纯水液压控制阀关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对三类典型的纯水液压控制阀,从理论分析、样机研制及实验研究等多方面对
    其工作性能进行了全面而系统的研究。研制出了国内首套高压大流量纯水液压控制阀气蚀特
    性实验台架,并针对纯水液压控制阀中最典型的节流阀口,研究了不同结构对阀口的流量一
    压差特性、出口压力及流量系数的影响;同时系统地研究了气蚀特性、密封技术及材料选择
    等关键技术,并集成地应用这些关键技术,完成了系列高压大流量纯水液压控制阀的结构设
    计、样机制造及性能优化等方面的研究,取得了一些具有创新性的结果。
     研制出了一种基于多级分压、高压引流补偿和分离原则的气蚀抑制新结构和一种能够实
    现微量调节的轴向三角通槽式节流阀口结构、提出了一种基于敏感腔设置、阻尼器优化以及
    特殊力放大机构的灵敏控制方法;从流场控制的角度提出了纯水液压控制阀的参数优化设计
    方法:第一,利用弧形阀芯过渡面,改善节流槽内的压力分布,即:在紧靠阀芯与阀套形成
    的喷口处的微小区域内形成高于背压的压力峰值,从而抑制气蚀的发生。第二,增大阀套出
    口直径及锥度,减小出口位置偏差可以有效抑制出口漩涡形成,从而降低了气蚀现象的发生。
    在以水为工作介质的多级节流阀口、异形结构阀口的气蚀特性试验中,发现刚发生气穴现象
    时的气穴系数在0.35~0.5之问,与油压系统的气穴系数相近,这一现象在公开文献中未见
    报道,可为纯水液压控制阀节流阀口的设计提供依据。
     本博士论文的主要内容可分为7章,现分述如下:
     第一章为纯水液压传动的发展历程及研究现状。能源结构的变化趋势和人类可持续发展
    的时代要求,是纯水液压技术发展的外在要求;而纯水液压技术本身所具有的介质来源广泛、
    环境友好、清洁安全的独特优势,则是纯水液压技术崛起的内在动力。本章首先介绍了水液
    压技术的定义及基本特征;其次归纳了水液压技术的发展历程及其研究内容和难点,并就纯
    水液压传动在行走机械、食品、医药、娱乐、造纸等场合的应用进行举例说明;最后给出了
    目前国内外纯水液压控制阀的研究现状、典型代表、关键问题及应用前景;并说明了目前纯
    水液压控制阀存在的问题及开展纯水液压控制阀关键技术研究的目的、意义及对策。
     第二章为纯水液压控制阀气蚀实验系统的搭建。本章首先介绍了纯水液压控制阀气蚀试
    验系统的设计思想、气蚀实验装置的设计要求,以及气蚀特性实验的测量原理及方法;然后
    针对测量中可能的误差来源进行分析。
     第三章为纯水液压控制阀防气蚀阀口特性研究。水的汽化压力高,可压缩性小,密度大,
    这使得纯水液压阀中存在严重的气蚀腐蚀和拉丝侵蚀现象,从而导致阀很快失效。要减小或
In this thesis, theoretical and experimental studies of the three kinds of water hydraulic valve are comprehensively and systemically dealt with. The test rig of cavitation performance in water hydraulic control valve is first developed interiorly with higher pressure and larger flow. The cavitation phenomenon at the orifice is investigated which is the base of water hydraulic control valve structure design, and the rule is studied which different structures influence the valve characteristic and flux coefficient. At the same time, the key problem are researched as cavitation resistance, seal technology, selected material and so on. The structural design of the water hydraulic control valve, the fabrication and the optimization of the prototype are discussed in detail, and as a result, some important and creative conclusions are achieved as follows:Some new-style structure are designed and the water hydraulic control valve prototype are manufactured. The test results show the over shoot was smaller than 30%, adjusting time was shorter than 500 ms, the control accuracy was 90.7% under 14MPa. Dynamic and static experiments show that the performance of the valves accomplished the expectation. The method are put forward which parameter are optimized from the view of flow field control. The first method is to amend the pressure distribution at the throttle orifice by increasing arc transition surface, the second method is to augment the exit diameter and the taper which can restrain the cavitation extent. The cavitation test results show that the cavitation coefficient is between 0.35 and 0.5 which is close to the value in oil system, also it show that the flux coefficient with two-stage throttle configuration is lower than the flux coefficient with one-stage throttle configuration, but its cavitation resistance is better. The test results show the orifice with sphericity or ellipse structure have preferable rigidity and stronger cavitation resistance.The main contents of this thesis could fall into seven chapters as the followings.Chapter 1 introduces the development and the present status of water hydraulic. Firstly, the definition and the characteristics of water hydraulic is introduced. Furthermore, the historical background of water hydraulic is discussed in tenns of the trends of the trends of the energy resource structure and the needs of the human sustainable development. Its content of the water hydraulic in research and difficulty are sum up. Water hydraulic has been proved successfully in entertainment facilities, food industry, paper machinery, under water tools, fire fighting, and its
