基于非隔离的高性能半导体照明驱动DC-DC设计与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体照明是指用全固态半导体发光器件(即LED)作为光源的照明。它是半导体发光材料技术高速发展和“绿色照明”深入人心的产物,具有高效、节能、寿命长、环保、易维护等系列优点,是近年全球最有发展前景的高新技术领域之一,是人类照明史上继白炽灯、荧光灯之后又一次照明光源的伟大革新。2003年6月我国开始大规模启动半导体照明工程,2008年我国半导体照明产业产值已达700亿元,预计到2015年产业规模将达1500亿元。目前半导体照明有着巨大的市场与技术创新空间,现正迎来蓬勃发展的春天,对提升传统照明工业、带动相关产业发展、促进社会经济等意义重大。
     本文首先对DC-DC几种非隔离型拓扑进行了分析,如各电路结构原理及不同阶段模态电压电流特性、影响功率因数及总谐波畸变THD(Total Harmonic Distortion)相关因素等,接着探讨了APFC(Active Power Factor Correction)常用几种控制技术,如峰值电流控制法、平均电流控制法等,研究了其电路结构原理、控制动态过程、各自特性及待改进的问题等。这些工作是半导体照明驱动控制系统将要改善及优化设计关键,为控制系统的改善提供了很好的理论构建。随后从简化结构降低成本、节能、高效、高响应及强稳定性等要求出发,提出了以下3种新型非隔离的高效大功率半导体照明驱动新系统:
     1.基于boost驱动器提出了一种利用平均电流双环控制新型驱动方法。在传统平均电流原理基础上采用辅助电感缓冲电路和函数发生器平均电流双环控制新方法,创建了基于函数发生器的电流控制boost型新系统。着重对辅助电感与函数发生器电流控制boost型驱动系统进行了研究(包括控制环设计及稳定性分析),并作了系统仿真论证。本控制系统消除乘法器、无需检测电感电流等传统方法,且具有结构简单可靠、功率因数高、抗干扰强及高稳定输出等优点。
     2.在buck-boost驱动器基础上提出了一种大功率高效系统的优化设计。基于其主电路结构原理及工作模式特性等方面作了探讨,结合状态空间平均法和电压控制系统模型方法,采用PID(Proportional Integral Derivative)控制技术,通过理论整定分析及Ziegler--Nichols工程整定设计,创建了PID校正网络的降压/升压电压模式控制新系统,随后利用SIMULINK及SIMPOWERSYSTEMS等高性能软件系统进行了仿真。被优化创新的控制系统采用PID网络补偿技术等措施,大大提高了系统响应速度、动态性能、鲁棒性,消除了稳态误差等,对外界环境的变化适应性强。
     3.基于CUK变换器主控制系统提出一种新型控制实现方法。探讨了主电路原理及相关特性,利用零电压转换改进策略来减少开关功耗,提出了一种大信号、非线性动态控制OCC(One Cycle Control)前馈控制技术并构建了一个新的驱动系统,通过SIMULINK及SIMPOWERSYSTEMS等软件进行了仿真分析,并对其系统工作动态相应关系式给予了推导,论证了系统的高效性,实现了高功率因数,提高了抗输入扰动与负载变化扰动能力等性能。
     最后对半导体照明控制关键器件作了一系列可靠性分析,包括LED、MOSFET、快恢复二极管等器件,如材料结构、工作动态性能等方面一一加以分析。这对提高系统的高效率、强稳定、低成本性等起着关键性作用。
     以上工作对今后半导体照明驱动系统进一步优化具有重要的理论意义与应用价值。
Semiconductor lighting refers to using all-solid-state light-emitting device as a light source lighting. It is a product of the high-speed development of the semiconductor light-emitting materials technology and "green lighting", with a series of advantages such as high efficiency, energy saving, long lifetime, environmental friendly, easy to maintain, etc., It is one of the world's most promising high-tech fields in recent years and a great light source innovations after incandescent, fluorescent in the human lighting history. In June2003, China began to launch a large-scale semiconductor lighting project. In2008, the China's semiconductor lighting industry output value reached70billion RMB, and the industry output value is expected to reach150billion RMB in2015. Semiconductor lighting has a huge market and technology innovation space in a booming spring now. And it has a great significance of many aspects such as upgrading traditional lighting industry, developing the related industries, promoting social economy.
     First, several non-isolated DC-DC topologies and APFC commonly used control technology are researched and analyzed, such as the circuit structure principles, the different stages modal voltage and current characteristics, the PFC and total harmonic distortion THD, then APFC commonly used control technology such as the peak current control method, the average current control method is analyzed and its circuit structure principle, the dynamic control process, the respective characteristics and the needed improvement issues are studied. These works are the key entry point of semiconductor lighting driving control system improvement and optimization design and provide a good theoretical construction for the control system innovation. Subsequently, three new high efficient non-isolated high-power semiconductor lighting driving systems are proposed with requirements such as simplified structure, low cost, energy-saving, high efficiency, fast response, strong stability.
