数字控制轴向柱塞泵控制器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向柱塞泵是现代液压领域中应用最广泛的液压动力元件之一,也是结构最复杂、技术含量最高的液压元件之一。由于其具有高压、高速、高功率和容易实现功率调节和无级调速的特点,广泛的被应用在工业机械和工程机械领域。由于传统的控制装置不能直接和计算机控制系统集成,限制了变量液压泵在许多领域的应用。随着现代工业自动化程度的影响,液压技术与计算机技术、电子技术的结合已成为必然的趋势,数字化控制将是今后液压技术发展的一个方向。
     本文针对斜盘式轴向柱塞泵系统的结构、工作原理和运动特性,提出一种由模糊控制器、压力和位移传感器、高速开关阀组成的数字控制变量系统。在AMESim中,建立了柱塞泵及高速开关阀的物理模型。通过对高速开关阀工作原理和开启特性的分析,确立了高速开关阀控液压缸位置控制系统的数学模型。
     本文运用模糊控制理论对高速开关阀控液压缸位置进行控制。设计了一种模糊控制器,实现了PWM高速开关阀控液压缸位置系统的精确控制。模糊控制器控制PWM信号,通过改变高速开关阀的PWM控制信号占空比,可以改变液压缸左右两腔的压力差,使活塞的移动速度和位置也随之发生改变,从而实现对斜盘倾角的控制,进而实现控制柱塞泵工作口输出的流量和压力。并借助AMESim和MATLAB/SIMULINK建立了系统的仿真模型,并对系统进行了联合仿真研究。仿真结果,充分说明了系统的可行性。
The axial piston pump,which is one of in the field of application of the hydraulic power components in modern hydraulic,which is one of the most complicated and high technology hydraulic components. Because of its high-pressure, high-speed, high-power , power change easy to achieve stepless speed regulation being widely used in industrial machinery and construction machinery fields. As the traditional control devices can not directly control by computer system, limiting the variable hydraulic pump in many areas of application.With modern industrial automation level development, the combination of hydraulic technology, computer technology and electronic technology has become an inevitable trend,the digital control will be a direction of hydraulic technology development.
     In this thesis, a digital control variable system, which composed of a fuzzy controller, pressure and displacement sensors and a high-speed on-off valve,which was based on the structure,operational principle and dynamic behavior of axial piston pump. In AMESim,the physical model of the high-speed on-off valve and piston pump were set up. A math-model of high-speed on-off valve control hydraulic cylinders position also was set up by analyse the high-speed on-off valve.
     In this thesis, a hydraulic cylinder position control system ,which was based on the high-speed on-off valve by use of fuzzy control. Design of a fuzzy controller, to achieve a precise control of the hydraulic cylinder position by the high-speed on-off valve was based on PWM. Fuzzy controller control the high-speed on-off valve which contained by changing the PWM control signal duty cycle, can change the hydraulic cylinder about two cavity pressure difference.The speed and position of piston also will be changed in order to change swash plate angle, leading to the changes of the pressure and flow rate of piston pump outlet orifice.And the help of AMESim and MATLAB / SIMULINK established a simulation model of the system , and conducted a united simulation research on systems. The feasibility of the system is proved through the simulation results.
引文
[1]于海生等著.微型计算机控制技术[M].北京:清华大学出版社,1998.
    [2]王磊,王为民.模糊控制理论及应用[M].北京:国防工业出版社,1997.
    [3]王耀南.智能控制系统[M].湖南:湖南大学出版社,2006.
    [4]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [5]王春行主编.液压伺服控制系统[M].北京:机械工业出版社,1989
    [6]王正林,王胜开,陈国顺编著.MATLAB/SIMULINK与控制系统仿真[M].北京:电子工业出版社,2006
    [7]王春行.液压控制系统[M].北京:机械工业出版社,2002
    [8]王以伦.液压传动[M].哈尔滨:哈尔滨工业大学出版社,2005