    application are illustrated. In addition, the present status of water hydraulic valve , structure types, typical representations ,the key problems are described as well as intention, meaning and measure of the thesis.Chapter 2 presents a novel apparatus to measure the cavitation . Firstly, the design idea and the design demand are introduced . The experimental apparatus and system to investigate the cavitation are described. The uncertainty in the experimental measurement was analyzed.Chapter 3 studies the performance of the cavitation resistance at the valve orifice. Water has the characteristic as higher vaporization pressure, lower compressibility and higher density. So, there are serious cavitation corrupt in water hydraulic valve, this is a very important causation result in invalidation. In order to reduce or eliminate the status, the appropriate structure design must be considered as well as the suitable material. Firstly, it is introduced which different media performance impact on cavitation erosion. Secondly, the measurement and principle are concluded which can ease or prevent cavitation erosion. Additionally, the experimental study of the valve orifice are carry through with different structure and some conclusion are obtained which can instruct the design of water hydraulic valve.Chapter 4 is about the principle of water hydraulic valve and the development of prototype. Water hydraulic valve is the key component of water hydraulic technology. The difficult problem must be conquered as erode, leakage, cavitation, impulsion, and so on. So, the structure, material, machining technology must be studied in order to manufacture the water hydraulic valve with good property. In water hydraulic valve, many novelty structure and material are adopted. Firstly, three kinds of water hydraulic valve are introduced which are developed by myself. Secondly, some conclusion are sum up about structure , machining art and material.Chapter 5 introduce optimization of the water hydraulic valves. Some parameters are obtained by designer experience in the process of water hydraulic structure design which are elective in a certain extent. The optimize design is mostly measurement to advance the water hydraulic hydraulic valve performance. The chapter develop the optimization design on the basis of aforementioned chapter. Some software are utilized to enhance reliability and efficiency including Matlab/Simulink, Amesim and Fluent. Firstly, the system simulation and flow simulation are carry through on the base of actual structure parameters. Then, the simulation results are analyzed and the parameters are optimized in order to ameliorate performance of the
    water hydraulic valve.Chapter 6 studies the performance of the prototype through the experiment. Firstly, the testing rig are introduced including mostly instrument ,meter and its demarcator. Secondly, the experiment item and principle are particularized. Finally, the experiment are accomplished and the experimental results are analyzedChapter 7 is the conclusion and expectation which summarizes and concludes the thesis in many aspects including numerical analysis, system design, fabrication of the prototype, performance testing, etc. Additionally water hydraulic components future development and application are expected.
