半导体激光器的稳频稳相以及在原子光学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体激光器以其体积小、寿命长、输出波长可调、价格相对较低,并可采用简单的注入电流的方式来泵浦等特点,在科学研究和工业领域均获得了广泛的应用。在量子光学领域中,激光与原子相互作用的研究越来越受到重视,其中用的最多的激光就是半导体激光器。例如,近年来得到迅速发展的激光冷却和俘获原子技术,其中的激光大部分都是半导体激光器。为了满足这些应用的要求,人们提出了很多稳定和改进半导体激光器的新方法和新技术,如:外腔式半导体激光器、锥形放大器等。随着冷原子物理的发展,出现了冷原子钟、冷原子干涉仪等一些高精尖的应用。这些应用对于激光器的频率稳定性,线宽,位相稳定性等性能提出了更高的要求。本文正是在这样的背景下,选择了半导体激光的稳频和稳相技术及其在原子光学中的应用作为研究课题。以下是各章的主要内容:
     第一章简要介绍了半导体激光器的结构、原理和工作特性;介绍了原子光学的发展以及近况;描述了目前原子光学领域十分热门的冷原子干涉仪的发展历程、现状以及应用前景。分析了半导体激光器在原子光学中的应用,阐述了在半导体激光器中实现稳频、稳相的重要意义。
     第二章详细地介绍了冷原子干涉仪的理论基础、工作原理和实验装置结构。详细地描述了我们目前正在研究的冷原子干涉仪的实验方案和进展情况,包括真空系统的设计与加工、二维与三维磁光阱构建以及电子控制系统的研制。
     第三章对冷原子干涉仪所需的激光系统进行了详细的研究,提出了相应的激光器的具体的技术指标的要求。根据这些技术指标,分析了现有的一些激光稳频、稳相的方法和技术的优缺点,在此基础上提出了一些改进的方法和途径。提出相应的半导体激光器的稳频、稳相以及移频的方案。详细介绍了相关设备的工作原理和构造,尤其是我们自行改进和创新的部分。
     第四章对相应的半导体激光器的稳频、稳相以及频率调谐的方案进行了实验研究,自行制作了有关的实验装置,并对其进行了详细的实验测试与数据处理。具体分析了实验装置是否能够满足冷原子干涉仪的技术指标的要求,并且对不能完全满足的技术指标提出了改进的的方案和措施。
     第五章是对全文的总结和对未来研究的展望。
The diode laser is compact, durable, economical, and it can be easily pumped by the inject current and so on. As a result, the diode laser has a wide range of applications in the scientific research and industry. The research of the interaction between atoms and lasers received more and more attentions in the field of quantum optics, where the generally used laser are the diode lasers. For example, most of scientists use the diode laser for laser cooling and trapping which has been developed rapidly in recent years. To fulfill the requirements of the applications, many new methods and techniques have been proposed concerning the stabilization and amelioration of the diode laser, such as the external cavity diode laser (ECDL) and the tapered amplifier. With the development of cold atom physics, high-accuracy applications such as the cold atom clock and the cold atom interferometer arised. These applications call for higher requirements of the laser frequency stabilization, narrow linewidth, phase stabilization and other properties. We are engaged in the work of the frequency and phase stabilization of the diode laser and its application in atomic optics on this background.
     In chapter 1, a brief description on the configuration, principle and operational features of the diode laser is given. Then we introduce the development and recent situation of atomic optics, and describe the development, present situation and application prospects of the cold atom interferometer, which is very popular in atomic optics.The diode laser is widely used in the field of atomic optics. As a result, we discuss the necessity of frequency and phase stabilization of the diode laser in atomic optics and other fields at last.
     In chapter 2, the theoretical basis, working principle, and configuration of the cold atom interferometer is introduced in detail. Subsequently a thorough description is given about the cold atom interferometer we constructing at present, including its experimental schemes, design and progress situation. The vacuum system, the two dimensional and three dimensional Magneto-Optical-Trap (MOT) for the laser cooling and trapping, and the electronics are given special emphasis.
