水体充氧技术及其在水产品活体运输中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中空纤维膜无泡供氧是指液相内无肉眼可见气泡的供氧方式,其传氧模式是将加压空气或纯氧连续通入中空纤维膜的管腔内,水在管外流动,在膜两侧氧分压差的推动下,管腔内的氧透过膜壁上的微孔扩散进入管外的水中。疏水性中空纤维膜组件膜壁上有大量孔径在10-1μm数量级的孔道,与水接触时由于材料的疏水性和毛细管效应,水不会进入这些微孔,而另一侧的气体则可以充斥于微孔中,在微孔末端与水接触并进行传递,由于其单位体积中有大量微孔,在作为无泡供氧器时水气的接触面积特别大,气液传质效果好,与传统的泡式供氧相比,这种新颖的膜式无泡供氧具有传氧效率高、无泡沫产生,具有滤菌作用,动力消耗低等优点,因此水体的无泡供氧方式可用以解决水产品活体长途、高密度运输过程中的水体缺氧问题。
     本文首先将中空纤维膜无泡供氧这种新型的水体充氧技术的实际充氧效率与密封供氧和鼓风供氧两种传统水体充氧技术的实际充氧效率进行对比。结果表明膜式无泡供氧能在最短的时间内实现较好的充氧效果,充氧能力明显优于另外两种充氧方式,证明了膜式无泡供氧的高效性。
     在此基础上利用中空纤维膜组件作为膜接触器,以纯氧为气源对水体进行无泡充氧实验,建立了一个新的传质模型,结果表明总的传质系数随供气压力的增加而增加;水流速度对中空纤维膜供氧传质效果的影响与传统的流速对传质系数的影响规律有所不同,随着流速的增大,氧的传质系数存在一个先增加、再减小、而后再增加的变化,因此在用膜接触器进行液体充氧时需要选择合适的流体速率,以达到最佳传质效果,从传质理论上实验证明膜式无泡供氧技术的科学性。
     最后利用膜式无泡供氧技术,首次将该充氧方式应用到水产品活体运输领域,针对水产品活体长时间运输水体充氧效果不佳影响其存活率及目前时兴的活物礼品市场,设计了一种礼品装水产品活体运输箱,并进行水产品活体的模拟运输,水产品的存活率均达到95%以上,取得了理想运输结果,证明了膜式无泡供氧技术的实用性。
Bubbleless aeration using hollow fiber membrane contactor is a novel aeration method without visible bubbles. With the flowing of pressure air or pure oxygen in the lumen-side and water in the shell-side in a opposite direction, oxygen can diffuse into the water through the membrane micropores because of the oxygen pressure difference. There is a large amount of pores which size is around 10-1μm in the hydrophobic hollow fiber membrane. In the shell-side, due to the hydrophobicity of the material and capillary effect, water cannot permeate into the lumen-side of the membrane. While in the other side, gas filling in micropores can transfer into water in high efficiency since the relatively large contact area between gas phase and liquid phase, the hollow fiber membrane contactor shows a good performance of gas mass transfer. Compared to the traditional bubble aeration, the bubbleless aeration has obvious advantages, such as high efficiency of oxygen transfer, no bubble, filtering bacteria and low power consumption. Consequently, this novel aeration method can be used to solve the hypoxic water problems during the long distance and high density transportation of living aquatic products.
     Firstly, the oxygen transfer efficiency of bubbleless aeration using hollow fiber membrane contactor is compared to that of sealed bag aeration and air blast aeration. The results show that bubbleless aeration represents a good oxygenation capacity. It can significantly increase the dissolved oxygen in a short period of time. It fully proves the high efficiency of bubbleless aeration in water oxygenation.
     Secondly, the hollow fiber membrane module is used as a contactor, and the air supply is pure oxygen. Bubbeless aeration experiment has been done and a novel mass transfer model of the process is established. The result shows that with the pressure increased, the oxygen mass transfer coefficient increases. In other way, the oxygen mass transfer coefficient increases dramatically, and then decreases dramatically, finally increases gradually when the water flow velocity increase. This is differ from traditional rule. Consequently, it’s demanded to choose a appropriate liquid flux to achieve the optimum result when hollow fiber membrane bubbeless aeration utilized. It fully proves the scientificity of bubbleless aeration from the theory of mass transfer.
     Lastly, in this paper, the novel aeration method is firstly applied in the field of living aquatic products transportation. Aimed at tackling survival rate of living aquatic products in long distance transportation affected by dissolved oxygen and currently fashionable living creature gift market, a gift packed transporting apparatus is designed. The experiment of high density transportation of living aquatic products shows that the survival rate is above 95%. Consequently, this apparatus is effective in high density transportation of living aquatic products. It fully proves the practical applications of bubbleless aeration.
