基于状态监测与系统风险评估的电力设备维修及更新策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电力系统深刻变革的背景下,传统的只注重设备自身的维修模式已经不能满足智能电网高级资产管理对资产全面优化的要求。电力设备维修的根本目的是降低系统风险,为用户提供经济可靠的电能供应。因此维修决策不应只决定于设备本身的状态,还应考虑设备失效对系统可靠性的影响。目前的现状由于缺乏基于状态监测量的系统风险评估模型,维修决策优化只能在设备层和系统层分别进行,未能建立统一的优化模型,维修资源得不到合理分配。
     本论文改进了基于状态监测量的设备可修复故障率模型并提出了基于状态监测量的设备老化不可用率模型,并在此基础上,提出了将设备状态和系统风险相结合的统一维修决策思想。不但具备状态维修方法利用状态监测技术准确掌握设备健康状况的优点,而且还能够直接评估设备状态变化对系统可靠性的影响,使得可以实施从设备层到系统层的全面维修优化决策。对各种不同的维修主题进行了研究探讨,包括待修设备集选择、维修日程规划、设备老化更新策略、维修中的经济性分析、总体维修决策和电力市场机制下的维修策略。研究对象包括发电、输电、变电系统中的不同设备,针对这些设备在系统中的不同特点,提出了相应的维修策略和计算方法。
     对发电机的维修策略进行了探讨,研究了在电力市场环境下各发电厂商与ISO协调的机组维修日程规划问题,提出了基于竞价的发电机组多目标优化维修策略。针对现有机组维修时段竞价策略有可能导致发电厂商恶意竞价的问题,提出了对维修时段竞价过程的约束机制,规范了发电厂商的竞价行为。利用NSGA-II算法直接求解发电机维修多目标优化问题,避免了将多目标模型转换为单目标模型的缺点,并利用求解出的非劣解集建立了确定最终维修方案的投票策略。机组维修优化过程保证了维修方案的经济性,系统的可靠性,和发电厂商之间竞争的公平性。
     对架空线维修决策进行了研究,改进了基于状态监测的三参数指数故障率模型的评估方法,建立了线路状态监测量与系统风险之间的定量联系。解决了定量评估架空线维修效果的问题,提出了架空线维修的可靠性效益指标和维修费效用指标,根据架空线的维修费效用指标对线路进行排序,使单位费用提升可靠性高的线路优先得到维修,单位费用提升可靠性低的线路后维修,并在每一步维修决策过程中校核维修费预算,以最经济最可靠的方式来安排架空线维修。
     对变压器老化更新问题进行了研究,利用变压器状态监测量与变压器的绝缘年龄之间的数学关系建立了基于状态监测量的变压器老化失效不可用率模型,这样就可以利用状态监测量直接定量评估变压器老化对系统风险的影响。基于计算变压器老化失效引起的期望损失费用和推迟变压器更新获得的收益,确定最佳退役年龄。这种方法能够控制变压器由于老化对系统造成的风险影响,避免在系统中重要位置的老化变压器过晚退役对系统造成的风险和在系统中不重要位置的老化变压器过早退役造成资产浪费。
     对断路器的维修策略进行了研究,提出了一种断路器状态评估方法,这种方法利用断路器操动机构二次侧分合闸线圈中电流、电压曲线以及辅助开关的动作时间来评估断路器的状态,并利用非参数核密度估计方法计算出断路器状态的概率分布,更加全面地反映了断路器的实际状态。利用基于状态监测量的断路器状态的概率分布,计算出断路器状态异常的概率,把断路器的异常概率与断路器对变电站风险的影响相结合,提出了断路器维修决策方法,在兼顾断路器状态和变电站风险的情况下确定经济可靠的维修方式。
The traditional maintenance methods that concentrate on equipment itself butignore impacts of equipment failure on system cannot meet the requirements ofadvanced asset management in smart grids. The fundamental target of maintenance is toreduce system risks and increase reliability and economy of power supply. Themaintenance strategy of equipment should be determined by not only its own conditionbut also the effect of its failure on system risk. At the present, system reliabilityassessment does not use equipment condition monitoring data but only uses the averagefailure rate of equipment, and condition monitoring based maintenance and reliabilitycentered maintenance are implemented separately.