     In chapter 3, aiming at the cold atom interferometer, some importent technical requirements are proposed for the laser system. Based on these requirements, we designe the laser system for the the cold atom interferometer. Some existing methods and techniques are analysed. In order to overcome the shortcomings of the existing methods and techniques, some improvements and innovations are made. The laser system including the frequency stabilization, the phase stabilization, the frequency shift, the frequency tuning of the laser and the related equipments is described, especially our improvements and innovations.
     In chapter 4, we set up the experiment, and test the experimental configuration. The first results are obtained and the data are analysed. We evaluate concretely whether the experimental configuration fulfill the requirements of the cold atom interferometer and propose improvement corresponding the part that can not fulfil the requirements completely.
     In chapter 5, a summary of the work achieved in this thesis and a outlook is given.
引文
[1]D. J. Wineland and H. Dehmelt, "Proposed 1014 △ v/v laser fluorescence spectroscopy on T1+ mono-ion oscillator III" Bull. Am. Phys. Soc.20,637 (1975)
    [2]T.W. Hansch and A.L. Schawlow, "Cooling of Gases by Laser Radiation," Opt. Comm.13,68 (1975)
    [3]V. Andreev, V. I. Balykin, V. S. Letokhov et al., "Radiative slowing and reduction of the energy spread of a beam of sodium atoms to 1.5 K in an oppositely directed laser beam," JETP Lett.34,442(1981)
    [4]W.Phillips and H.Metcalf, "Laser Deceleration of an Atomic Beam," Phys. Rev. Lett.48,596-599(1982)
    [5]W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu,"Laser Manipulation of Atomic Beam Velocities: Demonstration of Stopped Atoms and Velocity Reversal," Phys. Rev. Lett.54,996 (1985)
    [6]S. Chu, L. Hollberg, J. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett.55,48 (1985)
    [7]E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard,'Trapping of Neutral Sodium Atoms with Radiation Pressure," Phys. Rev. Lett.59,2631 (1987)
    [8]P. Lett, R. N. Watts, C. Westbrook, W. Phillips, et al., "Observation of Atoms Laser Cooled below the Doppler Limit," Phys. Rev. Lett.61,169 (1988)
    [9]J. Dalibard, C, Salomon, A. Aspect, et al., in Preceedings of the 11th conference on Atomic Physics(World Scientific, Singapore,1989)
    [10]M. Anderson, J. Ensher, M. Matthews, C. Wieman, and E. Cornell, "Observation of. Bose-Einstein condensation in a dilute atomic vapor," Science 269,198 (1995)
    [11]M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Chu, "Atomic velocity selection using stimulated Raman transitions," Phys. Rev. Lett.66,2297 (1991)
    [12]M. Kasevich and S.Chu. "Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer," Appl. Phys. B 54,321 (1992)
    [13]G. Lamporesi, A. Bertoldi, L. Cacciapuoti, et al."Determination of the Newtonian Gravitational Constant Using Atom Inter ferometry," Phys. Rev. Lett.100,050801 (2008)
    [14]Muller H, Chiow S, Herrmann S et al. "Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity," Phys. Rev. Lett.100,031101 (2008)
    [15]D. S.Weiss, B. C. Young, and S. Chu, "A Precision Measurement of h/MCs Based of Photon Recoil Using Laser Cooled Atoms and Atom Interferometry," Appl. Phys. B 59,217 (1994)
    [16]Fray S, Diez C A, Hansch T W et al., "Atomic Interferometer with Amplitude Gratings of Light and Its Applications to Atom Based Tests of the Equivalence Principle," Phys. Rev. Lett. 93,240404 (2004)
    [17]Dimopoulos S, Graham P W, Hogan J M et al.,'Testing General Relativity with Atom Inter ferometry," Phys. Rev. Lett.98,111102 (2007)
    [18]O. Carnal and J. Mlynek, "Young's double-slit experiment with atoms:A simple atom interferometer," Phys. Rev. Lett.66,2689 (1991)
    [19]C. J. Borde, "Atomic interferometry with internal state labelling," Phys. Lett. A 140,10 (1989)
    [20]P. Chebotayev, B. Y. Dubetsky, A. P. Kazantsev, and V. P. Yakovlev,"Interference of atoms in separated optical fields," J. Opt. Soc.Am. B 2,1791 (1985).