引文
[1] 程祥元.水压传动.液压与气动,1989(1):8~9
    [2] 李壮云,朱玉泉.高水基液压传动的应用及若干技术问题.中国机械工程学会流体传动及控制专业学会“难燃介质流体传动学术讨论会”论文集,1988:9~29
    [3] Water Hydraulics. A technical databook, BFPA, P82
    [4] What is currently available in the field of water hydraulics., Water Hydraulics-A Status report, NFPA, 1995
    [5] Eizo Urata. Technological aspects of the water hydraulics. The Proceedings of the Sixth Scandinavian International Conference on Fluid Power. SICFP' 99, Tamper, Finland, May 26~28, 1999:21~34
    [6] Fisher. Water Hydraulics Getting Hot Again. Hydraulics & Pneumatics, May 1991:35~38
    [7] Stricker. Advances Make Tap Water Hydraulics More Practical. Hydraulics & Pneumatics, December 1996:29~33
    [8] Scheffels. Developments In Water Hydraulics. Hydraulics & Pneumatics, December 1996: 33~34
    [9] Lu Yongxiang. New Achievements and Preview of Fluid Power Engineering. Proceedings of 1th International Conference on FPTC, Hangzhou, Spet 9~10, 1997:16~23
    [10] The Proceedings of 4th Scandinavian International Conference on Fluid Power. Tampere, Finland, September, 1995
    [11] The Proceedings of 5th Scandinavian International Conference on Fluid Power. Tampere, Finland, September, 1997
    [12] The Proceedings of 6th Scandinavian International Conference on Fluid Power. Tampere, Finland, May, 1999
    [13] The Proceedings of International Workshop on Water Hydraulics System and Application. Lyngby, Denmark, September 1998
    [14] The Proceedings of 3rd JHPS International Symposium on Fluid Power. Tokyo, Japan, 1996
    [15] Hausherr G. Water Hydraulics in its Historical Context. Proc. Of 4th Scandinavian Int. Cone On Fluid Power, Tampere, Finland, Sept. 1995:889~897
    [16] 宫川新平.水压技术开发现状社会的背景.油空压技术,1999(7):29~34
    [17] 杨曙东,李壮云.水压传动的发展及关键基础技术.机床与液压,2000(5):7
    [18] Brian Hollingworth. Water hydraukic in its Historical Content. Proc. 4th Scandinavian Int. Conf. ON Fluid Power. 1995, sept. :842-858
    [19] Simon Usher. Water hydraulic application examples. Proceedings of international workshop on water hydraulic systems and application
    [20] Anders, Adelstop. Trends in fluid power year 2000 and beyond. International workshop on water hydraulic systems and applications. Denmark, 1999, sep 3-4
    [21] Siuko M. and Kemppainen T.. Development of water hydraulic extractor tool for iter. The Sixth Scandinavian International Conference on Fluid Power, Yampere, Finland, May 26-28, 1999:687-696
    [22] Urata E.. Technological aspects of the new water hydraulic. The Sixth Scandinavian International Conference on Fluid Power, Yampere, Finland, May 26-28, 1999:21-34
    [23] Kitagawa A.. Co-operation between universities and water hydraulic companies in Japan. The Sixth Scandinavian International Conference on Fluid Power, Yampere, Finland, May 26-28, 1999:35-50
    [24] Sorensen E. Latest Development in the Application of Water Hydraulics. Fluid Power Theme days in IHA, Water Hydraulics, Tampere, Finland, Sept. 1997
    [25] Sorensen E, Sc B. and Corn B.. News and Trends by the Industrial Application of Water Hydraulics. Proc. of 6th Scandinavian Int. Conf. on Fluid Power, Finland, May 26~28, 1999:651~674
    [26] Koskinen K. T. and Vilenius M. J.. Water Hydraulics—A Versatile Technology. Journal of the Japan Hydraulics & Pneumatics Society 1998, v29(7): 13~19
    [27] Backe W.. Water- or Oil-Hydraulics in the Future. Proc. of 6th Scandinavian Int. Conf. on Fluid Power, Finland, May 26~28, 1999:51~64
    [28] Nessie公司产品样本
    [29] Trostmann, Erik. Water hydraulic control technology. "Marcel Dekker publishers": New York, Basel, HongKong, 1996.
    [30] Dittmer, H. -Joachim. Wasserhydraulik in der Produktion der Mercedes Aklasse. Conference on water hydraulic of the FG fluidtechnik in the VDMA 23. 6, 1998.
    [31] Reichel, Jurgen. Druckflussigkeiten fur die Wasserhydraulik. Conference on water hydraulics of the FG Fluidtechnik in the VDMA, 23. 6, 1998.
    [32] Trostmann, Erik, Peter. Fluid power control based on pure tap water. 12th Aachen fluid power colloquy, Mar 1996, volume 1, 12~13.