     1, A new driving method of the average current double loop control is proposed based on boost converter. The auxiliary inductor buffer circuit and function generator novel average current double-loop control method are adopted to create a new boost driving system on the basis of the traditional average current control. The new driving system based on auxiliary inductor and function generator novel current control is studied and designed including the control loop design and stability analysis. The system simulation demonstration is followed. The new control system eliminates the multiplier, without input voltage detection appeared in the traditional methods, the structure is simple, reliable, having a high power factor, a strong anti-interference and high output stability.
     2, A high-power-efficient optimization system is proposed on the basis of the buck-boost converter. Firstly, the main circuit structure principles and mode characteristics are researched and analyzed. Combined with the state space averaging method and voltage control system model method, a new buck-boost voltage mode control system with PID correction network is created by using theoretical and Ziegler-Nichols engineering setting methods of PID control technology. System simulation analysis is followed by the use of high performance software SIMULINK and SIMPOWERSYSTEMS. The results show that the optimized control system with PID network compensation technology improves the response speed, the system dynamic performance, the robustness greatly, and eliminates the steady state error, enhances the adaptability to the external environment changes.
     3, Based on the master control system in the CUK converter, a novel controlled realization method is presented. Its main circuit structure principles and operating characteristics are researched and analyzed firstly. Using a zero voltage conversion improvement strategies to reduce the switching power consumption, a new feed forward control driving system is built with a large signal, nonlinear dynamic control OCC technology. System simulation analysis is followed by the use of high performance software SIMULINK and SIMPOWERSYSTEMS, and its system dynamic working corresponding relationships are given. It has been verified that the new driving system has high system efficiency, high power factor, large improvement of anti-input disturbance and anti-load disturbance.
     Finally, a series of important reliability analysis of the semiconductor lighting control key devices including LED, MOSFET, fast recovery diode devices is made from the material structure, working dynamic performance. This plays a key role in control systems to reduce cost, improve system efficiency, enhance stability.
     The working results above have a great value and significance to further optimization and improvement of the semiconductor lighting driving system in the future.
引文
[1]平立.白光LED驱动综述.现代显示,2006,17(8):44-48
    [2]Peter Baureis. Compact Modeling of Electrical Thermal and Optical LED Behavior. IEEE,2005,12(16):145-148
    [3]M.Srinivasa Baddela. Parallel Connected LEDs Operated at High Frequency to Improve Current Sharing, IEEE,2004,23(3):1677-1681
    [4]S. Y. R. Hui, Y. X. Qin. A general photo-electro-thermal theory for light emitting diode (LED) systems, in Proc.24th Annu. IEEE Appl. Power Electron. Conf. Expo., 2009,21(11):554-562
    [5]Y. X. Qin, D. Y. Lin, S. Y. R. Hui. A simple method for comparative study on the thermal performance of light emitting diodes (LED) and fluorescent lamps, in Proc. 24th Annu. IEEE Appl. Power Electron. Conf.,2009,18(7):152-158
    [6]S. Buso, G. Spiazzi, M. Meneghini. Performance degradation of high-brightness light emitting diodes under dc and pulsed bias. IEEE Trans. Device Mater. Rel.,2008, 8(2):312-322
    [7]王凤岩,许建平,贺明智.超高亮LED的驱动.电源技术应用,2005,8(9):43-48
    [8]陈鸣,蔡庆玲,史斌宁.绿色照明光源LED的控制策略.照明工程学报,2004,15(4):145-149
    [9]S. W. Ricky LEE, C.H.LAU, S.P.CHAN. Development and Prototyping of a HB-LED Array Module for Indoor Solid State Lighting. High Density Microsystem Design and Package and Component Failure Analysis, Proceeding of HDP'06, IEEE. 2006,25(11):141-145
    [10]Steigerwald, D. A. Bhat, J. C. Collins. Illumination with solid state lighting technology. IEEE Journal of Selected Topics in Quantum Electronics,2007,8(2): 310-320