    [21]P. L. Martin, et al.,'Bragg scattering of atoms from a standing light wave," Phy. Rev. Lett. 60,515(1988)
    [22]D. W. Keith, et al., "Quantum reflection:Focusing of hydrogen atoms with a concave mirror," Phy. Rev. Lett.61,1580 (1989)
    [23]F. Shimizu, K. Shimizu and H. Takuma,'Laser cooling and trapping of Ne metastable atoms," Phys. Rev. A 39,2758 (1989)
    [24]F. Shimizu, K. Shimizu and H. Takuma, "Double-slit interference with ultracold metastable neon atoms," Phys. Rev. A 46,R17 (1992)
    [25]D. W. Keith, C.R. Ekstrom, Q.A. Turchette, et al., "An interferometer for atoms," Phys Rev Lett.66,2693(1991)
    [26]F. Riehle, T. Kigers, A. Witte et al., "Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer," Phys Rev Lett.67,177 (1991)
    [27]M. Kasevich and S. Chu, "Atomic interferometry using stimulated Raman transitions," Phys Rev. Lett.67,181 (1991)
    [28]J. Robert, C. Miniatura, S. Le Boiteux, et al., "Atomic interferometry with metastable hydrogen atoms," Europhys. Lett.16,29 (1991)
    [29]S. Chu,'The manipulation of neutral particles," Reviews of Modern Physics 70,685 (1998).
    [30]A. Peters, K. Y. Chung, and S. Chu, "Measurement of gravitational acceleration by dropping
    atoms," Nature 400,849 (1999)
    [31]C. Salomon, J. Dalibard, W. D. Phillips, et al.,"Laser cooling of Cesium atoms below 3 μK," Europhys. Lett.12,683-688 (1990)
    [32]A. Goepfert, F. Lison, R. Schutze, et al., "Efficient magnetic guiding and deflection of atom beams with moderate velocities," Appl. Phy.B 69,217 (1999)
    [33]S. Marksteiner, C. M. Savage, P. Zoller, et al., "Coherent atomic waveguides from hollow optical fibers:Quantized atomic motion," Phys. Rev. A 50,2680 (1994)
    [34]J. Reichel, F. Bardou, M. Ben Dahan, et al., "Raman cooling of Cesium below 3 nK:new approach inspired by levy flight statistics," Phys. Rev. Lett.75,4575 (1995)
    [35]M. Kasevich, S. Chu,'Laser cooling below a photon recoil with three-level atoms," Phys. Rev. Lett.69,1741 (1992).
    [36]A. Aspect, E. Arimondo, R. Kaiser, et al.,'Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping:theoretical analysis," Phys. Rev. Lett.61, 826(1988)
    [37]P. R. Berman, Atom Interferometry. [M]. Chestnut Hill:Academic,407-468 (1997)
    [38]Andreas Wicht, Joel M. Hensley, Edina Sarajlic, et al., "A preliminary measurement of the fine structure constant based on atom interferometry," Physica Scripta. T,102,82-88 (2002)
    [39]J. F. Clauser, "Ultra-high sensitivity accelerometers and gyroscopes using lieutral atom matter-wave interferometers," Physica B 151,262 (1988)
    [40]A. Peters, Y. K. Chung and S. Chu, "High-precision gravity measurements using atom interferometry," Metrologia 38,25 (2001)
    [41]M. J. McGuirk, T. G. Foster, B. J. Fixler, et al., "Sensitive absolute-gravity gradiometry using atom interferometry," Phys. Rev. A 65,033608 (2002)
    [42]J. Schmiedmayer, M. S. Chapman, Ch. R. Ekstrom. Et al., "Atom interferometry"[M]. San Diego:Academic Press,1 (1997)
    [43]M. Kasevich, S. Chu, "Measurement of the gravitational acceleration of an atom with a light-pluse atom inferometer," Appl. Phys. B 54,321-332 (1992)
    [44]K. Moler, D. S. Weiss, M. Kasevich, S. Chu,'Theoretical analysis of velocity selective Raman transitions," Phys. Rev. A 45,342-348 (1992)
    [45]C.Cohen-Tanoudji, lecture, Interferometrie atomique,93,34-43 (1992)
