高空作业车举升臂电液控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以山东科技大学机器人研究中心承担的国家863课题项目“配电带电作业机器人”为背景,通过分析高空作业车举升臂机构的特点,结合机器人技术,单片机技术,电液比例技术,设计开发了举升臂腰部回转关节和伸缩臂伸缩关节的液压系统和控制系统部分。主要分为举升臂的运动学模型,液压比例控制系统分析,比例阀控马达位置闭环系统数学模型,比例阀的PID控制及比例阀死区分析,控制系统设计,实验六个部分描述。
     论文首先采用D-H表示法建立高空作业车举升臂的运动学模型。针对腰部回转关节和伸缩臂伸缩关节选择液压控制系统方案。液压系统为举升臂各关节提供驱动力,液压系统部分性能的好坏直接影响举升臂机构的性能。经过分析选择以比例阀为核心液压控制元件的液压控制系统。
     通过分析电液比例阀控马达位置闭环系统各部分功能,建立电液比例阀控马达位置闭环系统的数学模型。电液比例阀控马达位置闭环系统选择PID控制方法。电液比例阀一般具有较大的中位死区,为减小比例阀中位死区的影响,文中提出一种线形化补偿方法,应用于电液比例阀控马达位置闭环系统的PID控制中。
     输入电液比例阀的控制电压采用PWM信号,单片机选用能产生五路PWM信号的SST89E564RD芯片。并详细介绍了PWM信号产生方法,占空比计算方法以及控制系统部分的软硬件设计。论文最后通过构建两关节比例阀-方向阀控马达液压系统实验平台,验证比例阀控马达位置闭环控制系统性能,验证减小比例阀中位死区的线性化补偿方法,验证比例阀-普通方向阀控两回路马达液压系统方案的可行性。
This paper takes the state 863 program-hot line robot for background, whichwas assumed by the robot center of Shandong University of Science and Technology.Through analyzing the Raise to rise arm of the high altitude vehicle, using robottechnology, SCM technology and electrohydraulic proportional technology, studythe electrohydraulic system and control system for waist turning joint and flexjoint of the raise-rise arm. The main content involve 6 parts, kinematic modelof the raise-rise arm, the analysis of electrohydraulic proportional controlsystems, mathematic model of the proportional valve control motor positionalclose loop system, PID control & analysis for dead section of the proportionalvalve, design of the control system, experimentation.
     The paper first build up the kinematic model for the raise-rise arm of thehigh task vehicle by the D-H notation. Select the electrohydraulic control systemproject for the waist turning joint and flex joint. The hydraulic system providedrive power for each joint of the raise-rise arm, so the capability of hydraulicsystem directly affect the performance of the whole system, and choose thehydraulic system which select electrohydraulic proportional valve as the maincontrol component.
     Through analyzing the function of each component of the electrohydraulicproportional valve controlled hydraulic motor positional closed-loop system, setup its mathematic model. The control plan of the positional closed-loopproportional valve controlled motor system select PID control. The proportionalvalve exit zero dead section, we should manage to decrease the effect of the deadsection, This paper bring forward linearity compensation method., and use inPID control system.
     The input control voltage imported to the valve choose PWM control mode.select SST89E564RD(one CMOS chip of SCM) which can bring five PWM signal, and introduce the method about how can bring PWM signal, means of calculating high-lowratio & the software and hardware of the proportional controller in this part.At last we set up the hydraulic experiment setting of the two joints. Throughthe experiment setting, we validate the performance of the positional closed loopvalve controlled hydraulic motor system, validate the linearization compensatemethod and validate the feasibility of the scale valve-common direction valvecontrolled two loop hydraulic motor system.