    [33] Rinck, Stefan. Untersuchung und optimierung schnellaufender Axial-und Radial-Kolbenpumpen beim Betrib mit wasserbasischen Druckflussigkeiten. Doctoral dissertation at the university of Aachen, Germany, 1992.
    [34] Tao, Jianjun. Untersuchung der physikalischen Vorgange im Dichtspalt und des Reibverhaltens von Hydraulik-Stangendichtungen. Doctoral dessertation at the university of Achen, Germany, 1991.
    [35] Viersma, Taco J. Analysis, synthesis and design of hydraulic servosystems and pipelines. Elsevier scientific Publishing corp, 1980.
    [36] Berger, Jorg. Kavitationserosion und Manahmen zu ihrer vermeidung in hydraulikanlagen fur HFA-Flussigkeiten. Doctoral dissertation at the university of Aachen, Germany, 1983.
    [37] Kleinbremer, Werner. Untersuchung der werkstoffzerstorung durch kavitation in Olhydraulischen Systemen. Doctoral dissertation at the university, of Aachen, Germany, 1979.
    [38] Urata, E. Miyakawa, S. Yamashina, C. Hydrostatic support of spool for waterhydraulic servovalves-Its influence on flapper-nozzle characteristic. The 4th Scandinavian Conference on Fluid Power, Tampere, Finland. September 27~29, 1995.
    [39] 周华.海水液压泵及其基础理论研究.华中理工大学博士学位论文,1997.11
    [40] 贺小峰等.以海淡水为工作介质的液压传动技术.液压气动与密封,2000(2):18-19
    [41] Yang H Y(杨华勇),Sha D H(沙道航).Progress of Application and Research of Pure Water Hydraulic Transmission(纯水液压传动的应用与研究新进展)[J].Lathes and Hydraulics(机床与液压),1998,3:129-138.
    [42] YANG Huayong(杨华勇),ZHOU Hua(周华),(Lu Yongxiang)路甬祥.Research achievement and developing trends of water hydraulics(水液压技术的研究现状与发展趋势)[J].china mechanical engineering(中国机械工程),2001,11(12):1430-1433.
    [43] 贺小峰,张铁华,李壮云.直动式海淡水溢流阀的研究.液压气动与密封,2000,(6):12-14
    [44] Yang Huayong(杨华勇),Zhou Hua(周华).Some key problems of the water hydraulics(纯水液压传动技术的若干关键问题)[J].Chinese journal of mechanical engineering(机械工程学报),2002,38增刊:96-100
    [45] 杨曙东.水压传动的发展及其关键基础技术.机床与液压,2000,3
    [46] Jiaxin Li(李家鑫).Research on Water Hydraulic Piston Pump(纯水轴向柱塞泵的研究).Dissertation Submitted to Zhejiang University For the Degree of Engineering Master(浙江大学硕士学位论文),2001,2
    [47] 焦素娟,周华,杨华勇.直动式纯水溢流阀实验研究.第五届海内外青年设计与制造科学会议论文集,2002年7月,大连.512-514
    [48] Fan Minghao(范明豪),Zhou hua(周华),Yang Huayong(杨华勇).RESEARCH ON ATOMIZATION CHARACTERISTICS OF HIGH-PRESSURE WATER MIST ATOMIZER FOR FIRE SUPPRESSION(高压细水雾灭火喷嘴的雾化特性研究)[J].Chinese journal of mechanical engineering(机械工程学报),2002,38(9):17-21