引文
[1].田朝阳.大力推广海水鱼闭式循环保活运输技术[J].渔业现代化,2003,(2):35
    [2].李春林.鱼类养殖生物学[M].北京:中国农业科学技术出版社,2007
    [3].缪圣赐.首届国际虾类贸易会议今秋在东京召开[J].现代渔业信息,1987,(11):30
    [4].王春琳,吴丹华,董天野,等.曼氏无针乌贼耗氧率及溶氧胁迫对其体内酶活力的影响[J].应用生态学报,2008,19(11):2420~2427
    [5].万松良,汪亮,万珊,等.鱤鱼种耗氧率与窒息点的初步研究[J].水产科学,2008,27(6):276~278
    [6].廖勋波,张明.鄱阳湖黄颡鱼耗氧率与窒息点的研究[J].中国饲料,2008,(3):39~40
    [7]. Jesus C.V., Maria D.H., Felipe A.G., et al. Oxygen consumption in spider crab( Maja brachydactyla): Effect of weight, temperature, sex, feeding and daily light-dark cycle[J].Aquaculture,2009,298:131~138
    [8].李加儿,刘士瑞,区又君,等.浅色黄姑鱼幼鱼耗氧率、排氨率及窒息点的初步研究[J].海洋学报,2008,30(5):165~170
    [9].关键,柳学周,马学坤,等.半滑舌鳎幼鱼耗氧率和窒息点的研究[J].海洋水产研究,2006,27(2):80~86
    [10]. Tian X.L., Dong S.L., Wang F., et al. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck[J].Journal of Experimental Marine Biology and Ecology,2004,310:59~72
    [11]. Gillooly J.F., Brown J.H., West G.B. et al. Effects of size and temperature on Metabolic rate[J]. Science,2001,293:2248~2251
    [12]. Dounia D., Denis C., Celine A., et al. Temperature induced variation in oxygen consumption of juvenile and adults stages of the northern shrimp, Pandalus borealis[J].Journal of Experimental Marine Biology and Ecology,2007,(347):30~40
    [13].陈进树.饲养水温对神仙鱼呼吸频率的影响[J].中国科技信息,2007,(22):50~51
    [14].陈松波,范兆廷,陈伟兴.不同温度下鲤鱼呼吸频率与耗氧率的关系[J].东北农业大学学报,2006,37(3):352~356
    [15].余日清,贺锡勤.低pH对草鱼呼吸活动和耗氧代谢的影响[J].环境科学学报,1992,12(1):105~111
    [16].陈惠,王丽华.氨对鱼类毒性的研究[J].水产学杂志,1994,7(2):55~61
    [17].李学军,李爱景,彭新亮,等.不同盐度下萨罗罗非鱼、尼罗罗非鱼和以色列红罗非鱼耗氧率、临界溶氧和窒息点的比较分析[J].河南师范大学学报:自然科学版,2007,35(2):137~141
    [18]. Cheng Z. J., Hardy R. W., Usry J. L. Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout(Oncorhynchus mykiss)diets, and reduce ammonia nitrogen and soluble phosphorus excretion[J].Aquaculture,2003,(218):553~565
    [19]. Harris J. O., Maguire G. B., Edwards S. J., et al. Low dissolved oxygen reduces growth rate and oxygen consumption rate of juvenile greenlip abalone, Haliotis laeugata Donovan[J]. Aquaculture,1999,174:265~278
    [20]. Harris J. O., Maguire G. B., Edwards S., et al. Effect of ammonia on the growth rate and oxygen consumption of juvenile greenlip abalone, Haliotis laeugata Donovan[J].Aquaculture,1998,160:259~272
    [21].葛长字.体重与氨氮浓度对河蚌氨氮排泄的影响[J].安徽农业科学,2010,38(4):1881~1883,1887
    [22].蒋艾青.残饵、死鱼及排泄物腐解对山区静养池养殖水质的影响[J].现代农业科技,2007,(10):143~144,150
    [23].熊善柏.水产品保鲜储运与检验[M].北京:化学工业出版社,2006
    [24].姚泰.生理学[M].北京:人民卫生出版社,2002
    [25].刘小玲.鱼类应激反应的研究[J].水利渔业,2007,27(3):1~3
    [26].陈文召,李光明,董有,等.供气式气液双喷嘴射流器的充氧性能研究[J].工业水处理,2007,27(7):33~35,56
    [27].邓希海.换水换气式充氧密封水产苗种运输装置的应用研究[J].大连水产学院学报,2008,23(3):225~229
    [28].刘德禧.密封充氧运输鱼苗的技术[J].水产养殖,1990,(4):32~33
    [29].张耀明,康焕春.利用双氧水(H2O2)作增氧剂运输鱼苗的试验[J].水产科学,1983,(1):29~31
    [30].杨正锋,杨斌,李明.增氧剂在水产生产多个环节中的不同应用[J].河北渔业,2007,(2):8~9,30