引文
1.徐颧.机械设计手册[M].北京:机械工业出版社,2000:56-81
    2.吴克坚,于晓红,钱瑞明.机械设计[M].北京:高等教育出版社,2003:24-31
    3.刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002:145-146
    4.路雨祥.电液比例控制技术[M].北京:机械工业出版社,1988:11-14
    5.李福义.液压技术与液压伺服系统[M].哈尔滨:哈尔滨工程大学出版社,1995:10
    6.黎启柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997:82-91
    7.龚相超.电液比例排量控制径向柱塞变量泵[J].兰州理工大学,2001,12(1):12-13
    8.王文斌.机械设计手册(新版4)[M].北京:机械工业出版社,2004:8-9
    9.李壮云,葛宜远.液压元件与系统[M].北京:机械工业出版社,1999:11-14
    10.焦生杰.现代筑路机械电液控制技术[M].北京:人民交通出版社,1998:12-16
    11. Denavit, Hartenberg. A Kinematic Notation for Lower-Pair Mechanisms based on Matrices[J], ASME Journal of Applied Mechanics, 1955, 9(5):215-221
    12. Mcdonald. Robot Technology: Theory, Design and Application[M]. Beijing:Prentic-Hall, 1986:23-45
    13. Yoji Umetani. A Review on Advanced Robotics[J].Proceedings 91 International Symposium on Advanced Robot Technology, 1991, 3 (1): 12-15
    14. Weisbin. HERMIES-Ⅲ:A Step Toward Autonomous Mobility Manipulation and Perception[J]. Robotica, 1990, 4(8):34-35
    15. C Adballah. Survey of robust control for rigid robots. IEEE Control System Magazine, 1991,11 (2):243-30
    16. Astrom K J, Wittenmark B.Adaptive Control[M].London:Addison-Wesley Publishing Company, 1989:6-9
    17. Saeed B, Niku. Introduction to Robotics[M].北京:电子工业出版社,2004:60-66
    18.蒋新松.机器人学导论[M].辽宁:科学技术出版社,1994:435-459
    19.蔡自兴.机器人学[M].北京:清华大学出版社,2000:46-53
    20.张贤达.现代信号处理[M].北京:清华大学出版社,1995:67-76
    21.王占林.近代液压伺服控制[M].北京:机械工业出版社,1997:55-56
    22.夏志新.液压油污染与控制[M].北京:机械工业出版社,1992:45-48
    23.路雨祥.电液比例控制技术[M].北京:机械工业出版社,1988:134-144
    24. Moeller J. Untersuchungen an Einer Elektrohydraull schen[J]. Traktorfenkung O+P, 1993, 37(1) :23-45
    25. Richard. A simplified approach to feedback control system design[J]. Asrne Design Engineering Conferences, 1998, 12(4):45-57
    26.张卯瑞.高精度液压伺服系统改善低速性能的几项措施[J].哈尔滨:哈尔滨工业大学学报,1998,(4)
    27.成大先.液压控制,机械设计手册(单行本)[M].北京:化学工业出版社,2004:321
    28.路甫祥.液压气动技术手册[M].北京:机械工业出版社,2002:231
    29.焦生杰.沥青混凝土摊铺机液压驱动行驶与控制系统研究[J].长安大学,2002,12(4):11-14
    30.王春行.液压控制系统[M].北京:机械工业出版社,2002:21-30
    31.王占林.近代液压控制[M].北京:机械工业出版社,1997:34-45
    32.薛晓虎.液压系统阀控液压马达回路的动态特性分析[J].起重运输机械,2002,(8)
    33.关景泰.机电液控制技术[M].上海:同济大学出版社,2002:22-24
    34.李皿.关于自动控制系统的PID调节参数整定模式的改进[J].微电子学与计算机,1994,3(2):5-8
    35. G. Pritschow. Ch. Daniel. Open System Controller- A Challenge for the Future of the Machine Tool Industry. Annals of the CIRP, 1993, (42)
    36. RushHigh. Speed Sampling and Digitizing Requiring no Hold Circuit[J]. OFFIAL GAEETTE, 1992,3(4):2-5
    37.郭华伟.8098单片机控制的高速开关阀系统[[J].电子技术,2002,8(2):5-8
    38.符欲梅.MCS-8098单片机在PWM气动调压阀中的应用[J].重庆大学学报,1998,23(5):2-6
    39.毛恩荣,拖拉机力调节系统动态特性的数字仿真和实验研究[J],北京农业机械化学院,1986,(10)