    [11]Y.Wang On the present status, developing opportunities and suggestions about China's semiconductor lightings industry. International Forum on LED & Semiconductor Lighting,2004,14(4):130-136
    [12]K. Saucke, G Pausch, J. Stein. Stabilizing scintillation detector systems with pulsed LEDs:a method to derive the LED temperature from pulse height spectra. IEEE Trans. Nuclear Science,2005,52(6):3160-3165
    [13]A Bhattacharya., Lehman. B, Shteynberg. A. A Probabilistic Approach of Designing Driving Circuits for Strings of High-Brightness Light Emitting Diodes. Power Electronics Specialists conference,2007,15(7):1429-1435。
    [14]Jen-Hau Cheng, Chun-Kai Liu. Cooling Performance of Silicon-Based Thermoelectric Device on High Power LED. IEEE,2005,19(23):53-55
    [15]H Broeck, Sauerlander G, Wendt M. Power driver topologies and control schemes for LEDs. Proc. IEEE APEC,2007,19(3):1319-1325
    [16]M. Rico-Secades, A. J. Calleja, J. Cardesin. Driver for High Efficiency LED Based on Flyback Stage With Current Mode Control for Emergency Lighting System. Industry Applications Conference,2004,32(3):1655-1659
    [17]D. Rand, B. Lehman, A. Shteynberg. Issues, models and solutions for triac modulated phase dimming of LED lamps. IEEE Power Electronics Specialists Conference,2007,27(5):1398-1404
    [18]周志敏,周纪海,纪爱华.LED驱动电路设计与应用(第一版)[M].北京:人民邮电出版社,2006
    [19]J. Y. Tsao. Solid-State Lighting:Lamps, Chips and Material for Tomorrow. IEEE Circuits Devices Magazine,2004,20(3):28-37
    [20]R. Mehta, D. Deshpande, K. Kulkarni. LEDs—A Competitive Solution for General Lighting Applications. IEEE Energy 2008, Atlanta,2008,46(9):1-5
    [21]Y. K. Cheng, K. W. E. Cheng. General Study for Using LED to replace Traditional Lighting Devices.2nd International Conference on Power Electronics Systems and Applications, Hong Kong,2006,25(9):173-177
    [22]H. van der Broeck, G Sauerlander, M. Wendt. Power Driver Topologies and Control Schemes for LEDs. IEEE Applied Power Electronics Conference, Anaheim, 2007,31(5):1319-1325
    [23]B. Wang, X. Ruan, K. Yao. A Method of Reducing the Peak-to-Average Ratio of LED Current for Electrolytic Capacitor-Less AC-DC Drivers. IEEE Transactions on Power Electronics,2010,25(3):592-601
    [24]M Dyble, Narendran N, Bierman A. Impact of dimming white LEDs: chromaticity shifes due to different dimming methods. Proc. SPIE,2005,35(4):1-9
    [25]K Hwu. and Chou S.. A simple current-balancing converter for LED lighting. IEEE Applied Power Electronics Conference, Washington DC, USA,2009, 35(9):16-19
    [26]M. Nishikawa, K. Morihori, Y. Ishizuka. Static characteristics of a drive circuit for LED with constant-current control. Annual Conference of IEI-J,2005, 32(7):251-253
    [27]L. Gu. X. Ruan, M. Xu. K. Yao. Means of Eliminating Electrolytic Capacitor in AC/DC Power Supplies for LED Lightings. IEEE Trans. Power Electronics,2009, 24(5):1399-1408
    [28]H.-J. Chiu, Y.-K. Lo, J.-T. Chen. A high-Efficiency Dimmable LED Driver for Low-Power Lighting Applications. IEEE Transactions on Industrial Electronics,2010, 57(2):735-743
    [29]Yuequan Hu, Jovanovic, Milan M. A Novel LED Driver with Adaptive Drive Voltage. Applied Power Electronics Conference and Exposition,2008,37(6):565-571
    [30]Y. Hu, M. M. Jovanovic. LED Driver with Self-Adaptive Drive Voltage. IEEE Transactions on Power Electronics,2008,23(6):3116-3125
    [31]方佩敏.白色LED驱动器的发展概况.今日电子,2005,24(9):54-59
    [32]Xiaohui Qu, Wong S. C., Tse, C. K. Isolated PFC Pre-Regulator for LED Lamps. 34th Annual Conference of IEEE Industrial Electronics,2008,35(8):1980-1987
    [33]S. Muthu., Gaines. J.. Red Green and Blue LED-based white light source: implementation challenges and control design. Industry Application Conference,200, 19(6):3515-522
    [34]Yung S. Liu. Advances of Lighting Technologies-From light bulbs to solid state light sources. Optical Fiber Communication and Optoelectronics Conference,2007, 31(9):302-304
    [35]刘木清,周德成,梅毅.LED与传统光源光效比较分析.照明工程学报,2006,17(4):24-27
    [36]L. Svilainis. Considerations of the driving electronics of LED video display, in Proc. Inf. Technol. Interface Conf.,2007,27(6):431-436
    [37]Jiaying Lu, Xiaobo Wu. A novel multiple modes PWM controller for LEDs. IEEE Proceedings, Circuits, Devices and Systems,2006,33(7):1767-1770.