    [9]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社,2004.[10]李友善等.模糊控制理论极其在过程控制中的应用[M].北京:国防工业出版社,1993.
    [11]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [12]李福义.液压技术与液压伺服系统[M].哈尔滨:哈尔滨船舶工程学院出版社,1992.
    [13]李洪人.液压控制系统(修订本)[M].北京:国防工业出版社,1990.
    [14]关景泰编著.机电液控制技术[M].上海:同济大学出版社,2003
    [15]刘长年.液压伺服系统的分析与设计[M].北京:科学出版社,1985
    [16]刘金琨.先进PID控制及MATLAB仿真[M].北京:电子工业出版社,2003.
    [17]刘文涛.单片机应用开发实例[M].北京:清华大学出版社,2005
    [18]高会生,李新叶,胡智奇.MATLAB原理与工程应用[M].北京:电子工业出版社,2006
    [19]黄永安,马路,刘慧敏编著.MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005
    [20]雷天觉主编.新编液压工程手册[M].北京:北京理工大学出版社,2005
    [21]路甬祥主编.液压气动技术手册[M].北京:机械工业出版社,2002
    [22]薛定宇.控制系统计算机辅助设计MATLAB语言及应用[M].北京:清华大学出版社,1997.
    [23]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大 学出版社,2002
    [24]薛定宇.MATLAB原理与工程应用[M].北京:电子工业出版社,2006
    [25]薛定宇.反馈控制系统设计与分析--MATLAB语言应用[M].北京:清华大学出版社,2000
    [26]蒋泽军,王丽芳,高宏宾.模糊数学教程[M].北京:国防工业出版社,2004
    [27]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.
    [28]侯正信.数字信号处理基础[M].北京:电子工业出版社,2003
    [29]肖金球.单片机原理与接口技术[M].北京:清华大学出版社,2004
    [30]胡汉才.单片机原理及系统设计[M].北京:清华大学出版社,2002
    [31]AMESim手册,Version 4.2-September 2004
    [32]张凯.LabVIEW虚拟仪器工程设计与开发[M].北京:国防工业出版社,2004
    [33]侯国屏.LabVIEW7.1编程与虚拟仪器设计[M].北京:清华大学出版社,2005
    [34]美国艾默生公司.控制阀手册(英文版)
    [35]博世力士乐SYDFEE闭环变量柱塞泵安装调试手册
    [36]林渭勋.现代电力电子技术[M].北京:机械工业出版社,2006
    [37]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2006
    [38]陈锡辉.LabVIEW8.2程序设计从入门到精通[M].北京:清华大学出版社,2007
    [39]德国BOSCH-REXROTH培训教程(一、二两册)。
    [40]数字液压及数字控制技术[M].北京亿美博科技有限公司,2003,3
    [41]卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991.
    [42]汤兵勇等.模糊控制理论与应用技术[M].北京:清华大学出版社,2002.
    [43]鲁远耀.模糊控制的单片机实现研究[D].湖南大学硕士论文,2002.
    [44]张志涌等.精通MATLAB5.3[M].北京:北京航空航天大学出版社,2000.
    [45]章宏甲,黄谊主编.液压传动[M].北京:机械工业出版社,1994.
    [46]窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社,1995.
    [47]李谨,邓卫华.AMESim与Matlab/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004,26(5):61-64.
    [48]李家界,付萍.参数自调整模糊控制在炉温中的应用[J].控制工程,2004,11(1):14-16.
    [49]李博,龚晓宏.基于MATLAB的模糊控制系统的优化设计与仿真[J].机械工程与自 动化,2005,2:78-83.
    [50]李笑,任景珏,关新.电液数字控制轴向柱塞变量泵的研究[J],沈阳工业大学学报,1998(4):11-12.
    [51]罗艳蕾.基于MAT/MB液压位置模糊控制系统仿真模型[J].现代机械,2003(3):36-37.
    [52]罗艳蕾.一种模糊控制系统方法模型及查询表设计[J].现代机械,2003(2):22-24.
    [53]苏明,陈伦军,林浩.模糊PID控制及其MATLAB仿真[J].现代机械,2004(4):51-55.
    [54]宏亮,李华聪.AMESim与Matlab/Simulink联合仿真接口技术应用研究[J].流体传动与控制,2006(1):14一16.
    [55]马俊功,王世富,王占林.智能泵原理样机研究[J],液压与气动,2002(11):6-8.
    [56]秦家升,游善兰.AMESim软件的特征及其应用[J].工程机械,2004(12):6-8.
    [57]杨咏梅,陈宁.基于MATLAB的模糊自整定PID参数控制器的设计与仿真[J].微计算机信息,2005,21(12-1):61-63.
    [58]刘忠,杨国平,杨襄璧,朱浩.恒压轴向柱塞变量泵系统的无级调节控制研究[J],重型机械,2001(6):65-67.
    [59]於又玲,张玮,张远深.径向柱塞变量泵的恒功率模糊自适应控制[J],重型机械,2004(1):56-57.
    [60]雷秀,张治务,李军.数控轴向柱塞变量泵开发及静特性实验研究[J],内蒙古工业大学学报,2002(2):119-122.
    [61]姜洪洲,曾祥荣.数字式多功能泵的实现策略研究[J],中国机械工程,2001(5):554-557.
    [62]隋艳敏,王明智,段锁林.基于位置控制的数字式多功能泵的实现[J],太原重型机械学院学报,2004(3):46-50.
    [63]刘忠,杨襄璧,伍劲松,张新.恒压变量泵系统的电液数字控制研究[J],机床与液压,2001(2):67-69.
    [64]刘忠,杨国平,杨襄璧,王迪光,刘勇.微机控制的高速开关阀-液压缸力伺服系统理论研究[J].工程机械,2001(07):6-7+18+53.
    [65]蒋胜,刘惠康.模糊自适应PID控制器在张力控制中的应用[J].微计算机信息。2006,22(8-1):32-34.
    [66]Assilian S.Artificial intelligence in the control of real dynamical systems,Ph.D. Dissertation,London University(1974)
    
