迭代学习控制及其在电液伺服复合控制系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迭代学习控制是智能控制中具有严格数学描述的一个分支。它适合于一类具有重复运动特性的被控对象。该技术的研究对强耦合系统的控制问题有着非常重要的意义。而电液伺服控制系统是一类典型的未知不确定性强耦合系统。这类系统扰动大,工作范围宽、时变参量多,难以精确建模。而且由于气隙等因素的影响,电液伺服系统是不确定度相当高的非线性强耦合系统。
     本文首先介绍了迭代学习控制的发展与研究现状,详细阐述了迭代学习控制理论的基本概念、基本问题;其次介绍了电液伺服系统的组成及发展历程,并且分析了电液伺服控制系统的强耦合性的特点及产生的原因,建立了电液伺服系统的理论模型;随后将迭代学习控制作为一种针对强耦合性而提出的控制方法拓展到电液伺服系统中,比较了各种控制方法,设计了迭代学习控制器,在Matlab/Simulink里建立了整个系统的仿真模型,进行了仿真研究;最后改进了电液伺服控制系统,将电液伺服位置控制和电液伺服压力控制相结合,提出了一种位置耦合压力的电液伺服位置、压力复合控制策略,解决了电液伺服系统的复合控制问题。设计了迭代学习控制器,继而在Matlab/Simulink里建立整个系统的仿真模型,进行仿真研究。结果表明:用迭代学习控制直接应用到具有强耦合性的电液伺服系统中,和先解耦再控制的控制方法比较,控制性能得到了很大提高。
     以上研究表明,电液伺服系统位置和压力复合控制系统良好性能的实现将大大提高主机的生产效率,具有非常广阔的应用前景;而将迭代学习控制应用于该系统中,将有助于其控制性能的改善。这促进了电液伺服系统的理论研究,同时也拓宽了迭代学习应用领域,具有一定的应用价值。
Iterative learning control is a branch of intelligent control which has strictly mathematical description. It is suitable to a class of object which has repeat movement characteristics. The research of this technology has a very important significance on the control problem of strong-coupling system. However, electro-hydraulic servo control system is a typical , uncertain and unknown strong coupling system. Such systems have big disturbance ,wide range of work and many time-varying, which is difficult to accurately model. As a result of the impact of factors such as air-gap, electro-hydraulic servo system is very high uncertainty nonlinear strong coupling system.
     Firstly, the development and research of present situation of iterative learning control are introduced, the basic concepts and fundamental issues of the iterative learning control theory are described in detail; secondly, the composition and the development process of the electro-hydraulic servo system is introduced, the strong-coupling characteristics of the electro-hydraulic servo control system and the causes of the strong-coupling characteristics are analyzed, and the theoretical model of electro-hydraulic servo system is established; Then, iterative learning control is applied to the electro-hydraulic servo control system as a control methods which is put forward response to strong coupling proposed, a variety of control methods are compared, the iterative learning controller is designed, and simulation model of the entire system is established in the Matlab / Simulink, and simulation study is done ; Finally, electro-hydraulic control system is improved, position control and pressure control the of electro-hydraulic servo are combined, a electro-hydraulic servo position and pressure hybrid control strategy is took out to resolve the problem of hybrid control of electro-hydraulic servo system. Then iterative learning controller is designed, and the simulation model of the entire system is established in the Matlab/ Simulink to simulation study. The results showed ,that comparing the application of take iterative learning control directly into a strong coupling electro-hydraulic servo system and the first decoupling to control methods, the control performance has been greatly improved.
     The above studies have shown that the achieving of control performance of electro-hydraulic servo position and pressure hybrid control system will have a good prospects. Taking iterative learning control into this system will greatly enhance the performance, which not only promotes the theoretical study of electro-hydraulic servo system, but also broadens the field of iterative learning applications, and has a certain value.