     To overcome the barrier, the thesis presents a repairable failure rate model basedon condition monitoring data and an ageing failure unavailability model based oncondition monitoring data. The maintenance strategy of combining equipment conditionmonitoring and system risk evaluation is proposed using the two models. With such amaintenance strategy, both equipment condition and system risk can be considered in aunified maintenance process. Various different topics have been investigated includingselection of maintenance candidate set, maintenance scheduling, replacement of ageingequipment, economic analysis in maintenance, overall maintenance procedure andmaintenance strategy under power market environment. Maintenances of different typesof equipment in generation, transmission and substation have been studied, and thecorresponding maintenance strategies and calculation methods have been are proposed.
     The maintenance scheduling method of generators is studied under the powermarket environment. A multi-objective maintenance optimization model based onbidding is proposed. A constraint mechanism to regulate possible abnormal behaviors ofgenerator companies is presented. The NSGA-II algorithm is utilized to solve thegenerator maintenance multi-objective model. This algorithm can avoid the drawback oftransforming a multi-objective to a single-objective in conventional methods. Aresulting non-inferior solution set is used to build the voting strategy for determining thefinal maintenance scheme, which can guarantee the economy of maintenance solutions,system reliability and fairness among generator companies.
     The maintenance strategy of overhead lines is studied. A new failure rate modelbased on condition monitoring data is presented to establish the quantified relationship between condition monitoring data and system risk. The quantitative maintenanceeffectiveness can be determined. The Maintenance Reliability Benefit Index and theMaintenance Cost Utility Index are proposed. The maintenance ranking order is createdusing a benefit/cost ratio index. An overhead line whose maintenance can improvesystem reliability more will be automatically maintained before a line whosemaintenance can improve system reliability less. The maintenance budget constraint canbe incorporated into the process of an economic and reliable maintenance scheme.
     The replacement strategy of ageing transformers is studied. The unavailability oftransformer ageing failure is calculated using the relationship between conditionmonitoring data and insulation age so that the system risk can be evaluated bymonitored measurements. The expected damage cost due to ageing failures and thebenefit due to delaying the replacement of transformer are evaluated respectively todetermine the best replacement timing. The proposed method can control the systemrisk due to transformer ageing failures, which avoids either too late retirement ofequipment at important locations or too early retirement of equipment at unimportantlocations.
     The maintenance of circuit breakers is studied. An evaluation method of circuitbreaker condition is proposed using the information on mechanical parts and secondarycircuits which can be identified by analyzing the waveforms of trip-and close-coilcurrent, waveforms of contact voltage transition, operation times of different auxiliarycontacts, and trip and close initiation time. A non-parametric kernel density evaluationmethod is used to assess the probability distribution of a breaker condition index. Thenthe probability of a circuit breaker operating in the abnormal condition can be assessed.With the abnormal probability and the system risk of substation, the maintenancestrategy of circuit breakers with economy and reliability is presented.
引文
[1]李文沅.电力系统风险评估模型、方法和应用[M].北京:科学出版社,2006.
    [2]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源,2009,(01):7-11.
    [3]丁民丞,王靖,朱治中.方兴未艾的智能电网[J].国家电网,2008,(05):86-88.
    [4]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,(34):1-8.
    [5]李乃湖,倪以信,孙舒捷,姚美齐.智能电网及其关键技术综述[J].南方电网技术,2010,(03):1-7.
    [6]刘振亚.建设坚强智能电网支撑又好又快发展[J].电网与清洁能源,2009,(09):1-3.
