挖掘机用新型电液比例多路阀的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多路阀作为挖掘机上的关键部件,它的性能与功能直接决定了挖掘机的性能与功能。目前国内市面上的中小型挖掘机用多路阀绝大多数都具有两个特点:一是非电控形式,即对多路阀的操作都是手动直接操纵阀芯动作;二是单阀芯控制方式,即执行机构的进油和回油都是通过一根阀芯来控制。这些特点使得挖掘机难以实现大幅度节能、远程遥控作业、机群协同作业等功能。本课题的研究对象是国内最新引进的一款基于负载口独立控制的挖掘机用新型电液比例多路阀,由于它采用了新颖的结构设计,融合了电子技术,为挖掘机的大幅度节能和远程遥控作业等智能化操作提供了前提条件。本文在建立阀的数学模型的基础上,对其控制策略展开研究,为该阀在国内的设计、生产提供理论指导。
     本文结合液压挖掘机分析研究了该阀的结构组成、工作原理以及相关的硬件软件构成,并将该阀与传统换向阀对液压执行机构的控制方式进行了比较,指出该阀在控制液压回路上比传统换向阀显示出更大的灵活性。以流体力学和经典控制理论为基础,建立了该阀的数学模型,指出了该阀在先导阀-主阀环节的传递函数与经典阀控对称缸传递函数的差别,对该阀的动态特性进行了分析,讨论了影响该阀动态特性的主要参数;在此基础上,提出使用常规PID控制策略对该阀的主阀芯实施位置控制,仿真结果表明常规PID控制策略适应性不好,难以满足控制要求。引入模糊控制策略,设计了模糊控制器,常规模糊控制的仿真结果表明使用模糊控制策略对主阀芯位置进行控制是可行的,且系统的动态响应品质较好,但是存在较大的稳态误差;基于规则修改的模糊控制对系统的动态响应品质有所改善,但是仍不能消除稳态误差;Fuzzy-PID双模模糊控制器结合了模糊控制和PID控制的优点,系统不仅具有较好的动态响应特性,而且彻底的消除了稳态误差。以铲斗液压操纵回路为代表,建立了该阀及其相关挖掘机液压系统的Amesim/Matlab联合仿真模型,通过实验检测铲斗油缸大腔、小腔压力并与联合仿真模型的仿真结果对比分析,验证了联合仿真模型的正确性,同时也间接证明了该阀采用Fuzzy-PID双模模糊控制策略是行之有效的。
As the key part on the excavator, the multitandem valve's performance and function directly determine the performance and function of the excavator. Most of the multitandem valves used on the excavator in domestic market have two characteristics. The first characteristic is non-electronic-control, that means the operation of multitandem valve is done via directly controlling the spool by hand. The second characteristic is single spool control mode, that means the oil which flow in and out the actuator is controlled by one single spool. These two characteristics make the excavator hard to fulfill large-scale energy saving, and other performance like remote control task and excavator group cooperation task. The paper has done some research on a new type of electronic-hydraulic proportional multitandem valve based on independent control of actuator ports, which is a latest overseas production used on the excavator. For adopting a creative structure design and integrating the electronic technology, it can provid the excavator's large-scale energy saving and intelligence operation like remote control with premise condition. Based on establishing the mathematical model of the valve, the paper did research on its control strategy, which could provide instruction for the valve's designing and production in home.
     Combined the excavator, analyzed the structure construction, work principle of the valve and the relevant hardware and software construction,made a comparison research on the control mode of the hydraulic actuator between the valve and the traditional change valve, pointed out that the valve is more flexible than the traditional change valve on controlling the hydraulic loop.Based on hydrodynamics and classical control theory, established the mathematical model of the valve, pointed out the difference between the transfer function of pilot valve to main valve and the transfer function of classical valve control symmetry cylinder, analyzed the dynamic characteristic of the valve, discussed the main parameters that influence the dynamic characteristic of the valve. On the basis of this, put forward the opinion that use normal PID controller to control the displacement of the main spool, the simulation result show that the adaptability of PID control is not good and hard to meet the control demands.Introduced fuzzy control strategy, designed a fuzzy controller.The simulation result of normal fuzzy control strategy show that it is feasible to use fuzzy control strategy to control the displacement of the main spool, and the dynamic response quality of the system is fairly good,but there is a big steady state error.The fuzzy control strategy based on modifying fuzzy rules can improve the dynamic response quality of the system, but also can not eliminate steady state error. The Fuzzy-PID dual-mode fuzzy control strategy combined the virtue of fuzzy control and PID control, the system not only has a good dynamic response quality, but also eliminate steady state error thoroughly. As the bucket hydraulic loop for representation, established a Amesim/Matlab union simulation model of electronic-hydraulic proportional valve and the relevant excavator hydraulic system. Through testing the piston chamber pressure and the rod chamber pressure of the bucket actuator and comparing it to the simulation result, testified the correctness of the model, meanwhile, it also indirectly proved that Fuzzy-PID dual mode fuzzy control strategy can be used on this valve.