引文
[1] Shigeru Ikeo,Kozo Yamahashi. Application of The Model Reference Adaptive Contral Theoty to an Electrohydraulic Positioning System.JHPS,international symposium on fluid power Tokyo,March 1999
    [2]刘坤.电液伺服系统的智能控制研究[D],燕山大学, 2001
    [3]王春行.液压伺服控制系统[M].北京:机械工业出版社,1982
    [4]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005
    [5] Detick E, Kiker E. Adaptive force control of hydraulic drevers of facility for testing mechanical constructions. Experrmental Techniques, 2001, 251(1):35~39
    [6] D.B.TRIvedi. An Adaptive Control of an Electro-Hydraulic Position Control System. Pro. Of American Control Conf.1984.1
    [7]徐兆红.电液位置伺服系统的模糊控制研究:[D].昆明:昆明理工大学,2004
    [8] Lee .I H, Lee K S, Kim W C. Model-based iterative teaming control with a quadratic criterion for time-varying linear systems[J]. Autoamtic, 2000, 36:614-657
    [9] Arimoto S, Naniwa T. Selective learning with a forgetting factor for robot motion control[J]. Proceedings of the IEEE International conference on Robotics and Automation, 1991:728-733
    [10] Jianxin Xu, Tong Heng Lee. Analysis and Comparison of Two Practical Iterative Learning Control Schemes[J]. International Conference on Control Applications, 2004, 2(4):382-387
    [11] Zhongsheng Hou, Jianxin Xu. A new feedback-feedforward configuration for the iterative learning control of a class of discrete-time systems[J]. Acta Automatica Sinica, 2007, 31(3):323-326
    [12]于少娟,吴聚华,冯冬梅. 2-D系统理论在开闭环迭代学习控制中的应用[J].仪器仪表学报, 2002,23(3):402-404
    [13]王占林.近代液压控制[M].北京:机械工业出版社,1997
    [14]殷增振,尹志宏,范文冲,徐兆红.电液位置伺服系统的三维模糊PID控制.机械,2005.32(3): 11-14
    [15]龚赤兵,曾良才,吴海峰.电液位置伺服系统神经PID控制及仿真研究.机床与液压,2005.10(10): 146-147
    [16]许建新,侯忠生.学习控制的现状与展望[J].自动化学报, 2005, 31(6):943-954
    [17]江小平.液压伺服系统智能PID控制:[D].南京:南京理工大学,2003
    [18]孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社, 1999
    [19]于少娟,齐向东.迭代学习控制理论及应用[M].北京:机械工业出版社, 2005
    [20] Liping Fan, Yi Liu, Itertive Learning Control for Linear Motor Motion System, Proceedings of the IEEE International Conference on Automation and Logistics August 18-21,2007,jinan,China
    [21] Yu Shaojuan, Qi Xiangdong, Han Rucheng. Application of an iterative learning-sliding mode controller to inverse pendulum system[J]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004(2): 788-791
    [22]于少娟,吴聚华,段锁林.电液伺服力控系统的模糊学习控制[J].电机与控制学报, 2004, 18(1):56-59
    [23]孙明轩.初态学习下的迭代学习控制[J].控制与决策, 2007, 22(8):848-852
    [24] Douglas A Bristow, Marina Tharmayil. A survey of iterative learning control[J]. IEEE Control Systems Magazine, 2006, 96-114
    [25] Roel Merry, Rene van de Molengraft. Disturbances and Model Uncertainties in Iterative learning Control[J]. The Fourth International Workshop on Multidimensional Systems, 2005, 136-140
    [26]刘山,吴铁军.迭代学习控制的研究进展与方向[C].第五届全球智能控制与自动化大会.中国杭州. 2004:1226-1230
    [27]张兴国,林辉.迭代学习控制理论进展与展望[J].测控技术, 2006, 25(11):1-5
    [28]王银河,孙小强.非线性大系统简单迭代学习控制的收敛性[J].汕头大学学报, 2006, 21(1):33-37
    [29]权龙,李敏,许小庆.电液伺服位置、压力复合控制原理的仿真及实验[J].机械工程学报,2008,44(9):100-105
    [30]关景泰.机电液控制技术[M].上海:同济大学出版社,2003
    [31] Sun Mingxuan,He xiongxiong, Iterative Learning Identification and Control of Time-varying Systems,Proceedings of the 26th Chinese Control Conference July 26-31, 2007, Zhangjiajie,Human,China
    [32]白敬彩.迭代学习及其在励磁控制系统中的应用研究[D],太原科技大学,2008
    [33]戴小明.多通道智能PID电液伺服控制系统研究[D],南京航空航天大学, 2002.