    [7] NETL. A vision for samrt grid [EB/01].http://www.netl.doe.gov/smartgrid/refshelf.html#White Papers.2009-01-01.
    [8] Wenyuan Li. Methods for Determining Uint Interruption Cost[R]. BC Hydro,2000.
    [9]余贻鑫,栾文鹏.智能电网的基本理念.天津大学学报[J].天津大学学报,2011,(05):377-384.
    [10]何光宇,孙英云.智能电网基础[M].北京:中国电力出版社,2010.
    [11]束洪春.电力系统以可靠性为中心的维修[M].北京:机械工业出版社,2008.
    [12] Endrenyi J., Aboresheid S., Allan R. N., Anders G. J., Asgarpoor S., Billinton R.,Chowdhury N., Dialynas E. N., Fipper M., Fletcher R. H., Grigg C., McCalley J.,Meliopoulos S., Mielnik T. C., Nitu P., Rau N., Reppen N. D., Salvaderi A., Schneider A.,Singh C. The present status of maintenance strategies and the impact of maintenance onreliability[J]. IEEE Transactions on Power Systems,2001,16(4):638-646.
    [13] Moubray John.以可靠性为中心的维修[M].北京:机械工业出版社,1995.
    [14] Wenyuan Li. Risk Assessment Of Power Systems: Models, Methods, and Applications[M].USA and Canada: IEEE Press and Wiley&Sons,2005.
    [15]邱仕义.电力设备可靠性维修[M].北京:中国电力出版社,2004.
    [16]万元.大型发电机局部放电在线监测与分析方法研究[D].华中科技大学,2009.
    [17]张征平,喇元,刘炜,杨楚明,徐阳,胡晓.基于双电容耦合的发电机局部放电离线式测量新方法[J].大电机技术,2009,(06):6-9.
    [18]汪泉弟,杨承河,杨永明,张宇鹏,陆俊杰.发电机定子绕组局部放电超声波在线定位分析[J].重庆大学学报,2009,(10):1150-1153.
    [19]袁沈明.水轮发电机定子绕组局部放电分析仪的使用[J].水电厂自动化,2000,(04):71-74.
    [20]陈志刚,林令知,王雷鸣.定子槽耦合器法在发电机局部放电监测中的应用[J].华电技术,2010,(12):4-6.
    [21]耿文琅,朱晓东.汽轮发电机组振动监测与诊断系统的发展[J].汽轮机技术,2003,(02):71-72.
    [22]李晓明,刘东明.大型汽轮发电机转子绕组匝间短路故障的测试与分析[J].大电机技术,2003,(03):7-11.
    [23]茨越特柯夫B. A.,傅霞飞.转子绕组匝间短路时汽轮发电机定子绕组并联交路的环流[J].湖南电力,1995,(06):55-60.
    [24]华东电管局中心试验所,南市发电厂.发电机局部过热微粒检测装置[J].电力技术,1978,(01):50-52.
    [25]李凌.汽轮发电机过热故障的温差分析法[J].云南电力技术,2004,(04):25-27.
    [26]夏云峰,蒋兴良,张志劲,胡建林,胡琴.应用小生境遗传算法优化导线钢芯断股漏磁检测传感器[J].中国电机工程学报,2011,(19):122-128.
    [27]沈映.干式电抗器线圈直流电阻不平衡率与导线断股情况分析[C].2011年云南电力技术论坛,中国云南昆明,2011:7.
    [28]蒋兴良,夏云峰,张志劲,胡建林,胡琴.基于优化Gabor滤波器的输电导线断股图像检测[J].电力系统自动化,2011,(15):78-83.
    [29]何为,陈涛,刘晓明,杨帆,姚德贵,熊东.基于紫外脉冲法的非接触式低值(零值)绝缘子在线监测系统[J].电力系统自动化,2006,(10):69-74.
    [30]赵汉表,林辉,谢利理,邓正龙.基于高压侧测量的输电线绝缘子泄漏电流在线监测系统[J].电力系统自动化,2004,(22):78-82.