    [46]K. A. Moler, D. S. Weiss, M. Kasevich, and S. Chu,'Theoretical analysis of velocity selective Raman transitions," Phys. Rev. A, Gen. Phys.45,342-348 (1992)
    [47]C. J. Borde, lecture,'Theoretical tools for atom optics and interferometry," University of Hannove (2001)
    [48]P. Wolf, Ph. Tourrenc, "Gravimetry using atom interferometers:some systematic effects," Phys. Lett. A 251,241-246 (1999)
    [49]E. M. Rasel, K. M. Oberthaler, H. Batelaan, et al., "Atom wave interferometry with diffraction gratings of light," Phys. Rev. Lett 75,2633-2637(1995)
    [50]http://steck.us/alkalidata,along with"Cesium D Line data"and "Sodium D Line Data.";
    [51]T. Bergaman, G. Erez, H. Metcalf, "Magnetostatic Trapping Fields for Neutral Atoms," Phys. Rev. A 35,1235(1987)
    [52]J. D. Miller, R. A. Cline, D. J. Heinzen, "Far Off Resonance Optical Trapping of Atoms," Phys. Rev. A 4567 (1993)
    [53]A. Ashkin,'Trapping of Atoms by Resonance Radiation Pressure," Phys. Rev. Lett.40 729 (1978)
    [54]E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard,'Trapping of Neutral Sodium Atoms with Radiation Pressure," Phys. Rev. Lett.59,2631 (1987)
    [55]Andreas Wicht,Joel M Hensley,Edina Sarajlic,et al."A preliminary measurement of the fine structure constant based on atom interferometry ", Physica Scripta. T 102,82-88 (2002)
    [56]http://www.sukhamburg.de/
    [57]N. Castagnaa, J. Guenab, M. D. Plimmer, and P. Thomann, "A novel simplified two-dimensional magneto-optical trap as an intense source of slow cesium atoms," Eur. Phys. J. Appl. Phys.34,21-30(2006)
    [58]http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/202597
    [59]C. E. Wieman, L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum.62, 1-20(1991)
    [60]http://micro.magnet.fsu.edu/primer/java/lasers/diodelasers
    [61]A. L. Schawlow, C. H. Tones, "Infrared and optical masers," Phys. Rev.1958,112 (1940)
    [62]T. Day, F. Luecke, and M. Brownell, "Continuously tunable diode lasers," Lasers and Optronics 6,15-17(1993)
    [63]A. S.Arnold, J. S. Wilson, and M. G. Boshier, "A simple extended-cavity diode laser"Rev Sci Instrum 69,1236-1239 (1998)
    [64]C. J. Hawthorn, K. P. Weber, and R. E. Scholtena, "Littrow configuration tunable external cavity diode laser with fixed direction output beam ", Rev Sci Instrum.72,4477-4479 (2001)
    [65]Christoph Affolderbacha and Gaetano Miletib, "A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation", Rev Sci Instrum.76,073108 (2005)
    [66]http://www.rp-photonics.com/external_cavity_diode_lasers.html
    [67]M. Fleming and A. Mooradian, "Spectral characteristics of external-cavity controlled semiconductor lasers," IEEE J. Quantum Electron.17 (1),44 (1981)
    [68]C. J. Hawthorn et al., "Littrow configuration tunable external cavity diode laser with fixed direction output beam," Rev. Sci. Instrum.72 (12),4477 (2001)
    [69]M. G. Littman and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt.17 (14),2224 (1978)
    [70]K. Liu and M. G. Littman, "Novel geometry for single-mode scanning of tunable lasers," Opt. Lett.6(3),117(1981)
    [71]C.Petridis, I. D. Lindsay, D. J. M. Stothard, et al. "Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating," Rev. Sci. Instrum.72,3811-3815 (2001)
    [72]Picture taken from homepage of Fraunhofer Institut fuer angewandte Festkoer-perphysik. http://www.iaf.fhg.de/ipdetetd/frames e.htm Page 81
    [73]Daryl W. Preston, "Doppler-free saturated absorption:Laser spectroscopy," Amer. J. of Phys. 64,1432-1436(1996).