    [31].刘长琳,陈四清,何力,等. MS-222对半滑舌鳎成鱼的麻醉效果研究[J].中国水产科学,2008,(1):92~99
    [32]. Oikawa S., Takeda T., Itazawa Y. Scale effects of MS-222 on a marine teleost, porgy pagrus major[J].Aquaculture,1994,121:369~379
    [33]. Malmstroem T., Salte R., Gjoeen H M, et al. A practical evaluation of metomidate and MS-222 as anaesthetics for Atlantic halibut(Hippoglossus hipppoglossus L.)[J].Aquaculture,1993,113(4):331~338
    [34].张富林,吕世明.丁香酚对鲤鱼的麻醉作用[J].重庆水产,2007,(4):51~54
    [35].杜浩,危起伟,杨德国,等. MS-222、丁香油、苯唑卡因对养殖美洲鲥幼鱼的麻醉效果[J].大连水产学院学报,2007,22(1):20~26
    [36].王春,罗月媚,葛国昌.影响乙二醇苯醚对尼罗罗非鱼麻醉作用的因子[J].水利渔业,1996,(5):27~30
    [37].许钟,杨宪时,张秀珍.国外鱼贝类生态冰温无水活运的研究[J].齐鲁渔业,1996,13(2):40~41
    [38].王晓飞,张桂,郭晓燕.麦穗鱼无水保活技术的初步研究[J].内陆水产,2008,33(3):19~21
    [39].田标,陈申如,杨远帆,等.黑鲷无水保活技术的初步研究[J].集美大学学报(自然科学版),2004,9(3):221~223
    [40].孙宁.罗氏沼虾活虾无水运输研究[J].海洋科学,2009,(5):41~46
    [41]. Brian H. Cryopreservation of zebra fish spermatozoa using methanol[J]. Can.J Zool, 1982, (60):1867~1870
    [42]. Erdahl D.H. Cryopreservation of Salmonid Spermatozoa[J]. Cryobioligy,1978,(15):362~364
    [43]. Mounib M.S. Crypogenic Preservation of fish and mammalian spermatozoa[J].J. Reprod.Fert., 1978,(53):13~18
    [44].肖志忠,陈雄芳,丁福红,等.大黄鱼精液的高效超低温保存[J].海洋科学,2007,31(4):1~4,72
    [45].廖馨,葛家春,丁淑燕,等.青虾精子超低温冷冻保存技术的研究[J].南京大学学报(自然科学版),2008,4:421~426
    [46].叶霆,竺俊全,杨万喜,等.黑鲷精子的超低温冻存及DNA损伤的SCGE检测[J].动物学研究,2009,30(2):151~157
    [47].王玮,陆庆刚,顾海涛,等.微孔曝气增氧机的增氧能力试验[J].水产学报,2010,34(1):97~100
    [48].尉伟敏.影响淋水增氧效率若干参数的初步研究[J].渔业机械仪器,1996,(3):16~18
    [49]. GB/T 20103—2006,膜分离技术术语[S].北京:中国标准出版社,2006
    [50].张自杰.排水工程(第四版)[M].北京:中国建筑工业出版社,1999
    [51]. Tariq A., Michael J.S.. Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies[J].Journal of Membrane Science,1992,69(1~2):1~10
    [52]. Peter T.W., Bryan T.O., John S. Gulliver, et al. Bubbleless fiber aerator for surface waters[J].Journal of Environmental Engineering,1996,122(7):631~639
    [53]. Vladisavljevic G.T. Use of polysulfone hollow fibers for bubbleless membrane oxygenation/ deoxygenation of water[J].Separation and Purification Technology,1999,17(1):1~10
    [54]. Rantenbach R.著,王乐夫译.膜工艺——组件和装置设计基础[M].北京:化学工业出版社,2001
    [55].任建新主编,膜分离技术及其应用[M].北京:化学工业出版,2003
    [56]. Voss, M.A., Ahmed, T., Semmens, M.J.. Long term performance of parallel flow bubbleless hollow fiber membrane aerator[J].Water Environ. Res.1999,71 (1):23~30
    [57]. Lee, K. C., Rittmann, B.E.,.A novel hollow fiber biofilm reactor for autohydrogenotrophic denitrification of drinking water[J].Water Sci. Technol. 2000,41 (4~5):219~226
    [58]. Wu J., Chen V. Shell-side mass transfer performance of ranmomly packed hollow fiber modules [J].Journal of Membrane Science.,2000,172:59~74
    [59].丁卫平.中空纤维人工肾的传质研究[D].中国科技大学,2004
    [60]. Cussler E.L. Diffusion mass transfer in fluid system[M].Beijing: Chemical Industry Press,2002