    [38]In-Hwan. An Analysis of Current Accuracies in Peak and hysteretic Current Controlled Power LED Drivers. APEC,2008,42(7):572-577
    [39]李茂华,许建平,刘日科.大功率LED控制方法研究.自动化信息,2005,35(11):39-42
    [40]T. Komine, M. Nakagawa. Fundamental Analysis for Visible-Light Communication System Using LED Lights. IEEE Transactions on Consumer Electronics,2004,50(1):100-107
    [41]K. H. Loo, W. K. Lun, S. C. Tan. On Driving Techniques for LEDs:Toward a Generalized Methodology. IEEE Transactions on Power Electronics,2009,24(12): 2967-2976
    [42]Wendt M, Andriesse J W. LEDs in real lighting applications:from niche markets to general lighting. Proc. IEEE IAS,2006,31(6):2601-2603
    [43]B. Ackermann, V. Schulz, C. Martiny. Control of LEDs. Proc. Industry Applications Conf.,2006,35(4):2608-2615
    [44]C. C. Chen, C-Y. Wu, T-F. Wu. LED back-light driving system for LCD panels. IEEE Applied Power Electronics Conf. Exposition,2006,37(8):381-385
    [45]F. Richard. Light-emitting diodes:a guide to the technology and its implications. Bracknell:BSRIA,2005,35(6):121-125
    [46]C. Y. Wu, T. F. Wu, J. R. Tsai. Multistring LED backlight driving system for LCD panels with color sequential display and area control. IEEE Trans. Ind. Electron.,2008, 55(10):3791-3800
    [47]H. J. Chiu, S. J. Cheng. LED backlight driving system for large-scale of LCD panels. IEEE Trans. Ind. Electron.,2007,54(5):2751-2760
    [48]M. Dyble, N. Narendran, A. Bierman. Impact of dimming white LEDs: Chromaticity shifts due to different dimming methods. In Proc.5th Int. Conf. Solid State Lighting,2005,67(9):291-299
    [49]Yin Zhongdong, Li Qirui, Han Minxiao. Line side filter design for dynamic voltage restorer considering effect of damp resistance. Power System Technology, 2004,52(7):64-67
    [50]S. Y. Tseng, S. C. Lin, H. C. Lin. LED backlight power system with auto-tuning regulation voltage for LCD panels, in Proc. IEEE Appl. Power Electron. Conf. (APEC),2008,35(1):551-557
    [51]Huang-Jen Chiu, Shih-Jen Cheng. LED backlight driving system for large-scale LCD panel. IEEE transactions on industrial electronics,2007,54(5):2751-2760
    [52]Manuel Rico-Secades. Evaluation of a Low-Cost Permanent Emergency Lighting System Based on High-Efficiency LEDs. IEEE,2005,41(5):1386-1390
    [53]L. Zhao, A. Q. Zhu. Design of Energy-Saving Intel-ligent LED Illumination System. Semiconductor Technology,2008,33(2):137-140
    [54]M. Schmid, M. Kuebrich, M. Weiland. Evaluation on the Efficiency of Power LEDs Driven with Currents Typical to Swith Mode Power Supplies. Conference Record of the 2007 IEEE Industry Applications Conference, New Orleans,2007, 45(6):1135-114
    [55]Chi-Hao Wu, Chen-Lin Chen. High-Efficiency Current-Regulated Charge Pump for a White LED Driver. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II:EXPRESS BRIEFS,2009,56(10):763-767
    [56]Nadarajah Narendran. Life of LED-Based White Light Sources, IEEE,2005,1(1): 167-171
    [57]P. T. Krein, R. S. Balog. Cost-Effective Hundred-Year Life for Single-Phase Inverters and Rectifiers in Solar and LED Lighting Applications Based on Minimum Capacitance Requirements and a Ripple Power Port, in Applied Power Electronics Conference and Exposition,2009,47(8):620-625
    [58]B. Cook. New developments and future trends in high-efficiency lighting. Engineering Science and Education Journal,2008,37(9):207-217
    [59]廖志凌,阮新波.半导体照明工程的现状与发展趋势.电工技术学报,2006,21(9):106-111
    [60]A. E. Moe, L. A. Lee, B. Marquardt. Enhanced fluorescence emission using a programmable, reconfigurable LED-array based light source. Proc. Int. Conf. Engineering in Medicine and Biology Society,2004,25(3):2090-2093
    [61]S. Muthu, J. Gaines. Red, green, and blue LED-based white light source: implementation challenges and control design. Proc. Industry Applications Conf., 2003,38(9):515-522
    [62]T. Komine, M. Nakagawa. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron.,2004,50(1):100-107
    [63]Y. Hu, M. M. Jovanovic. LED driver with self-adaptive drive voltage. IEEE Trans. Power Electron.,2008,23(6):3116-3125
    [64]王大鹏,陈昌龙.新型白光LED驱动电路.现代显示,2006,31(64):98-101
    [65]X. Qu, S. C. Wong, C. K. Tse. Isolated PFC pre-regulator for LED lamps. Annual Conference of the IEEE Industrial Electronics Society, Orlando,2008, 27(10):1980-1987
    [66]王光峰.白光LED驱动电路的研究及其电路设计:[硕士学位论文].浙江大学,2006
    [67]G. Sauerlander. Solving high-voltage off-line HB-LED constant-current control-circuit issues. Applied Power Electrons Conference,2007,27(11):1316-1318