    [49] Fan Minghao(范明豪).(Research on water hydraylics water mist fire suppression system(纯水液压细水雾 灭火系统研究).Dissertation Submitted to Zhejiang University For the Degree of Engineering Doctor(浙江大学博士学位论文),2003,10
    [50] Fan Minghao(范明豪),Zhou Hua(周华),Yang Huayong(杨华勇).Research on water hydraulic transmission and efficient high pressure firefighting system(纯水液压传动及高压高效细水雾灭火系统研究).hydraulic and pneumatic[J](液压与气动),2001(5):14-16
    [51] 周华,杨华勇.重新崛起的现代水压传动技术.液压气动与密封,2000(4):6-9
    [52] Jiao Sujnan(焦素娟),Li Jiaxin(李佳鑫),Yang Jian(杨俭),Zhou Hua(周华).Salt Spray Experiment on Stainless Steels for Water Hydraulic Components(不锈钢作为水压元件材料的盐雾实验研究)[J].hydraulic and pneumatic(液压与气动),2002(2):11-13
    [53] 杨曙东,李壮云.介绍几种中高压海水泵.液压与气动,2000(4):40-42
    [54] Jiao Sujuan(焦素娟),Zhou Hua(周华),Gong Guofang(龚国芳),Yang Huayong(杨华勇).Tribological properties of plasma-sprayed coating Al2O3、Al2O3+13%TiO2 under water lubrication condition(水润滑下Al2O3、Al2O3+13%TiO2等离子喷涂层的摩擦磨损特性).Lubrication engineering(润滑与密封)[J],2002.5,2002(3):28-29,31
    [55] Jiao Sujuan(焦素娟),Zhou Hua(周华),Yang Huayong(杨华勇),Gong Guofang(龚国芳).Investigation on Wear Mechanism of Plasma-sprayed Ceramic under Water-lubricated Condition(水润滑条件下等离子陶瓷涂层的磨损机理研究).Chinese mechanical engineering(中国机械工程)[J],2003,14(6):514-516
    [56] Jiao Su-juan(焦素娟),Zhou Hua(周华),Yang Hua-yong(杨华勇),Gong Guo-fang(龚国芳),Chen Jian-min(陈健敏),Zhou Hui-di(周惠娣).Tribological behavior of modified polytheretherketone composites in sliding against stainless under water lubrication(改性聚醚醚酮在水润滑下的摩擦磨损性能研究),Tribology(摩擦学学报)(suppl)[J],2002(8):76-78
    [57] Jiao Su-juan(焦素娟),Zhou Hua(周华),Yang Hua-yong(杨华勇),Gong Guo-fang(龚国芳),Chen Jian-min(陈健敏),Zhou Hui-di(周惠娣).Tribological behavior of filled polytheretherketone composites in sliding against stainless under water lubrication(改性聚醚醚酮复合材料在水润滑下的摩擦学特性研究).Tribology(摩擦学学报)[J],2003,23(5):385-388
    [59] ELWOOD公司.Valves and Systems for High Pressure Water and Low Viscosily Fluid Hydraulics(产品介绍)
    [60] 郭世杰.液压蛙跳机.液压与气动.2000(6):17
    [61] 赵升吨.剧院乐池升降台同步系统及其故障排除.液压与气动,1997(5):11-13
    [62] Arto Verronen. Water hydraulic brash machine. International workshop on water hydraulic system and industrial applications 2000, Hamburg, Germany, Sep, 2000:19-20
    [63] Simon Usher. Water hydraulic application examples. International workshop on water hydraulic systems and applications, proceedings of the workshop Lyngby, DENMARK, Sep 3-4, 1998
    [64] 张立勋,刘乃钊,王启明,叶花武.水下机器人作业机械手液压自动对接腕.机床与液压,1997(2):33-35
    [65] 陈建平.水下机器人液压泵站设计研究.液压与气动,1997(2):10-14.
