数字式径向柱塞变量泵的恒功率控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径向柱塞变量泵可以采用手动控制、电液比例控制或负载敏感控制等多种控制方式,实现恒流量、恒压力、恒功率的控制。本文是以JBP—63型径向柱塞变量泵为研究对象,利用单片机通过脉宽调制(PMW)高速电磁阀开关,通过对径向柱塞变量泵的变量机构调节,来改进这种变量泵控制方式的尝试,以达到恒功率控制的目的。
     由高速开关阀控制数字径向柱塞变量泵的液压回路是一种高效节能的新型液压系统,它在各种节能回路中具有最佳的节能效果。而且这种数字泵也具有很多优点,如它的抗污染能力强、重复性好;与计算机接口方便;价格低廉;同时由它所组成的系统不需要像模拟机那样的D/A转换环节;摩擦力、非线性和滞后现象对数字控制系统的影响比模拟系统小。因而它是一种很有前途的流控元件。
     本文的主要内容包括:设计了以8031单片机为核心的硬件电路,主要包括高速开关阀驱动电路、采样电路、A/D转换电路、显示器电路等;根据其工作原理建立了系统的动态数学模型;应用MATLAB/Simulink进行了动态分析;即通过改变基泵参数的速度放大系数K_v,得到了系统的仿真曲线族,又经仿真分析得到了K_v对系统动态响应的影响规律,进而得出了数字电液径向柱塞泵控制系统等效于惯性环节的结论。
The radial piston pump can adopt manual-control or electro-hydraulic proportional control to realize the control of constant flow, constant pressure, constant power and load sensitivity etc. This paper is a new attempt at the control mode of the radial piston pump. With the study of the JBP-63 radial piston pump and using microcomputer and high-speed-on/off-valve, regulate the machine of the radial piston pump, constant power control can be achieved.
    Digital-Pump hydraulic circuit controlled by high-speed-on/off-valve is a new hydraulic system of high efficiency. It has the highest efficiency and the greatest energy sources saving among all kinds of circuits. The digital-pump is a promising hydraulic control component because it has many excellences such as good protection from pollution, good repetition, less effect by friction non-linearity and lag than analog system, convenient connection to the computer and no need the D/A conversion as analog machine.
    The main contents of this paper include: Design the hardware circuit with the core of the 8031 single-chip microcomputer, mainly including the drive circuit of high-speed-on/off-valve, sampling circuit, A/D conversion circuit, display circuit; establish the static and dynamic mathematics model of the system based on the system principle; through simulating software-MATLAB/simulink, get the static and dynamic response curves of the Digital-Pump under constant power; get the flux simulation curves through changing the parameter of the Kv; and find out the law of how the pump's structure parameter of the Kv to influence the system's dynamic response through analysis of the simulated curves; educe the conclusion that hydraulic controlled power match radial-piston-pump system is equivalent to the vibration characteristic and digital-axial-piston-pump system is equivalent to the inertia characteristic compared with the reference.
引文
[1] 唐中一、谭跃钢,流体传动与机电一体化技术,机床与液压,1987(5);
    [2] [日]田中裕久,液压与气动的数字控制及应用,重庆大学出版社,1992;
    [3] 陈冬生,曾孟雄,数字式电液控制的特点及发展趋势,液压与气动,1997(4);
    [4] 唐中一,流体动力节能与数字控制技术,机床与液压,1990(2);
    [5] 黎啟柏,电液比例控制与数字控制系统,机械工业出版社,1997;
    [6] 何立民,单片机应用系统设计,北京,北京航空航天大学出版社,1996;
    [7] 魏聪梅、王明智,电液比例负载敏感变量泵的恒功率控制,太原重型机械学院学报,1998第19卷第3期;