    [31]李佐胜.红外热像检测绝缘子污秽等级的关键技术研究[D].湖南大学,2009.
    [32]李宁先,章金谋,李镓,张政,李建雄.变压器油中气体色谱分析方法和仪器发展现状[J].变压器,2003,(08):20-23.
    [33]周恒逸.变压器油中气体光声信号混沌检测及影响因素分析[D].重庆大学,2010.
    [34] Qingxu Yu, Fisher Cornelia, Sigrist Markus. Photoacoustic Spectrometer System for TraceGas Sensing Based Difference-frequency Laser Source[J]. Journal of Optoelectronics Laser,2001,12(9):923-926.
    [35]王国利,郝艳捧,李彦明.电力变压器局部放电检测技术的现状和发展[J].电工电能新技术,2001,(02):52-57.
    [36] Ward Barry H. A Survey of new techniques in insulation monitoring of power transformers.IEEE Electrical Insulation Magazine[J]. IEEE Electrical Insulation Magazine,2001,3(17):16-23.
    [37] Kelen A. Trends in PD diagnostics[J]. IEEE Transactions on Dielectrics and ElectricalInsulation,1995,2(4):529-534.
    [38]王国利,郑毅,郝艳捧,李彦明.用于变压器局部放电检测的超高频[J].中国电机工程学报,2002,(04):155-161.
    [39] Natti S., Kezunovic M. Model for Quantifying the Effect of Circuit Breaker MaintenanceUsing Condition-Based Data[C].2007IEEE Lausanne Power Tech,2007:1605-1610.
    [40]赵霞,熊小伏,郭珂.用细化频谱技术分析断路器操动机构振动信号[J].电力系统自动化,2003,(12):37-40.
    [41]胡涛,刘海峰,杜大全.550kV罐式断路器局部放电在线检测[J].高压电器,2008,(04):378-380.
    [42]彭翔,陈禾,夏谷林,陈伟,黄昉,张飚.500kV断路器并联电容器的现场高电压介质损耗测量[J].高电压技术,2011,(10):2378-2384.
    [43]张蓬鹤,张丹丹,饶章权,韩鹏博.基于模糊层次分析法的接地网状态评估研究[J].电测与仪表,2011,(12):5-7.
    [44]廖瑞金,王谦,骆思佳,廖玉祥,孙才新.基于模糊综合评判的电力变压器运行状态评估模型[J].电力系统自动化,2008,(03):70-75.
    [45]袁志坚,孙才新,袁张渝,李剑,廖瑞金.变压器健康状态评估的灰色聚类决策方法[J].重庆大学学报(自然科学版),2005,(03):22-25.
    [46]魏延芹.基于物元与证据理论相结合的高压断路器状态评估方法研究[D].重庆大学,2008.
    [47]薛敏,韩富春.基于灰色理论的电力变压器运行状态评估[J].电气技术,2010,(06):21-23.
    [48]杜林,袁蕾,熊浩,唐纲,李刚,孙才新.电力变压器运行状态可拓层次评估[J].高电压技术,2011,(04):897-903.
    [49]赵文清,朱永利,姜波,张小奇,章斌.基于贝叶斯网络的电力变压器状态评估[J].高电压技术,2008,(05):1032-1039.
    [50]姜涛,韩富春,范卫星.基于粗糙集理论的架空输电线路运行状态评估[J].电气技术,2007,(04):58-60.
    [51]邱仕义.电力设备可靠性维修[M].北京:中国电力出版社,2004.
    [52]刘晓锋,陆颂元.发电设备RCM实施方法的研究与探讨[J].汽轮机技术,2005,(04):244-247.
    [53]温鹏,张卫华,贾佳,贾峥.基于RCM的电力变压器的故障模式及影响分析[J].黑龙江科技信息,2009,(36):31.