    [68]T. F. Pan, H. J. Chiu, S. J. Cheng. An improved single-stage flyback PFC converter for high-luminance lighting LED lamps, in Proc.8th Int. Conf. Electron. Meas.,2007,32(4):212-215
    [69]F. Greenfeld. White LED driver circuits for off-line applications using standard PWM controllers. Intersil Corporation, Application Note,2008,41(7):12-17
    [70]Yinguo Huang, Yuchi Lin, Wei Wang. Design of High-stability Driver for White LED. Symposium on Photonics and Optoelectronics,2009,29(6):1-3
    [71]Kening Zhou, Jian Guo Zhang, Subbaraya Yuvarajan. Quasi-Active Power Factor Correction Circuit for HB LED Driver. IEEE Trans. On power electronics,2008, 23(3):35-39
    [72]J. Smith, J. Speakes, M. H. Rashid. An overview of the modem light dimmer: design, operation, and application. Proceedings of the 37th Annual North American Power Symposium,2005,27(5):299-303
    [73]G Spiazzi, S. Buso, GMeneghesso. Analysis of a high-power-factor electronic ballast for high brightness light emitting diodes, in Proc. IEEE Power Electron. Spec. Conf. (PESC),2005,23(7):1494-1499
    [74]A. E. Moe, N. Banani, L. A. Lee. Enhanced fluorescence emission using a programmable, reconfigurable LED-array based light source. Proc. Int. Conf. Engineering in Medicine and Biology Society,2004,41(3):2090-2093
    [75]Y. H. Fan, C. J. Wu, C. C. Fan. A simplified LED converter design and implement. the 9th Joint Conf. Inf. Sci. (JCIS), Taiwan,2006,31 (5):8-11
    [76]D. Gacio, J. M. Alonso, A. J. Calleja. A Universal-Input Single-Stage High-Power-Factor Power Supply for HB-LEDs Based on Integrated Buck-Flyback Converter. Twenty-Fourth Annual IEEE of Applied Power Electronics Conference and Exposition,2009,28(6):570-576
    [77]S. Cuk, R. D. Middlebrook. Advances in switched-mode power conversion. IEEE Transactions on Industrial Electronics IE-30,2004,28(5):10-19
    [78]Bengt Johansson. DC-DC Converters-Dynamic Model Design and Experimental Verification:[Doctoral Dissertation]. Lund University.2004,35(7):10-19
    [79]Ge Ding, Chen Zhiliang. On-Chip Boost DC-DC Converter in Color OLED Driver & Controller ICs for Mobile Application. The 6th International Conference on ASICON,2005,32(1):487-490
    [80]Chun-Yu Hsieh, Yung-Chun Chuang, Ke-Horng Chen. A Novel Precise Step-Shaped Soft-Start Technique for Integrated DC-DC Converter. The 14th IEEE International Conference on Electronics, Circuits and Systems,2007,38(6):771-774
    [81]N. Keskar, G A. Rincon-Mora. Self-stabilizing, integrated, hysteretic boost DC-DC converter. IEEE 30th Annual Conference on Industrial Electronics Society record,2004,27(1):586-591
    [82]M. Ogata, T. Nishi. Gragh-Theoretical Approach to 2-Switch DC-DC Converters. International Journal of Circuit Theory and Applications,2005,33(2):161-173
    [83]Hong-Wei Huang, Chun-Yu Hsieh, Ke-Horng Chen. Adaptive Frequency Control Technique for Enhancing Transient Performance of DC-DC Converters. IEEE European Solid-State Circuits Conference,2007,25(9):174-177
    [84]F.-F. Ma, W.-Z. Chen, J.-C. Wu. A Monolithic Cur-rent Mode Buck Converter with Advanced Control and Protection Circuits. IEEE Transactions on Power Electronics,2007,22(5):1836-1846
    [85]G. Moschopoulos, P. Jain. Single-phase single-stage power-factor-corrected converter topologies. IEEE Trans. Ind. Electron.,2005,52(1):23-35
    [86]J. A. Morales-Saldana, J. Leyva-Ramos, E. E. Carbajal-Gutierrez. Modeling of a Single-Switch Quadratic Buck Converter. IEEE Transaction on aerospace & Electronic Systems,2005,32(3):1450-1456
    [87]Jiann-Jong Chen, Yuh-Shyan Hwang, Juing-Huei Su. New current sensing circuit for hysteresis-surrent-controlled Buck converters. Power Electronics and Drivers System,2005,36(5)::452-455
    [88]Man Siu, Philip K.T. Mok, Ka Nang Leung. A voltage-mode PWM buck regulator with end-point prediction. IEEE TCAS Ⅱ,2006,53(4):294-298
    [89]Werner Hollinger, Manfred Punzenberger. An Asynchronous 1.8MHz DC/DC Boost Converter Implemented in the Current Domain for Cellular Phone Lighting Management. IEEE European Solid-Sate Circuits Conference,2005,26(7):28-531
    [90]Brad Bryant, Marian K, Kazimierczuk. Modeling the Closed Current Loop of PWM Boost DC-DC Converters Operating in CCM With Peak Current-Mode Control. IEEE Transactions on Circuits and Systems-Ⅰ:Regular Papers,2005,52(11): 2404-2412
    [91]B. Bryant, M. K Kazimierczuk. Modeling closed-current loop of PWM boost dc-dc converters operating in CCM with peak current-mode control. IEEE Trans. Circuits Syst.2009,31 (9):2404-2412
    [92]X. Wu, C. K. Tse, S. C. Wong. Fast-Scale Bifurcation in Single-Stage PFC Power Supplies Operating with DCM Boost Stage and CCM Forward Stage. International Journal of circuit Theory and Applications,2006,34(3):341-355