    [66] Jiang Xinsong(蒋新松),Feng Xisheng(封锡盛),Wang Litang(王棣棠).Under water tool(水下机器人).沈阳:辽宁科学技术出版社,2000,11
    [67] 张越.水压机及轧钢高压水除鳞用高压水元件及系统.液压与气动,1999,6
    [68] Mika, Hyvonen. Water cutting in paper machines. International workshop on water hydraulic systems and applications, proceedings of the workshop Lyngby, DENMARK, Sep 3-4, 1998
    [69] Fan Minghao(范明豪),Zhou Hua(周华),Yang Huayong(杨华勇).Research on water hydraulic transmission and efficient high pressure firefighting system(纯水液压传动及高压高效细水雾灭火系统研究).hydraulic and pneumatic[J](液压与气动),2001(5):14-16
    [70] Jones and P. F. Nalon. Discussions on the use of fine water sprays or mists for fire suppression, J. Loss Prev. Process Ind. 1995, 8(1):17-22
    [71] Lars Bendixen. Drying lumber with high pressure water moisturizing. International workshop on water hydraulic system and industrial applications 2000, Hamburg, Germany, Sep, 2000:19-20
    [72] Sorensen P.. Latest Development in the Application of Water Hydraulics. Fluid Power Theme days in IHA, Water Hydraulics, Tampere, Finland, Sept. 1997
    [73] Koskinen K. T. and Vilenius M. J.. Water Hydraulics—A Versatile Technology. Journal of the Japan Hydraulics & Pneumatics Society 1998, v29(7): 13~19
    [74] Eastport International. Development of a Seawater Hydraulic Rock Drill. AD-A235873, Jan., 1988
    [75] Kari Koskinen. Proposals for improving the characteristics of water hydraulic proportional valves using simulation and measurement. Tampere University of Technology Publications 189. 1996:112~113
    [76] Dipl-Ing H. Cuppers. Modem Water Hydraulics-Your choice for the Future. Germany, 2001
    [77] Usher, S. Mains water hydraulics-The state of the art, putting water to work.. Proceedings of Water-based fluids in hydraulic applications, London, UK, March 13, 2001
    [78] Jean-Charles. The Preliminary Design of Pressure Relief Valves. The Eighth Scandinavian International Conference on Fluid Power, SICFP03, Tampere, Finland, May, 2003:577~583
    [79] J Berger. Kavitationserosion und Massnahmen zu ihrer Vermeidung in Hydraulikanlagen fur HFA-Flussigkeiten. Dissertation, RWTH, Achen, Germany, 1983.
    [80] 杨华勇,周华.水液压技术的研究现状与发展趋势.中国机械工程,2000,11(2):1430~1433
    [81] 杨署东,李壮云.水压传动的发展及其关键基础技术.机床与液压,2000(5):6~9
    [82] Wolfgang Backe. Water-or-Oil Hydraulics in the future. Proceedings of 6thScandinavian International Conference on Fluid Power, Tampere, Finland, September, 1999:51~64
    [83] 曾曙林,周梓荣.水压传动技术的研究进展及在工程机械行业中的应用.湖南工程学院学报,2002,12(4):41~43
    [84] 许贤良.液压技术回顾与展望.液压气动与密封,2002(8):8~10
    [85] Tamami Takahashi, Chishiro Yamashina, and Simpei Miyakawa. Development of water hydraulic proportional control valve. Proceedings of the Fourth JHPS International Symposium on Fluid Power, Tokyo, 15~17 November 1999
    [86] Atu Kitagawa. Co-Operation between universitys and water hydraulic companies in Japan. Proceedings of 6Scandinavian International Conference on Fluid Power, Tampere, Finland, September, 1999:36~38
    [87] Virvalo, Matti Vilenius. Some steps in development of modem water hydraulics, finland, 2001.
    [88] G. Hausherr, Jochums. Water hydraulics control technology[M], Hauhinco, 1995.
    [89] Shigeru oshima, Timo leino, Matti Lijama, etc. Effect of cavitation in water hydraulic poppet valves. International journal of fluid power, 2001, 2(3):5~13
    [90] Kazumi ITO, Koji TAKAHASHI, Kiyoshi INOUE. Flow in a poppet valve(Computation of pressure distribution using a streamline coordinate system), JSME International Journal, Series B. Vol. 36, No 1, 1993, 157~163.
    [91] 曹秉刚,史维祥,中野和夫.内流式锥阀液动力及阀芯锥面压强分布的实验研究.西安交通大学学报,1995,29(7):66~70.
    [92] 刘银水,杨友胜,李壮云.二级圆锥式节流阀口的设计及实验研究.液压与气动,2001(11):12~14
    [93] 申忠如,郭福田,丁晖.电气测量技术.北京:科学出版社,2003:345~353.
    [94] 林德杰,林均淳,许锦标.电气测控技术.北京:机械工业出版社,2000:176~185.