    [54]董玉亮,顾煜炯,杨昆.基于灰色理论和RCM分析的发电设备风险分析[J].动力工程,2004,(06):798-801.
    [55]顾煜炯,董玉亮,杨昆.基于模糊评判和RCM分析的发电设备状态综合评价[J].中国电机工程学报,2004,(06):193-198.
    [56]赵振宁,陈锋.以可靠性为中心的检修在电力公司中的应用[J].华北电力技术,2002,(03):20-23.
    [57]段本成.以可靠性为中心的维修(RCM)在电力系统中的应用浅析[J].电气开关,2011,(04):60-64.
    [58] Moubray John. Reliability-Centered Maintenance[M]. New York: Industrial Press,1997.
    [59] Bertling Lina, Allan Ron, Eriksson Roland. A reliability-centered asset maintenance methodfor assessing the impact of maintenance in power distribution systems[J]. IEEE Transactionson Power Systems.,2005,20(1):75-82.
    [60] Endrenyi J., Anders G. J., Leite Da Silva A. M. Probabilistic evaluation of the effect ofmaintenance on reliability-an application[J]. IEEE Transactions on Power Systems.1998,13(2):576-582.
    [61] Billinton R., Allan R. N. Reliability Evaluation of Power Systems (second edition)[M].New York and London: Plenum Press,1996.
    [62]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估[J].电网技术,2005,29(15):6-12.
    [63]刘海涛,程林,孙元章.基于实时运行条件的元件停运因素分析与停运率建模[J].电力系统自动化,2007,31(7):6-11.
    [64] Wenyuan Li, Jiaqi Zhou, Xiaofu Xiong. Fuzzy models of overhead power line weather-related outages[J]. IEEE TRansactions on power systems.2008,23(3):1529-1531.
    [65] Wenyuan Li, Xiaofu Xiong, Jiaqi Zhou. Incorporating fuzzy zeather-related outages intransmission system reliability assessment[J]. IET proceed. Generation, Transmiss. Distribut.2009,3(1):26-37.
    [66] Hughes David. Condition Based Risk Management (CBRM)-Enabling asset conditioninformation to be central to corporate decision making[C]. Eighteenth InternationalConference and Exhibition on Electricity Distribution, CIRED2005, Technical Reports-Session1: Network Components, Turin, Italy,2005:39-43.
    [67]王慧芳,杨荷娟,何奔腾,王一.输变电设备状态故障率模型改进分析[J].电力系统自动化,2011,35(16).
    [68] Brown R. E., Frimpong G., Willis H. L. Failure rate modeling using equipment inspectiondata[J]. IEEE Transactions on Power Systems.2004,19(2):782-787.
    [69] Anders George, Bertling Lina, Cliteur Gerard, Endrenyi John, Jardine Andrew, Wenyuan Li.Tutorial book on Asset Management-Maintenance and Replacement Strategies at the IEEEPES GM2007[R], Tampa, USA,2007.
    [70] Shahidehpour M., Marwali M. K. C. Maintenance Scheduling in Restructured PowerSystems[M]. Norwell, MA: Kulwer,2000.
    [71] Billinton R., Abdulwhab A. Short-term generating unit maintenance scheduling in aderegulated power system using a probabilistic approach[J]. Generation, Transmission andDistribution, IEE Proceedings-.2003,150(4):463-468.
    [72] Marwali M. K. C., Shahidehpour S. M. Long-term transmission and generation maintenancescheduling with network, fuel and emission constraints[J]. IEEE Transactions on PowerSystems,1999,14(3):1160-1165.
    [73] Jin-Ho Kim, Jong-Bae Park, Jong-Keun Park, Kim B. H. A new game-theoretic frameworkfor maintenance strategy analysis[J]. IEEE Transactions on Power Systems,2003,18(2):698-706.
    [74] Conejo A. J., Garcia-Bertrand R., Diaz-Salazar M. Generation maintenance scheduling inrestructured power systems[J]. IEEE Transactions on Power Systems,2005,20(2):984-992.