    [8] 李广弟,单片机基础,北京航空航天大学出版社,1994;
    [9] 赵健,恒功率问题的探讨,青岛建筑工程学院学报,1996年第17卷第4期;
    [10] 胡寿松,自动控制原理,国防工业出版社,1994;
    [11] 陈祥光、薛锦程、张振玲,51单片机应用系统接口电路的设计,北京理工人学,机械工业出版社;
    [12] 周建新等,电液数字变量泵的研制及应用,液压与气动,1993,3:37~38;
    [13] 孙友松,新型快速开关阀,机械开发,1991,3:58~61;
    [14] 俞宗强、刘庆和,高速开关阀电液控制系统的特性研究,工程机械,1990,1:40~44
    [15] 郑建国,采用A/D转换器的直接式电容—数字转换,湖北,工业仪表与自动化装置,1997(5);
    [16] 崔扣彪,国产新型柱塞泵研制成功,液压气动与密封,2000(3);
    [17] 张学志,机电一体化控制技术,机械工业出版社;
    [18] 钟约先、林亨,机械系统计算机控制,清华大学出版社;
    [19] 李笑、任景钰、关新,电液数字控制轴向柱塞变量泵的研究,沈阳二正业大学学报,1998年第20卷第4期;
    [20] 何存兴,液压元件,华中工学院,机械工业出版社;
    [21] 王明智等,径向柱塞液控伺服变量泵,液压与气动,1995(1);
    [22] 施光林等,径向柱塞变量泵的定子受力分析与变量力确定,机床与液压 1995(3);
    [23] 施光林等,径向柱塞液控伺变量泵的研究,工程机械,1995(2);
    [24] 卢堃,李竟成,新型径向柱塞泵液控伺服变量机构的研究,甘肃工业大学学报 1999(3);
    [25] 张力平,曹秉刚,段锁林等,新型径向柱塞变量泵恒功率控制机构的方案比较与分析;太原重型机械学院学报 第24卷 第2期(总82期) 2003年6月;
    [26] 于海尘,微型计算机控制技术,北京,清华大学出版社,1998;
    [27] 楼顺天、于卫,基于MATLAB的系统分析与设计一控制系统,西安电子科技大学出版社;
    [28] 申水文,张建武,葛安林,罗邦杰,提高高速开关阀性能的仿真研究,机床与液压 1998,5:24-28;
    [29] 李开玖,液控伺服径向变量泵研究,甘肃工业大学研究生毕业论文;
    [30] Davell P. Nelson, Pump and Valve Combination for Maxium Energy Conservation, Proc.Of the 33th National Conf. On Fluid Power, Oct. 1977P211-214;
    [31] Wolfing Backe, A New Concept of Hydraulic Resistor-Controlled Circuits, Proceeding Of the 1st National Fluid Power System and Controls Conference, 1973, P1-16;
    [32] C.O.Weisenlach, Hydraulic Systcm, U. S. A. Patont, No, 3191382, June29, 1965;
    [33] Jorg, Dontlgraler, Pressure and Volume—Flow Control for Variable Pump, U. S. A. Patent, No. 4132506, June2, 1979;
    [34] RAYMONDPLAMBECK, Energy-Saving Controls for Pump, Matchine Design,
    
    Vol. 52, No. 3. 1980;
    [35] Azam S Qureshi, Energy, Conservation and Proportional Control with Load Sensing Hydraulic System, SAE Frans, 810929;
    [36] R.W.Henka,P.E, Load Sensing Hydraulic Systems, Hydraulic & Pneumatics, 1983;
    [37] T.Budzich, Load Responsive Pressure Compensated Directional Control Valves for Use InLoad Responsible Systems, 35th, National Conf. On Fluid Power,1977;
    [38] The National Fluid Power Association, Take a look at today's fluid power, Http://www. nfqa. com;
    [39] John W.Webb, Ronald A.Reis, Programmable Logic Controllers, Fourth Edition, Prentice Hsaa PTR, Http://www. sine. org;
    [40] D.e.Turnbull, Fluid Power Engineering, Newnes-Butterworths,London,1976;
    [41] JAMESEJOHNSON, Electro Hydraulic Sevo System, 1998, P102-106;
    [42] 王庆国等,微机控制数字变量轴向柱塞泵的研究,沈阳工业大学学报,1999年第21卷第4期;
    [43] 王庆国、吴建胜、范广民、李志民,微机控制数字变量轴向柱塞泵的研究沈阳工业大学学报,1999年第21卷第4期;
    [44] 路甬祥等,电液比例控制技术,机械工业出版社;
    [45] 王正良等,微机电液控制技术,大连理工大学出版社,1993;
    [46] 肖刚等,基于MATLAB的动态模型与系统仿真工具——Simulink 3.0/4.X,西安交通大学出版社,2003;
    [47] 薛定宇,陈阳泉,基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002;
    [48] 机械设计手册,化学工业出版社;