    [74]K. B. MacAdam, A. Steinbach, and C. Wieman A narrow band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb, Amer. J. of Phys.60,1098-1111 (1992).
    [75]J. Ye, S. Swartz, P. Jungner, and J. L. Hall,"Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state," Opt. Lett.21,1280-1282 (1996).
    [76]M. S. Taubman and J. L. Hall, "Cancellation of laser dither modulation from optical frequency standards," Opt. Lett.25,311-313 (2000)
    [77]K.L. Corwin, Z.-T. Lu, C.F.Hand, R.J. Epstein, C.E. Wieman, "Frequency-stabilized diode
    laser with the Zeeman shift in an atomic vapor," Appl. Opt.37(15),3295 (1998)
    [78]T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler and G.M. Tino, "Doppler-free Spectroscopy Using Magnetically Induced Dichroism of Atomic Vapor:a New Scheme for Laser Frequency Locking," Eur. Phys. J. D 22,279 (2003).
    [79]G. Wasik, W. Gawlik, J. Zachorowski and W. Zawadzki."Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75,613 (2002)
    [80]G.C. Bjorklund, "Frequency-modulation spectroscopy:a new method for measuring weak absorptions and dispersions," Opt. Letters 5,15 (1980).
    [81]G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, "Frequency Modulation (FM) Spectroscopy," Appl. Phys. B 32,145 (1983).
    [82]Internal working note of the LIGO Project. Technical Note LIGO-T980045-00-D 4/16/98 http://www.ligo.caltech.edu/
    [83]J. H. Shirley, "Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt. Lett.7,537-539(1982).
    [84]Eble, J.F. Schmidt-Kaler, F."Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition," AppL Phys. B 88,563 (2007).
    [85]David J. Hopper and Esa Jaatinen, "Optimizing modulation transfer spectroscopy signals for frequency locking in the presence of depleted saturating fields," Appl. Opt 47,2574 (2008).
    [86]Jing Zhang, Dong Wei, Changde Xie, and Kunchi Peng, "Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum," Opt Express 11, 1338(2003).
    [87]Zhang Zhang, Lu Jinhong, Xu Yunfei, Wang Zhaoying, Lin Qiang, "Application of DDS in laser modulation," Proc. SPIE 6824,68241Q (2007)
    [88]http://wiki.ujelly.org/index.php?doc-view-6527
    [89]卫栋,“87Rb-40K玻色费米混和气体磁光阱的实验研究,”山西大学2007届博士学位论文(2007)
    [90]E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts,'Double-pass acousto-optic modulator system," Rev. Sci. Instrum.76 063112 (2005)
    [91]Eva Murphy and Colm Slattery, "Ask The Application Engineer-33 All About Direct Digital Synthesis," Analog Dialogue 38-08,August (2004).
    [92]M. B. Das, "Optoelectronic detectors and receivers:speed and sensitivity limits," Optoelectronic and Microelectronic Materials Devices, Proceedings 1998 Conference Page(s):15-22
    [93]S. Y. Cho, S. W. Seo, M. A. Brooke, et al, "Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits," IEEE Journal of Selected Topics in Quantum Electronic 8(6),1427 (2002)
    [94]于弋川,何建军,何赛灵,邹勇卓.“MSM光探测器直流特性的二维分析,”半导体学报26,4(2005)
    [95]庞建涛,陈福媛,"X频段取样锁相频率合成器-PDRO,"电讯技术47,2(2007)
    [96]http://www.toptica.com/prod ucts/itemlayer/171/BR-101-029-B-ProductCatalog-2008-04-SDL.pdf
    [97]http://www.toptica.com/index.php?categorie=1&itemid=171&linkitemid=1111