    [95] Wolfgang Backe. Water-or-Oil Hydraulics in the Future. Proceedings of 6thScandinavian International Conference on Fluid Power, Tampere, Finland, September, 1999:51~64
    [96] Tsukiji T, Sumikawa H, Sumita T, et al. Cavitation in a Hydraulic Holding Valve. American Society of Mechanical Engineers, Fluids Engineering Division(Publication) FED, 1996, 236(1):373~378
    [97] Regiane Fortes Patella. A New Approach to Evaluate the Cavitation Erosion Power. Jouranl of Fluids Engineering. Vol. 120, June 1998:335~344
    [98] Borghi M., Bussi C., Milani M., et al. Reliability of Fluid Cavitation Analysis by Means of Equivalent Fluid Characteristics Modelling. Proceedings of 7th Scandinavian International Conference on Fluid Power, Linsheping, Sweden, May, 1999:143~160
    [99] Hong GAO, Xin FU, Huayong YANG, et al. Numerical and Experimental Investigation of Cavitating Flow in Oil Hydraulic Ball Valve. Proceedings of 5th JFPS International Symposium on Fluid Power, Nara, Japan, November, 2002:923-928
    [100] Ji Hong, Fu Xin, Yang Huayong, et al. Investigation into Cavitation Induced Noise within Hydraulic Relief valve. Proceedings of 5th JFPS International Symposium on Fluid Power, Nara, Japan, November, 2002: 409~412
    [101] 高红,傅新,杨华勇,等.锥阀阀口气穴流场的数值模拟与试验研究.机械工程学报,2002,38(8):27-302
    [102] 冀宏,傅新,杨华勇.内流道形状对溢流阀气穴噪声影响的研究.机械工程学报,2002,38(8):同19-22
    [9] Berger J.. Kavitationserosion und Maβnahmen zu ihrer Vermeidung in Hydraulikanlagen fur HFA-Flussigkeiten. Dissertation RWTH Aachen, 1983.
    [103] 张铁华,杨友胜,李壮云.二级节流式阀口的设计及实验研究.液压与气动,2001(11):12~15
    [104] 刘银水,黄艳,贺小峰,等.二级节流的性能分析及其在水压阀中的应用,2001(5):16~17
    [105] Zhou Hua, Yang Huayong. Diagnosis of Cavitation Inception in Water Hydraulic Piston Pump. Proceedings of 6thScandinavian International Conference on Fluid Power, Tampere, Finland, September, 1999: 129~137
    [106] Paoluzzi R., et. al. Stationary and Dynamic Analysis of a Water Relief Valve. Proceedings of the 4th JHPS International Symposium on Fluid Power, Tokyo, November 1999:561~566
    [107] GAO Hong, FU Xin, YANG Hua-yong, et al. Numerical Investigation of Cavitating Flow behind the Cone of a Poppet Valve in Water Hydraulic System. Journal of Zhejiang University SCIENCE, 2002, 3(4): 395-400
    [108] 金朝铭主编.液压流体力学.北京:国防工业出版社,1994.
    [109] 廖家璞主编.液压传动.北京航空航天大学出版社,1995.
    [110] 路甬祥主编.液压气动技术手册.北京:机械工业出版社,2002.
    [111] 盛敬超.液压流体力学.北京:机械工业出版社,1980
    [112] 准铃木理等.水压溢流阀的开发.日本机械学会论文第74期通常总会讲演会讲演论文集(3),1997.