    [93]W. Aloisi, G Palumbo. Efficiency Model of Boost DC-DC PWM Converters. International Journal of Circuit Theory and Applications,2005,33(5):419-432
    [94]C. Qiao, K. M. Smedley. A topology survey of single-stage power factor corrector with a boost type input-current-shaper. IEEE Transactions on Power Electronics,2001,16(3):360-368
    [95]Li Dong, Ruan Xinbo. A high efficient boost converter with power factor correction. Proceedings of the CSEE,2004,37(24):153-156
    [96]D. Maksimovic, Y. Jang, R. Erickson. Nonlinera-Carrier Control for High-Power-Factor Boost Rectifiers. IEEE Trans. Power Electronics,1996,11(4): 578-584
    [97]W. Chang, D. Chen, H. Nien. A digital boost converter to drive white LEDs. in Proc. IEEE APEC,2008,39(7):558-564
    [98]M. Chen, J. Sun. Feedforward current control of boost single-phase PFC converters. in Proc. IEEE Appl. Power Electron. Conf.,2004,24(6):1187-1193
    [99]P. Prathapan, M. Chen, J. Sun. Feedforward current control of boost-derived single-phase PFC converters. in Proc. IEEE Appl. Power Electron. Conf.,2005, 41(5):1716-1722
    [100]P. C. Loh, P. C. Tan, F. Blaabjerg. Topological Development and operational Analysis of Buck-Boost Current Source Inverters for Energy Conversion Applications, in Proc. IEEE-PESC'06,2006,31(9):1033-1038
    [101]F. Liang, C. Loh, P. C. Blaabjerg. Diode-Assisted Buck-Boost Current Source Inverters. Power Electronics and Drive Systems,2007,41(5):1187-1193
    [102]T. Nabeshima, T. Sato, S. Yoshida. A novel control method of boost and buck-boost converters with a hysteretic PWM controller. European Conference on Power Electronics and Applications,2005,38(6):153-159
    [103]F. Gao, P. C. Loh, D. M. Vilathgamuwa. Topological and Modulation Design of a Buck-Boost Three-Level Dual Inverter. in Proc. IEEE-IECON'06,2006, 35(6):2408-2413
    [104]P. Sanchis, A Ursua, E. Gubia. Buck-Boost DC-AC inverter:Proposal for a New Control Strategy.35th Annual IEEE Power Electronics Specialists Conference,2004, 27(8):226-231
    [105]程红丽.开关电容boost-buck功率因数校正组合开关变换器.微电子学,2001,31(5):351-359
    [106]Regan Zane, Dragan Maksimovic. Nonlinear-carrier control for high-power-factor rectifier based on FLYBACK, CUK or SEPIC converter. Proc. IEEE APEC,1996,39(7):814-820
    [107]D. S. L. Simonetti, J. Sebatstian, F. S. dos Reis. J. Uceda. Design Criteria for SEPIC and Cuk Converters as Power Factor Preregulators in Discontinuous Conduction Mode. Proc. IEEE IECON,1992,41(5):283-288
    [108]J. R. de Britto, A. E. Demian, L. C. de Freitas. A proposal of LED lamp driver for universal input using Cuk converter. IEEE Publication,2005,27(6):2640-2644
    [109]Regan Zane, Dragan Maksimovic. Nonlinear-Carrier Control for High-Power-Factor Rectifiers Based on Flyback, Cuk or SEPIC Converter. Proc. IEEE APEC,1996,42(7):814-820
    [110]Jinbang Xu, Jin Zhao, Ling Luo. A new control strategy of unity power factor for three-phase PWM rectifier system. Industrial Electronics Society,30th Annual Conference of IEEE,2004,25(7):709-714
    [111]Wenkai Wu, Weihong Qiu. Efficient high power factor single-stage AC/DC converter. IEEE,2002,28(4):1143-1148
    [112]Xiaoqun Wu, Chi K.Tse. Fast-Scale Instability of Single-Stage Power-Factor-Correction Power Supplies. IEEE,2005,37(5):2477-2480
    [113]J. P. Noon. Designing High-Power Factor Off-Line Power Supplies. Proceedings of Unitrode power Supply Design Seminar Manual SEMI500, Texas Instruments,2003,43(2):2-6
    [114]E. Najafi, A. Vahedi, A. Mahanfar etal. A new controlling method based on peak current mode(PCM)for PFC. IEEE 2nd International Power and Energy Conference, 2008,51(3):1103-1107
    [115]C. K. Tse. Circuit theory of power factor correction in switching converters. Int. j. of Circuit Theory and Applications,2003,31(2):157-198
    [116]S. Luo, W. Qiu, W. Wu. Flyboost power factor correction cell and a new family of single-stage AC/DC converters. IEEE Trans, on Power Electronics,2005,20(1): 25-34
    [117]Li Peng, Yang Yihan, Li Heming. APFC control technology for DC energy storage unit of UPQC. Automation of Electric Power Systems,2005,45(29):45-48
    [118]S.V. Mollov, A.J. Forsyth, D. R. Nuttall. Perfonnance/Cost Comparison between Single-Stage and Conventional High Power Factor Correction Rectifiers, IEEE,2005, 37(9):876-881
    [119]B. Sharifipour, J. S. Hung, P. Liao. Manufacturing and Cost Analysis of Power-Factor-Correction Circuits. IEEE Applied Power Electronics Conference and Exposition, Anaheim,1998,32(9):490-494