    [75] Lu G., Chung C. Y., Wong K. P., Wen F. Unit maintenance scheduling coordinationmechanism in electricity market environment[J]. IET Generation, Transmission&Distribution,2008,2(5):646-654.
    [76] Zhihua Gao, Zhen Ren. Competitive maintenance scheduling and settlement base onbidding in electricity market[C]. Fourtieth IAS Annual Meeting. Conference Record of the2005Industry Applications Conference,2005:2684-2689.
    [77] Jian Wang, Fushuan Wen, Rengang Yang, Yixin Ni, Wu F. F. Towards the development of anappropriate regulation mechanism for maintenance scheduling of generating units inelectricity market environment[C]. IEEE Power Engineering Society General Meeting,2004:1198-1202.
    [78] Changyou Feng, Xifan Wang. A Competitive Mechanism of Unit Maintenance Schedulingin a Deregulated Environment[J]. IEEE Transactions on Power Systems,2010,25(1):351-359.
    [79] Wang Peng, Ma Rui, Xu Tao, Yang Huachun, He Renmu. Research on multi-objectiveoptimum model of unit maintenance scheduling under the condition of electricity market[C].Proceedings of the2004IEEE International Conference on Electric Utility Deregulation,Restructuring and Power Technologies,2004:196-199.
    [80] Chen L., Toyoda J. Optimal generating unit maintenance scheduling for multi-area systemwith network constraints[J]. IEEE Transactions on Power Systems,1991,6(3):1168-1174.
    [81] Zurn H. H., Quintana V. H. Generator maintenance scheduling via successiveapproximations dynamic programming[J]. IEEE Transactions on Power Apparatus andSystems,1975,94(2):665-671.
    [82] Tabari N. M., Pirmoradian M., Hassanpour S. B. Implicit enumeration based0-1integerprogramming for generation maintenance scheduling[C]. IEEE Region8InternationalConference on Computational Technologies in Electrical and Electronics Engineering,2008:151-154.
    [83] Kim H., Hayashi Y., Nara K. An algorithm for thermal unit maintenance scheduling throughcombined use of GA, SA and TS[J]. IEEE Transactions on Power Systems,1997,12(1):329-335.
    [84] Yare Y., Venayagamoorthy G. K., Aliyu U. O. Optimal generator maintenance schedulingusing a modified discrete PSO[J]. IET Generation, Transmission&Distribution,2008,2(6):834-846.
    [85] Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective geneticalgorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [86] Xifan Wang, James McDonald. Modern Power System Planing[M]. Londen, U.K.:McGraw-Hill,1994.
    [87] Kannan S., Baskar S., McCalley J. D., Murugan P. Application of NSGA-II Algorithm toGeneration Expansion Planning[J]. IEEE Transactions on Power Systems,2009,24(1):454-461.
    [88] N Srinivas, Deb Kalyanmoy. Multi-objective optimization using nondominated sorting ingenetic algorithms[J]. Evolutionary Computation.1994,2(3):221-248.
    [89] Grigg C., Wong P., Albrecht P., Allan R., Bhavaraju M., Billinton R., Chen Q., Fong C.,Haddad S., Kuruganty S., Li W., Mukerji R., Patton D., Rau N., Reppen D., Schneider A.,Shahidehpour M., Singh C. The IEEE Reliability Test System-1996. A report prepared bythe Reliability Test System Task Force of the Application of Probability MethodsSubcommittee[J]. IEEE Transactions on Power Systems,1999,14(3):1010-1020.
    [90] Kilroe N. Line inspections-eyes and ears of RCM[C]. IEEE10th International Conferenceon Transmission and Distribution Construction, Operation and Live-Line Maintenance,2003:18-24.
    [91] Kordkheili H. H., Abravesh H., Tabasi M., Dakhem M., Abravesh M. M. Determining theprobability of flashover occurrence in composite insulators by using leakage currentharmonic components[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(2):502-512.