    [113] Riedel H.P.液阻汽蚀现象的理论和实验研究.亚琛工业大学,博士论文,1973
    [114] Kleinbteuor W.液压系统汽蚀对材料破坏的研究.亚琛工业大学,博士论文,1979
    [115] Eich,O.低噪声液压阀的开发研究.亚琛工业大学,博士论文,1979
    [116] Berger J.使用HFA介质液压装置的汽蚀破坏及其预防措施.亚琛工业大学,博士论文,1983
    [117] Rink S.使用水基介质高速轴向和径向柱塞泵的理论与实验研究及其优化.亚琛工业大学,博士论文,1992
    [118] 贺小峰,李壮云等,一种新型的柱塞式液压水泵滑靴摩擦副摩擦磨损试验台的研制,液压气动与密 封,1998(2):36-38
    [119] 刘标奇,李壮云等,海水液压泵摩擦磨损试验机的研制,液压气动与密封,1998(3):18-20
    [120] 杨曙东等,海水液压水下作业工具,海洋技术,1998(2)
    [121] 邓舜扬等著.海洋防污与防腐蚀.海洋出版社,1987。
    [122] 侯保荣等著.海洋腐蚀与防护.科学出版社,1997。
    [123] 谭昌谣,王钧石主编.实用表面工程技术.新时代出版社,1998,5。]
    [124] 林建亚,何存兴.液压元件.北京:机械工业出版社,1992
    [125] 宋鸿尧,丁忠尧等.液压阀设计与计算.北京:机械工业出版社,1982
    [126] 谢伟,周华,弓永军,杨华勇.先导式纯水溢流阀的研究.液压气动与密封.2004(4):14~16
    [127] 弓永军,周华,谢伟,杨华勇.纯水电液换向阀的实验研究.液压与气动.2004(12):71~73
    [128] 杨华勇,弓永军,周华.纯水液压控制阀的研究进展.中国机械工程.2004(8):1400~1404
    [129] 焦素娟,周华,杨华勇.直动式纯水溢流阀实验研究.ICFDM’2002,大连,2002.7:512-514
    [130] 弓永军,周华,杨华勇.纯水液压控制阀的研制.机床与液压,2004(10):14~16
    [131] 杨曙东,彭建,李壮云.中低压水压元件的研制.液压与气动,2002(4):49~51
    [132] 刘银水,黄艳,贺小峰,李壮云.水压阀的研究与发展.液压与气动,2001(5):10~14
    [133] 杨署东,李壮云,朱玉泉.水压传动的主要课题与研究进展.中国机械工程,第11卷第9期:1070~1073
    [134] 刘银水,黄艳,贺小峰,李壮云.几种油压阀的结构形式对水的适应性.液压气动与密封,2002(6):16~17
    [135] 张铁华,等.浅谈水压元件的结构设计.液压与气动,2000(4):38~39
    [136] 雷天觉.液压工程手册[M].北京:机械工业出版社,1990
    [137] G. Hausherr, Jochums. Water hydraulics control technology[M], Hauhinco, 1995.
    [138] Urata E., Miyakawa S. and Yamashina C.. Hydraulic Support of Spool for Water Hydraulic Serve-Valves—Its influence on Flapper-Nozzle Characteristics. Proc. of the 4th Scandinavian. Int. Conf. of Fluid Power, Finland, Sept. 26~29, 1995, v2(2): 910~929
    [139] Ito K., Takahashi K and Inoae K.. Flow in a Poppet Valve, JSME International Journal, Series B, Vol. 36, No. 1, 1993:42-50
    [140] Takenaka, T., Yamane, R. and Iwamizu, T.. Thrust of the Disc Valves, Bull. J. Soc. Mech. Engrs, Vol. 7, No. 27, 1964:559-568
    [141] Ing Joachim Mauer. High pressure Valves For Water Hydraulic System[C]. Proceedings of 4th Stand Inc, conf. On Fluid Power, Finland:1995.
    [142] 贺小峰,张铁华,李壮云.一种新型节流阀的研制.机床与液压,2001(2):62转53
    [143] 赵应樾,史维祥.液压控制阀及其修理.上海交通大学出版社,1999
    [144] Nadarajah S., Balabani S., Tindal, M. J. and Yianneskis, M.. The Turbulence Structure of the Annular Non-swirling Flow Past an Axisymmetric Poppet Valve. Proc Instn Mech Engrs, Part C, 212, 1998:455-467
    [145] Liu Y. S., Huang Y., Qiu H. L. and Li Z. Y.. A Study of Two-step Throttle in Water Hydraulics. Proceedings of 5th ICFP'2001, Hangzhou:425-429
    [146] Nguyen-Schaefer, H.; Spratke, P.; Mittwollen, N. Study on the flow in a typical seat valve of mobile hydraulics, SAE Special Publications v 1229 Febr 1997. pp. 11~22
    [147] FLUENT 6 User Guide, Fluent Inc., 2001.
    [148] AMEsim User Guide, AMEsim Inc, 2003.
    [149] 雷天觉.液压工程手册.北京:北京理工大学出版社,1998
    [150] GB 8105—87中华人民共和国国家标准压力控制阀试验方法
    [151] GB 8106—87中华人民共和国国家标准方向控制阀试验方法
    [152] GB 8104—87中华人民共和国国家标准流量控制阀试验方法