    [120]C. K. Tse. Circuit Theory of Power Factor Correction in Switching Converters. International Journal of Circuit Theory and Applications,2003,31(2):157-198
    [121]M. K, H. Cheung, M. H. L. Chow, C. K. Tse. Practical design and evaluation of a 1 kW PFC power supply based on reduced redundant power processing principle. IEEE Trans. On Industrial Electronics,2008,55(2):665-673
    [122]Pan T F, Chiu H J, Cheng S Y. An improved single-stage Flyback PFC converter for high-luminance lighting LED lamps. The 8th International Conference on Electronic Measurement ans Instruments (ICEMI),2007,29(5):212-215
    [123]T. F. Wu, J. C. Hung, S. Y. Tseng. A single-stage fast regulator with PFC based on an asymmetrical half-bridge topology. IEEE Trans, on Industrial Electronics,2005, 52(1):139-150
    [124]Shiguo Luo, Weihong Qiu. Flyboost Power Factor Correction Cell and a New Family of Single-Stage AC/DC Converters, IEEE,2005,20(1):25-34
    [125]Spiazzi G, Buso S, Meneghesso G. Analysis of a high-power-factor electronics ballast for high brightness lighting emitting diodes. Proc. IEEE PESC,2005, 45(7):1494-1499
    [126]S. Wall, R. Jackson. Fast controller design for single-phase power-factor correction systems. IEEE Trans. Ind Electron.,2005,52(1):108-115
    [127]J. Sun. Analysis and design of single-phase PFC converters for airborne systems. in Proc. IEEE Ind. Electron. Conf.,2003,26(9):1101-1109
    [128]G Spiazzi, S. Buso, G Meneghesso. Analysis of a high-power-factor electronics ballast for high brightness lighting emitting diodes. In Proc. IEEE PESC,2005, 26(8):1494-1499
    [129]S. Shin. A high current driving charge pump with current regulation method, in Proc. IEEE Custom Integr. Circuits Conf,2005,43(6):207-210
    [130]G Spiazzi, J. P. Pomilio. Interaction between EMI Filter and Power Factor Pre-regulators with Average Current Control:Analysis and Design Considerations. IEEE Transactions on Industrial Electronics,1999,46(3):577-584
    [131]C. Song, J. L. Nilles. High-accuracy hysteretic current-mode regulator for powering microprocessors. Applied Power Electronics Conference and Exposition, 2006,46(5):506-509
    [132]Ma Xikui, Liu Weizeng, Zhang Hao. Analysis of fast-scale bifurcations and chaos phenomena in Boost-PFC converter. Proceedings of the CSEE,2005,39(25): 61-67
    [133]M. Nishika, Y. Ishizuka, H. Matsu. An LED Drive Circuit with Constant Output Current Control and Constant Luminance Control.28th Telecommunications Energy Conference,2006,21(8):1-6
    [134]M. Nishikawa, Y. Ishizuka, H. Matsuo. Static characteristics of a drive circuit for LED with constant-current control and constant-luminance control. IEICE Technical Report EE2005-72,2005,47(9):67-72
    [135]David J. Perreault, George C. Varghese. Time-Varying Effects and Averaging Issues in Models for Current-Mode Control. IEEE Trans. Power Electronics,1997, 12(3):453-461
    [136]林辉,王辉.电子电力技术[M].武汉理工大学出版社,2002
    [137]Zhongming Ye, Greenfeld F., Zhixiang Liang. A topology study of single-phase offline AC/DC converters for high brightness White LED lighting with power factor pre-regulation and brightness dimmable feature.34th Annual Conference of IEEE Industrial Electronics,2008,42(3):1961-1967
    [138]J. A. Villarejo, J. Sebastian, F. Soto. Optimizing the de sign of single-stage power-factor correctors. IEEE Trans. Ind. Electron,2007,54(3):1472-1482
    [139]J. M. Kwon, W. Y. Choi, J. J. Lee. Continuous-conduction-mode SEPIC converter with low reverse-recovery loss for power factor correction. Proc. Inst. Elect. Eng.—Elect Power Appl.,2006,153(5):673-681
    [140]C. K. Tse. Circuit theory of power factor correction in switching converters. Int. J. of Circuit Theory and Applications,2003,31 (2):157-198
    [141]J. Sun. Input impedance analysis of single-phase PFC converters. IEEE Trans. Power Electron.,2005,20(2):308-314
    [142]J. Sebastian, D. G. Lamar, M. Arias. A very simple control strategy for power factor correctors driving high-brightness light-emitting diodes, in Proc. IEEE APEC, 2008,47(3):537-543
    [143]J. A. Villarejo, J. Sebastian, F. Soto. Optimizing the Design of Single-Stage Power-Factor Correctors. IEEE Transactions on Industrial Electronics,2007,54(3): 1472-1482
    [144]J. Sebastian, D. G Lamar, M. Arias. A very simple control strategy for power factor correctors driving high-brightness lighting-emitting diodes, in Proc. IEEE Appl. Power Electron. Conf. (APEC),2008,23(1):537-543
    [145]S. Wall, R. Jackson. Fast Controller Design for Single-Phase Power-Factor Correction Systems. IEEE Transactions on Industrial Electronics,1997,,44(5): 654-660.