    [92] Andrea Cavallini, Chandrasekar S., Gian Carlo Montanari, Francesco Puletti. Inferringceramic insulator pollution by an innovative approach resorting to PD detection[J]. IEEETransactions on Dielectrics and Electrical Insulation,2007,14(1):23-29.
    [93] Venkataraman S., Gorur R. S., Mishra A. P. Impact of weathering on flashover performanceof nonceramic insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(4):1073-1080.
    [94] Ramirez-Vazquez I., Hernandez-Corona R., Montoya-Tena G. Diagnostics for nonceramicinsulators in harsh environments[J]. IEEE Electrical Insulation Magazine,2009,25(6):28-33.
    [95] Sunsin Han, Ru Hao, Jangmyung Lee. Inspection of Insulators on High-Voltage PowerTransmission Lines[J]. IEEE Transactions on Power Delivery,2009,24(4):2319-2327.
    [96] Murthy V. S., Tarakanath K., Mohanta D. K., Gupta S. Insulator condition analysis foroverhead distribution lines using combined wavelet support vector machine (SVM)[J]. IEEETransactions on Dielectrics and Electrical Insulation,2010,17(1):89-99.
    [97] Komoda M., Kawashima T., Minemura M., Mineyama A., Aihara M., Ebinuma Y., Kanno T.,Kiuchi M. Electromagnetic induction method for detecting and locating flaws on overheadtransmission lines[J]. IEEE Transactions on Power Delivery,1990,5(3):1484-1490.
    [98] Zangl H., Bretterklieber T., Brasseur G. A Feasibility Study on Autonomous OnlineCondition Monitoring of High-Voltage Overhead Power Lines[J]. IEEE Transactions onInstrumentation and Measurement,2009,58(5):1789-1796.
    [99] Beehler M. E. Reliability centered maintenance for transmission systems[J]. IEEETransactions on Power Delivery,1997,12(2):1023-1028.
    [100] Ozdemir A., Kuldasli E. D. RCM application for Turkish National Power TransmissionSystem[C]. IEEE11th International Conference on Probabilistic Methods Applied to PowerSystems (PMAPS),2010:143-147.
    [101] Goodfellow J. W. Applying reliability centered maintenance (RCM) to overhead electricutility distribution systems[C]. IEEE Power Engineering Society Summer Meeting,2000:566-569.
    [102] Brown Richard E. Electric Power Distribution Reliability[M]. New York: Marcel Dekker,2002.
    [103] Wenyuan Li. Probabilistic Transmission System Planning[M]. New Jersey: John Wiley&Sons,2011.
    [104] Endrenyi J., Aboresheid S., Allan R. N., Anders G. J., Asgarpoor S., Billinton R.,Chowdhury N., Dialynas E. N., Fipper M., Fletcher R. H., Grigg C., McCalley J.,Meliopoulos S., Mielnik T. C., Nitu P., Rau N., Reppen N. D., Salvaderi A., Schneider A.,Singh C. The present status of maintenance strategies and the impact of maintenance onreliability[J]. IEEE Transactions on Power Systems.2001,16(4):638-646.
    [105] IEEE Power&Energy Society. IEEE Std C57.104-2008. IEEE Guide for the Interpretationof Gases Generated in Oil-Immersed Transformers. New York:2009.
    [106] Saha T. K. Review of modern diagnostic techniques for assessing insulation condition inaged transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(5):903-917.
    [107] Baird Patrick J., Herman Henryk, Stevens Gary C. On-site analysis of transformer paperinsulation using portable spectroscopy for chemometric prediction of aged condition[J].IEEE Transactions on Dielectrics and Electrical Insulation.2008,15(4):1089-1099.
    [108] Pradhan M. K., Ramu T. S. On the estimation of elapsed life of oil-immersed powertransformers[J]. IEEE Transactions on Power Delivery,2005,20(3):1962-1969.