    [61].郑巨孟.中空纤维膜及膜接触器传质特性的研究[D].浙江大学,2003
    [62]. Kanamori T., Shinbo T. Mass transfer of a solute by diffusion with convection around a single hollow-fiber membrane for hemodialysis[J].Desalination,2000,129:217~225
    [63].郝欣,石冰洁,张卫东,等.孔隙率对中空纤维膜气体吸收过程影响的研究[J].膜科学与技术,2005,25(3):34~38
    [64].陆建刚,郑有飞,杨艳,等.疏水性中空纤维膜组件操作过程模拟[J].南京气象学院学报,2008,31(5):718~722
    [65]. Yang M.C., Cussler E.L.. Designing hollow fiber contactors[J].AIChE J,1986,32:1910~1916
    [66]. Prasad R,. Sirkar K.K. Dispersion-free extraction with microporous hollow fibre modules[J].AIChE J,1988,34:177~188
    [67]. Costello M.J. Shell-side fluid dynamics and mass transfer through hollow fibre membrane modules[D].University of New South Wales,1995
    [68]. Costello M.J., Fane A.G., Hofan P.A. The effect of shell side hydrodynamics on the performance of axia flow hollow fibre modules[J].Journal of Membrane Science.,1993,80:1~11
    [69].龚福忠,罗艳,马培华,等.乳状液——中空纤维膜萃取釹及其传质性能研究[J].中国稀土学报,2006,24(3):298~303
    [70].张六六,许春燕,牛津立,等.中空纤维膜无泡供氧过程的传质性能研究[J].膜科学与技术2004,24(5):16~21
    [71].刘惠峰,邵嘉慧,何义亮.膜接触器除氧实验研究及其传质分析[J].膜科学与技术,2008,28(2):22~26
    [72]. Jasmin W., Vicki C. Shell-side mass transfer performance of randomly packed hollow fiber modules[J]. Journal of Membrane Science,2000,172,59~74
    [73]. Ding W.P., Gao D.Y., Wang Z., et al. Theoretical estimation of shell-side mass transfer coefficient in randomly packed hollow fiber modules with polydisperse hollow fiber outer radii[J]. Journal ofMembrane Science,2006,284:95~101
    [74]. Wang Y.J., Chen F., Wang Y., et al. Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function[J]. Journal of Membrane Science,2003,216:81~93
    [75]. Zheng J.M., Xu Z. K., Li J.M., et al. Influence of random arrangement of hollow fiber membranes on shell side mass transfer performance: a novel model prediction[J].Journal of Membrane Science,2004,236:145~151
    [76]. Rishell S., Casey, Glennon B., et al., Mass transfer analysis of a membrane aerated reactor[J]. Biochemical Engineering Journal,2004,18:159~167
    [77]. Ahmed T., Michael J.S., Michael A.V. Energy loss characteristics for parallel flow bubbleless hollow fiber membrane aerators[J]. Journal of Membrane Science,2000,171,87~96
    [78]. Brindle K., Stiphenson T. The application of membrane biologica reactors for the treatment of wastewaters[J].Biotechnology and Bioengineering,1996,49(6):601~610
    [79].刘晓娟,王海芳.膜生物反应器处理生活污水的试验条件研究[J].工业安全与环保,2010,36(1):10~11
    [80].黄承武,高春梅,彭民建.无泡曝气膜生物反应器处理麻脱胶废水[J].重庆大学学报(自然科学版),2007,30(10):97~100
    [81]. Pankhania M., Stephenson T. Semmens M.J. Hollow fibre bioreactor for wastewater treatment using bubbleless membrane aeration[J].Wat Res,1994,28(10):2233~2236
    [82]. Keith B., Stephenson T., Semmens M.J .Pilot-plant treatment of a high-strength brewery wastewater using a membrane-aeration bioreactor[J].Water Environ Res,1999,71:1197~1204