    [34]李丽娜.电液伺服系统迭代学习控制算法研究[D],武汉理工大学,2007.
    [35]权龙,许海,李凤兰.数字闭环控制电液速度伺服系统的仿真及实验研究[J].太原理工大学学报,2002,33(2):115-117
    [36]李玉忍,杨金孝,张兴国,林辉,齐蓉.基于迭代学习的PID控制研究[J] .计算机工程与科学, 2007, 29(4)
    [37]李丽娜,雷升印.迭代学习控制在伺服系统中的应用[J] .科技论坛, 2006,(4)
    [38]于洋.基于DSP的数字式电液伺服系统控制器研究[D],西南交通大学, 2004
    [39]王亚娟.基于DSP的电液伺服测控系统研究[D],长春理工大学, 2004
    [40] B.Courtiol,I.D.Landau. High Speed Adaptation System for Controlled Electrical Drives.Automatica Vol 11,1985
    [41] Chang-chun Li,Xiao-dong Liu, Fuzzy Control of Electro-hydraulic Servo Systems Based on Automatic Code Generation ,2006
    [42]赵进军.基于DSP的力矩电机伺服加载系统研究[D] ,西北工业大学, 2003
    [43]张立强.基于自适应模糊PID的径向柱塞变量泵电液伺服控制[D] ,兰州理工大学, 2003
    [44]黄镇海.液压伺服位置系统的智能控制[D],燕山大学, 2001
    [45] H.Unbehaunen.Application of a Digital Adaptive Controller to a Hydraulic System International Conference of Control 88,Oxford,U,K,1988
    [46] Claude kaddissi,Indirect Adaptive Control of an Electro-Hydraulic System Based on Nonlinear Backstepping,IEEE ISIE 2006,Montreal,Quebec,Canada
    [47] Junpeng Shao,The Application of Fuzzy Control Strategy in Electro-hydralic Servo System,Proceedings of ISCIT2005
    [48] Cheng Guan and Shanan Zhu,Adaptive Time-Varying Sliding Mode control for Hydraulic Servo System,2004 8th international Conference on Control, Automation, Robotics and Vision Kunming, China, 6-9th December 2004
    [49] Meng Tang and Liu Chen, The System Bandwidth Analysis in Electro-Hydraulic Servo System with PDF Control, 2004 5th Asian Control Conference
    [50]王晓婷.电液伺服系统的非线性控制[D],西北工业大学, 2002
    [51] Xiaojun Yang, Fei Qiao, Tao Huang,Kunlin Shi, Adaptive Iterative Learning Control in Optimization of Industrial Process, 2007 IEEE International conference on Control and Automation Guangzhou,ChINA-May 30 to June 1,2007
    [52] R.Sirouspour and S.E.Salcudean,“On the Nonlinear Control of Hydraulic Servo-systems”,in proc.2000 IEEE Conf.Robotics &Automation,San Francisco,CA,Apr.2000
    [53] P.Kokotovic,“The joy of feedback: Nonlinear and Adaptive”,IEEE ontr.syst,vol.12,no.3,pp7-17.Jun.1992
    [54] Majid Karimi .Farid Najafi.Hossein Sadati .Mozafar Saadat, Application of a flexible structure artificial neural network on a servo-hydraulic rotary actuator,Int J Adv Manuf Technol DOI 10.1007/s001 70-1238-y
    [55] A.Alleyne,“Nonlinear Force Control of an Electro-hydraulic Actuator”,in proc.1996 Japan/USA Symp.Flexible Automation,Bostonc,MA,1996