    [109] Transformers Committee of the IEEE Power Engineering Society. IEEE Std C57.91-1995.IEEE Guide for Loading Mineral-Oil-Immersed Transformers. New York:1996.
    [110] Jongen R., Gulski E., Morshuis P., Smit J., Janssen A. Statistical analysis of powertransformer component life time data[C]. International Power Engineering Conference,2007:1273-1277.
    [111] Wenyuan Li. Evaluating mean life of power system equipment with limited end-of-lifefailure data[J]. IEEE Transactions on Power Systems,2004,19(1):236-242.
    [112] Wenyuan Li, Vaahedi E., Choudhury P. Power system equipment aging[J]. IEEE Power andEnergy Magazine,2006,4(3):52-58.
    [113] Wenyuan Li, Jiaqi Zhou, Jiping Lu, Wei Yan. A Probabilistic Analysis Approach to MakingDecision on Retirement of Aged Equipment in Transmission Systems[J]. IEEE Transactionson Power Delivery,2007,22(3):1891-1896.
    [114] Wenyuan Li, Choudhury P., Gillespie D., Jue J. A Risk Evaluation Based Approach toReplacement Strategy of Aged HVDC Components and Its Application at BCTC[J]. IEEETransactions on Power Delivery,2007,22(3):1834-1840.
    [115] Young D. Modern Engineering Economy[M]. New York: Wiley,1993.
    [116] Wenyuan Li, Korczynski J. A reliability-based approach to transmission maintenanceplanning and its application in BC hydro system[J]. IEEE Transactions on Power Delivery,2004,19(1):303-308.
    [117] Anders G. J., Endrenyi J., Yung C. Risk-based planner for asset management[J]. IEEEComputer Applications in Power.2001,14(4):20-26.
    [118] Clifford Z., Cooley J. J., Avestruz A. T., Remscrim Z., Dan V., Leeb S. B. A retrofit60Hzcurrent sensor for non-intrusive power monitoring at the circuit breaker[C]. Twenty-FifthAnnual IEEE Applied Power Electronics Conference and Exposition (APEC),2010:444-451.
    [119] Shoureshi Rahmat, Norick Tim, Permana Virdiansyah, Work John. Advanced sensor anddiagnostic technologies for development of intelligent substations[C]., Denver, CO, Unitedstates,2004:727-746.
    [120] Pan Jiuping, Wang Zhenyuan, Lubkeman David. Condition based failure rate modeling forelectric network components[C]., Seattle, WA, United states,2009.
    [121] de Grijp M. H. B., Bedet J. S., Hopkins R. A., Greyling J. E. Condition monitoring of highvoltage circuit breakers[C]. IEEE AFRICON4th AFRICON,1996:880-885.
    [122] Zhong Tang. Condition monitoring system for circuit breaker based on substationautomation system[C].3rd International Conference on Intelligent System and KnowledgeEngineering,2008:1448-1452.
    [123]姚春球.发电厂电气部分[M].北京:中国电力出版社,2007.
    [124] Kezunovic M., Zhifang Ren, Latisko G., Sevcik D. R., Lucey J. S., Cook W. E., Koch E. A.Automated monitoring and analysis of circuit breaker operation[J]. IEEE Transactions onPower Delivery,2005,20(3):1910-1918.
    [125]傅国华.管理学原理[M].北京:中国农业出版社,2006.
    [126]王星.非参数统计[M].北京:清华大学出版社,2009.
    [127] Scott D. W. Multivariate Density Estimation: Theory, Practice, and Visualization[M]. NewYork: John Wiley,1992.
    [128] Mathis Manfred, Koch Volker, Balzer Gerd. Reliability-Centered Maintenance-aContribution Toward Cost Reduction[EB/01]. http://www. neplan. ch/downloads/public/NEPLAN-Maintenance-Strategies_e.pdf,2012-10-10.