    [83].沈志松,钱国芬,朱晓慧等.无泡式中空纤维膜发酵供氧的初步研究[J].膜科学与技术,1998,18(6):42~48
    [84].忻亚娟.动物细胞培养技术的进展[J].浙江预防医学,2001,14(2):48~56
    [85].田玉麟,黑飞龙,王寿世,等.无泵型体外人工肺辅助技术对对犬急性呼吸窘迫综合症模型的通气支持[J].中国组织工程研究与临床康复,2008,12(17):3217~3220
    [86].胡金晓,向小勇.自体肺与人工肺体外循环对肺影响的对比研究[J].中国体外循环杂志,2004,2(2):96~99,101
    [87]. Hattler B.G., Federspiel W.J. The artificial lung[M].Austin TX: Landes Bioscience,2002
    [88]. Cote P., Bersillon J.L., Huyard A.. Bubble-free aeration using membranes: mass transfer analysis[J].Journal of Membrane Science,1989,47(1):91~106
    [89]. Ahmed T. Use of transverse flow hollow fibers for bubbleless membrane aeration[J].Water Research,1996,30(2):440~446
    [90].纪志永,李鑫钢.膜法无泡供氧的气压优化[J].天津大学学报,2007,40(3):362~365
    [91]. Michael J.S, John S. G., Anita A.. An analysis of bubble formation using microporous hollow fiber membranes[J].Water Environ Res,1999,71:307~315
    [92].姚玉英.化工原理[M].天津:天津大学出版社,2003
    [93].贾绍义,柴诚敬.化工传质与分离过程[M].北京:化学工业出版社,2001
    [94]. Wu J., Chen V. Shell-side mass transfer performance of randomly packed hollow fiber modules.[J].Journal of Membrane Science.,2000,(172):59~74
    [95]. Gawronski R., Wrzensinska B.. Kinetics of solvent extraction in hollow-fiber contactors[J].Journal ofMembrane .Science, 2000,(168):213~222
    [96]. Lipnizki F., Field R.. Mass transfer performance for hollow fiber modules with shell-side axial feed flow: using an engineering approach to develop a framework[J]. Journal of Membrane Science, 2001,(193):195~208
    [97]. Ahmed T., Steven R. B., Kauser J. Performance of a transverse flow bubbleless membrane aerator[J].Toxicological and Environmental Chemistry,1997,(64):15~32
    [98].黄啸,陆茵.水产活体流通运输的研究现状[J].浙江农业科学,2010,(2):431~434
    [99].周晟安,刘建萍.影响活鱼运输效率及成活率的主要因素[J].内陆水产,2003(5):29
    [100].黄啸,陆茵,双继文,等.水产品运输中的水体供氧技术[J].渔业致富指南,2010,(11):24
    [101].李慧,郑斐,朱文亭.利用中空纤维膜无泡供氧[J].水处理技术,2005,31(9):42~44
    [102].丁永良.鱼虾类养殖生产的主要环境制约因子——O2与NH3—N[J].渔业机械仪器,1992,(3):2~4
    [103].徐佩弦.塑料制品设计指南[M].北京:化学工业出版社,2007
    [104]. Henry R.K. Fish transport in the aquaculture sector: An overview of the road transport of Atlantic salmon in Tasmania[J]. Journal of Veterinary Behavior,2009,4:163~168
    [105].朱健康,卢俊杰,游远新,等.海水活鱼运输装置及应用效果试验[J].农业工程学报,2005,21(10):187~189
    [106].史建华,徐琴英,李建忠,等.名贵水生动物活体运输箱的研制[J].渔业现代化,2007,34,(3): 40~41,39
    [107]. Andersen O. Transport of fish from Norway: energy analysis using industrial ecology as the framework[J]. Journal of Cleaner Production,2002,10:581~588
    [108].陈宁生,施瑔芳.草鱼、白鲢和花鲢的耗氧率[J].动物学报,1955,7(1):43~57
    [109].万松良,葛雷,张扬,等.瓦式黄颡鱼与黄颡鱼的耗氧率及窒息点[J].动物学杂志,2005,40(6):91~95
    [110].潘莹,唐文乔,张饮江.胭脂鱼幼鱼的耗氧率及窒息点研究[J].淡水渔业,2007,37(6):48~51
    [111].胡国宏,张德隆,王拥军,等.透明充氧运输蟹苗效果好[J].中国水产,1996,(6):24~25
    [112].张静,汤保贵,徐永福.水产种苗的充氧运输[J].内陆水产,2005,(3):15