引文
[1]路甬祥.电液比例控制技术.北京:机械工业出版社,1988.11
    [2]李福义.液压技术与液压伺服系统.哈尔滨:哈尔滨工程大学出版社,1995.10
    [3]课题组.液压气动件制造业关键技术分析.机电产品开发与创新,2002(4):50-54
    [4]林建亚,何存兴.液压元件.北京:机械工业出版社,1988.
    [5]龚相超.电液比例排量控制径向柱塞变量泵:[硕士学位论文].兰州:兰州理工大学,2001
    [6]路甬祥.液压气动技术手册.北京:机械工业出版社,2002
    [7]吴根茂.新编实用电液比例技术.杭州:国家电液控制工程技术研究中心讲义,2004
    [8]Husco International Inc..Hydraulic control valve system with non-shuttle pressure compensator.USP,5890362.1999-04-06
    [9]Henke R W.Evolution of load-sensing hydraulics.Diesel Progress International Edition,1998,17(4):53-55
    [10]Yasuo S,Takeshi N,Kazuhiro T.Design method of an intelligent oil-hydraulic system.In:Proceedings of the 2002 IEEE International Symposium on Intelligent Control,Vancouver,Canada.2002,10:626-630
    [11]王庆丰,魏建华,吴根茂等.工程机械液压控制技术的研究进展与展望.机械工程学报,2003,39(12):51-56
    [12]高峰.液压挖掘机节能控制技术的研究:[博士学位论文].浙江:浙江大学,2001
    [13]Backé W.Design systematics and performance of cartridge valve controls.In:International Conference on Fluid Power,Tampere,Finland.1987,3:1-48
    [14]Jansson A,Palmberg J O.Separate controls of meter-in and meter-out orifices in mobile hydraulic systems.SAE Transactions,1990,99(2):377-383
    [15]Yao B,Chris D.Energy-saving adaptive robust motion control of single-rod hydraulic cylinders with programmable valves.In:Proc.of the American Control Conference,Anchorage,AK.2002,5:4819-4824
    [16]Caterpillar.System and method for controlling an independent metering valve.USP,5960695,1999-10-05
    [17]Hu H B,Zhang Q.Realization of programmable Control using a set of individually controlled electrohydraulic valves.International Journal of Fluid Power,2002,3(2):29-34
    [18]Marc E M.Control of mobile hydraulic cranes.In:Proc.of first FPNI-PhD symposium,Hamburg.2000,9:475-483
    [19]Ultra Hydraulics Limited.Electrohydraulic proportional control valve assemblies.UKP,2298291,1996-02-22
    [20]Wang Q F,Gu L Y,Lu Y X.Research on digital control of meter-in and meter-out independent regulating for high inertia load.In:Fluid Power Systems and Technology,ASME,Tennessee,USA,1999:109-114
    [21]李竞,关景泰.液压挖掘机多路阀技术沿革及发展趋势.矿山机械,2004(11):30-32
    [22]李安良.Ultronics电液控制技术及其应用.建筑机械,2005(10):93-95
    [23]李安良.液压多路换向阀双阀芯控制技术的应用.工程机械,2005,36(2):54-56.