    [146]Sangsun Kim, Prasad N. Enjeti. A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency. IEEE,2004,19(1):87-93
    [147]J. Sun. On the zero-crossing distortion in single-phase PFC converters. IEEE Trans. Power Electron.,2004,19(3):685-692
    [148]J. P. Noon. Designing high-power factor off-line power supplies, in Proc. Unitrode Design Sem,2003,35(6):2-16
    [149]M. X. Han, Y. You, H. Liu. Principle and Realization of Dynamic Voltage Regulator Based on Line Voltage Compensating. Proceedings of the CSEE, 2003,37(23):49-53
    [150]Chi K. Tse, Martin H. L. Chow, Martin K. H. Cheung. A Family of PFC Voltage Regulator Configurations with Reduced Redundant Power Processing. IEEE Trans. On Power Electronics,2001,15(6):47-53
    [151]Xie Xu, Hu Mingliang, Liang Xu. Compensation range and control object of dynamic voltage restorer. Automation of Electric Power Systems,2002,38(2):41-44
    [152]C. K. Tse, Y. M. Lai, R. J. Xie. Application of Duality Principle to Synthesis of Single-Stage Power-Factor-Correction Voltage Regulators. International Journal of Circuit Theory and Applications,2003,45(7):555-570
    [153]Y. Yueh-Ru, C. Chern-Lin. Steady-State Analysis and Simulation of a BJT Self-Oscillating ZVS-CV Ballast Driven by a Saturable Transformer. IEEE Transactions on Industrial Electronics,1999,46(2):249-260
    [154]X. Wu, X. Xie, Z. Chen. Low voltage and current stress ZVZCS full bridge DC-DC converter using center tapped rectifier reset. IEEE Trans. Ind. Electron.,2008, 55(3):1470-1477
    [155]Y. Q. Zhang, P. C. Sen. A new soft-switching technique for buck, boost, and buck/boost converters. IEEE Trans. Ind. Appl.,2003,39(6):1775-1782
    [156]方志烈.半导体发光材料和器件[M].上海:复旦大学出版社,1992
    [157]J. N. Honlonyak, S. F. Bevacqua. Coherent(visible) light emission from Ga(As1-x Px) junctions. Applied Physics Letters,1962,1(4):82-83
    [158]M. G Craford, R. W. Shaw, A. H. Herzog. Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping. Journal of Applied Physics,1972, 43(10):4075-4083
    [159]J. M. Woodall, R. M. Potemski, S. E. Blum, et al. AIGaAs LED structures grown on GaP substrates. Applied Physics Letters,1972,20:375
    [160]C. T. Sah, R. N. Noyce, W. Shockley. Carrier Generation and Recombination in p-n Junction and p-n Junction Characteristics. Proceedings of the IRE,1957, 45(9):1228-1243
    [161]刘恩科,朱秉升.半导体物理学[M].北京:国防工业出版社,1994
    [162]P. Lall, M. Pecht, E. B. Hakim. Characterization of functional relationship between temperature and microelectronic reliability. Microelectronics Reliability, 1995,35(3):377-402
    [163]E.F.Schubert. Light-Emitting Diodes. Cambridge:Cambridge U.Press,2003, 27(4):186-191
    [164]E.Rosencher, B.Winter. Optoelectronique. Paris:Thomson-CSF/Masson,1998, 41(8):135-141
    [165]沈学础.半导体光谱和光学性质[M].北京:科学出版社,2002
    [166]沈海平,潘建根.LED光谱数学模型及其应用.中国照明学会(2005)学术年会,2005,36(4):83-85
    [167]沈海平,潘建根,冯华君.色温可调多芯片白光LED光源的设计.半导体光子学与技术(英文版),2008,48(1):46-52