Nanka J.,Rebhun M.Organic groups and molecular weight distribution in tertiary effluents and removated waters [J].Environ.Sci.Tech.,1998,66:235-239.
    [145]Fang H.H.P.,Xiao-shan J.Soluble microbial product (SMP) of acetotrophic methanogenesis [J].Biore.Tech.,1998,66:235-239.
    [146]Rosenberger S.,Laabs C,Lesjean B.,et al.Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment [J].Water Res.,2006,40:710-720.
    [147]Drews A.,Vocks M.,Iversen V.,et al.Influence of unsteady membrane bioreactor operation on EPS formation and filtration resistance [J].Desalination,2006,192:1-9.
    [148]Li X.Y.,Yang S.F..Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation,sedimentation and dewaterability of activated sludge [J].Water Res.,2007, 41:1022-1030.
    [149]Cescutti P.,Toffanin R.,Pollesello P.,et al.Structural determination of the acidic exopolysaccharide produced by a Pseudomonas sp.strain 1.15 [J].Carbohyd Res,1999,315(1-2):159-168.
    [150]Fang H.H.P.,Jia X.S.Extraction of extracellular polymer from anaerobic sludges [J].Biotechnology Techniques,1996,10(11):803-808.
    [151]Tsuneda S.,Park S.,Hayashi H.,et al.Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria [J].Wat Sci Tech,2001,43(6):197-204.
    [152]Poxon T.L,Darby J.L.Extracellular polyanions in digested sludge:measurement and relationship to sludge dewaterability [J].Water Res,1997,31:749-758.
    [153]Nuengjamnong C,Kweon J.H.,Cho J.,et al.Membrane fouling caused by extracellular polymeric substances during microfiltration processes [J].Desalination,2005,179:117-124.
    [154]Comte S.,Guibaud G.,Baudu M.Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties (Part Ⅰ):Comparison of the efficiency of eight EPS extraction methods [J].Enzyme Microb Tech,2006,38:237-245.
    [155]Barker D.J.,Stuckey D.C.A review of soluble microbial products (SMP) in wastewater treatment systems [J].Water Res.,1999,33(14):3063-3082.
    [156]Laspidou C.S,Rittmann B.E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass [J].Water Res,2002,36:2711-2720.
    [157]Meng F.,Zhang H.,Yang F.,et al.Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors [J].Sep Purif Technol,2006,51:95-103.
    [158]Wingender J.,Neu T.R.,Flemming H.C.Microbial Extracellular Polymeric Substances:Characterization,Structures and Function [M].Berlin:Springer,1999,Chapter 3.
    [159]Rosenberger S.,Laabs C,Lesjean B.,et al.Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment [J].Water res,2006,40:710-720.
    [160]Jang N.,Ren X.,Kim G.,et al.Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse [J].Desalination,2007,202:90-98.
    [161]Liang S.,Liu C,Song L.Soluble microbial products in membrane bioreactor operation:Behaviors,characteristics,and fouling potential [J].Wat.Res.,2007,41:95-101.
    [162]Liu H.,Fang H.H.P.Extraction of extracellular polymeric substances (EPS) of sludges [J].J Biotechnol,2002,95:249-256.
    [163]Liu Y.,Fang H.Influences of extracellular polymeric substances (EPS) on flocculation,settling and dewatering of activated sludge [J].Crit.Rev.Environ.Sci.Technol.,2003,33:237-273.
    [164]Azeredo J.,Oliveira R.,Lazarova V.A new method for extraction of exopolymers from activated sludges [J].Wat.Sci.Technol.,1998,37:367-370.
    [165]Drews A.,Mante J.,et al.Impact of ambient conditions on SMP elimination and rejection in MBRs [J].Water Res.,2007,41:3850-3858.
    [166]Liu Y.,Lam M.C.,Fang H.H.P.Adsorption of heavy metals by EPS of activated sludge [J].Wat.Sci.Technol.,2001,43:59-66.
    [167]Rudd T.,Sterrit R.M.,Lester J.N.Complexation of heavy metals by extracellular polymers in the activated sludge process [J].J.Water Poll.Control Fed.,1984,56:1260-1268.
    [168]Wang Z.,Liu L.,Yao J.,et al.Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors [J].Chemosphere,2006,63:1728-1735.
    [169]Vandegraaf L.A.,Mulder A.A.A.Anaerobic oxidation of ammonium is a biologically mediated process [J].Appl.Envir.Microbiol.,1995,64(4):1246-1251.
    [170]Helmer C,Kunst S.,Juretschko S.,et al.Nitrogen loss in a nitrifying biofilm system [J].Wat.Sci.Tech.,1999,39(7):13-21.
    [171]Patureau D.,Helloin E.,Rustrian E.,et al.Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier,microvirgula aerodenitrificans [J].Wat.Res.,2001,35(1):189-197.
    [172]Helmer C,Kunst S.Simultaneous nitrification/denitrification in an aerobic biofilm system [J].Wat.Sci.Tech.,1998,27(4):183-187.
    [173]Mulder A.,Graaf A.A.,Robertson L.A.,et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J].FEMS Microbiology Ecology.,1995,16(3):177-183.
    [174]Bock E.I.,Stueven R.,Zart D.Nitrogen loss caused by denitrifying nitrosomonas cell using ammonium or hydrogen as electron donors and nitrite as electron acceptor [J].Arch.Microbiol.,1995,163:16-20.
    [175]Poxon T.L.,Darby J.L.Extracellular polyanions in digested sludge:measurement and relationship to sludge dewaterability[J].Water Res.,1997,31:749-758.
    [176]Nagaoka H.,Ueda S.,Miya A.Influence of bacterial extracellular polymers on the membrane separation activated sludge process[J].Water Sci.Tech.,1996,34(9):165-172.
    [177]Park N.,Kwon B.,Kim I.,et al.Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products(SMP):characterizations,flux decline,and transport parameters[J].J.Membr.Sci.,2005,258:43-54.
    [178]任建新.膜分离技术及其应用[M].北京:化学工业出版社,2003.28-31.
    [179]XU L.,LI W.P.,LU S.Q.,et al.Studies on the cake structure by fractal theory[J].Filter Separator,2000,10(1):22-25.
    [180]Lee J.,Ahn W.Y.,Lee C.H.Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J].Wat.Res.,2001,35:2435-2445.
    [181]Hermia J.Constant pressure blocking filtration laws- application to power- law non-Newtonian fluids[J].Trans Inst Chem Eng.,1982,60:183-187.
    [182]Tansel B.,Bao W.Y.,Tansel I.N.Characterization of fouling kinetics in ultrafiltration systems by resistances in series model[J].Desalination,2000,129:7-14
    [183]Altmann J.,Ripperger S.Particle deposition and layer formation at the crossflow microfiltration[J].J Membr Sci.,1997,124:119-128.
    [184]Vyas H.K.,Bennett R.J.,Marshall A.D.Influence of operating conditions on membrane fouling in crossflow microfiltration of particulate suspensions[J].International Dairy Journal,2000,10:477-487
    [185]中华人民共和国建设部.《污水再生利用工程设计规范》(GB 50335-2002).北京:中国建筑工业出版社,2003.
    [186]刘林.应用模糊数学[M].西安:陕西科学技术出版社,1996.120-123.
    [187]刘普寅,吴孟达.模糊理论及其应用[M].长沙:国防科技大学出版社,1998.194-200.