    [24]Marc E.M unzer,Peder Pedersen.Control Strategies for Moblie Hydraulic Machinery.Digital Signal Processor,2001
    [25]王庆丰,顾临怡,路甬祥.基于压差传感的电液进、出口节流独立调节原理及控制特性研究.机械工程学报.1999,37(4):21-24
    [26]Elfving,M.Palmberg,J.O.Distributed Control of Fluid Power Actuators Experimental Verification of a Decoupled Chamber Pressure Controlled Cylinder.4th International Conference on Fluid Power,(1997)
    [27]Mattila,J.Virvalo,T.Computed Force Control of Hydraulic Manipulators,5th Scandinavian International Conference On Fluid Power,(1997)
    [28]成大先.机械设计手册(单行本).北京:化学工业出版社,2004
    [29]曹鑫铭.液压伺服系统.北京:冶金工业出版社,1990
    [30]张彪,吴盛林.基于ADAMS的阀控非对称缸仿真研究.液压与气动,2005(8):24-26
    [31]王传礼,许贤良.阀控非对称液压缸机构建模探讨.矿山机械,1998(7):66-68
    [32]李洪人,王栋梁,李春萍.非对称液压缸电液伺服系统的静态特性分析.机械工程学报,2003,39(2):18-22
    [33]李洪人.液压控制系统.北京:国防工业出版社,1981
    [34]王传礼,丁凡,李其朋,等.对称四通阀控非对称液压缸伺服系统动态特性研究.中国机械工程,2004(3):471-474
    [35]胡寿松.自动控制原理.北京:国防工业出版社,2000
    [36]Deticek,E.,Kiker,E.Adaptive force control of hydraulic drives of facility for testing mechanical constructions.Experimental Techniques.2001,25(1):35-39
    [37]Kwan,C-M.Robust Adaptive Control of Induction Motors.International Journal of Control.1997,67(4):539-552
    [38]Herbert E.Merit.Hydraulic Control Systems.NewYork:John Wiley Press,1967
    [39]王占林.近代液压控制.北京:机械工业出版社,1997.8
    [40]Mudi,Rajani K.Pal,Nikhil R.Robust self-tuning scheme for PI-and PD-type fuzzy controllers.IEEE Transactions on Fuzzy Systems,1999,7(1):2-16
    [41]Z Q Wu etal.A Rule Self-regulating Fuzzy Controller.Fuzzy Sets and Systems.1992,(47):13-21
    [42]Shao S.Fuzzy Self-organizing Controller and its Application for Dynamic Processes.Fuzzy Sets and Systems.1988,(26):151-164
    [43]Tzafestas,N P Papanikolopoulos.Incremental Fuzzy Expert PID Control.IEEE Transactions on Industrial Electronics.1990,37(5):365-371
    [44]况荣华,荣太平.一种新型PID参数自适应模糊控制器.华中科技大学学报,2001,29(6):23-27
    [45]贺鹏.电液比例速度控制系统的设计及特性研究[硕士学位论文].昆明:昆明理工大学流体控制工作研究所,2002.3
    [46]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003
    [47]B.C.Kuo.Automatic Control System.New Jersey:Prentice Hall,1975
    [48]王锦标,方崇智.过程计算机控制.北京:清华大学出版社,1992.2
    [49]尹绍清.过程计算机控制系统.西安:西北工业大学出版社,1989.8
    [50]薛定宇.反馈控制系统设计与分析-MATLAB语言应用.北京:清华大学出版社,2000
    [51]Zadeh L A.Fuzzy Algorithm.Information Control.1968,12:94-102
    [52]Zadeh L A.A Rationale for Fuzzy Control.Trans.ASME,J.Dyname.Syst.Measure.Control.1972,94:3-4
    [53]冯冬青,谢宋和.模糊智能控制.北京:化学工业出版社,1998
    [54]章卫国,杨向忠.模糊控制理论与应用.北京:西北工业大学出版社,2000,48-63
    [55]徐兆红.电液位置伺服系统的模糊控制研究[硕士学位论文].昆明:昆明理工大学,2004
    [56]Chih-Hsun Chou,Hung-Ching Lu.A Heuristic Self-tuning Fuzzy Controller.Fuzzy Sets and Systems,1994,(61):249-264
    [57]Berenji H R,Khedkar P.Learning and Tuning Fuzzy Logic Controllers Through Reinforcements.IEEE Trans on Neural Network.1992,3(5):724-740