    [67] Challenges and changes: Japan's tunnelling activities in 1988—Part 2[J]. Tunnelling and Underground Space Technology, 1989(3): 337-342.
    
    [68] Challenges and changes: Japan's tunnelling activities in 1988—Part 1[J]. Tunnelling and Underground Space Technology, 1989(2): 215-224.
    
    [69] Corder R J.A high speed fuzzy processor.(1989)Proc. Of the 3th IFSA world congress,379-381
    
    [70] Eichfeld H.Architecture of a CMOS Fuzzy Logic Controller with optimized memory Organization and operator design.Proc.of the 1~(st),Int.Conf.on fuzzy Systems,Fuzzy-IEEE,92,1317-1323
    
    [71] G Anagnostou, K. Kovari. The face stability of slurry-shield-driven tunnels[J].Tunnelling and Underground Space Technology, 1994, 9(2): 165-174.
    
    [72] Hadipriono F,etal.Angular fuzzy set models for linguistic values.Civ.Eng.Syst.1990,7(3).148-156
    
    [73] Juan M Schmitter, Raul R Lopez. Sluury shield tunnelling for Mexico City drainage.Tunnels & Tunnelling, 1993(1): 41-44.
    
    [74] Karr C J,etal.Fuzzy control Ph using genetic algorithms.IEEE.Trans.Fuzzy Syst,1993(1):46-53.
    
    [75] Mamdani, E.H. and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13,1975.
    
    [76] Mamdani, E.H., Advances in the linguistic synthesis of fuzzy controllers, International Journal of Man-Machine Studies, Vol. 8, pp. 669-678,1976.
    
    [77] Mamdani, E.H., Applications of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Transactions on Computers, Vol. 26, No. 12, pp. 1182-1191,1977.
    
    [78] Moon B S. Equivalence between fuzzy logic controller and PI controller for single input systems.Fuzzy Sets and Systems, 1995 (65): 105-113
    
    [79] Martin Herrenknecht. EPB or slurry machine: the choice[J]. Tunnels & Tunnelling,1994(6): 35-36.
    
    [80] Naitoh K. The development of earth pressure balanced shields in Japan[J]. Tunnels &Tunnelling. 1985(5): 15-18.
    [81] Russell L. Building underground: a new concept for tunneling in soft soil[J]. Ports and Dredging, 1996,146:15-17.
    
    [82] Siegmund Babendererde. Tunnelling Machines in soft ground: a comparison of slurry and EPB shield systems[J]. Tunnelling and Underground Space Technology, 1991, 6(2):169-174.
    
    [83] Takagi H,etal.NN-Driven Fuzzy reasoning.Int.J.Approximate Reasoning, 1991,5:191-212 148-156
    
    [84] Thames Tunnel Shield[EB/OL]. http://web.ukonline.co.Uk/b.gardner/brunel/tunnel.html.
    
    [85] The Brunei Engine House[EB/OL]. http://www.brunelenginehouse.org.uk/shield.asp.
    
    [86] Widrow, B. and D. Stearns, Adaptive Signal Processing, Prentice Hall, 1985.[19] Yager,R., On a general class of fuzzy connectives, Fuzzy Sets and Systems, 4:235-242,1980.
    
    [87] Yager, R. and D. Filev, Generation of Fuzzy Rules by Mountain Clustering, Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, pp. 209-219,1994.
    
    [88] Ying H. Analytical structure of a two-input two-output fuzzy controller and its relation to PI and multilevelrelay controllers. Fuzzy Sets and Systems, 1994 (63): 21- 23.
    
    [89] Yamakawa T. High-speed Fuzzy Control Hardware System:The Mega FIPS Machine. (1988)Information Seiences,45,113-128
    
    [90] Zadeh, L.A., Fuzzy sets, Information and Control, Vol. 8, pp. 338-353,1965.
    
    [91] Zadeh, L.A., Fuzzy Algorithm, Information and Control, Vol. 12, pp. 94-102,1968.
    
    [92] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning, Parts 1, 2, and 3, Information Sciences, 1975, 8:199-249, 8:301-357, 9:43-80.
    
    [93] Zadeh, L.A., Fuzzy Logic, Computer,Vol. 1, No. 4, pp. 83-93,1988.
    
    [94] Zadeh, L.A., Knowledge representation in fuzzy logic, IEEE Transactions on Knowledge and Data Engineering,Vol. 1, pp. 89-100,1989.