不同磷效率水稻响应低磷胁迫的差异蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长必需的大量元素之一,几乎参与植物所有的生命活动。有效磷利用效率低是影响作物产量和地理分布的非生物胁迫之一。水稻作为世界上主要的粮食作物和单子叶植物的模式种,采用蛋白质组学方法研究水稻对低磷胁迫的应答机制,进而研究其耐性机理,对全面揭示水稻磷营养利用的遗传基础,发掘低磷应答相关基因、蛋白质和代谢物意义重大。
     本研究在课题组以往研究基础上,选取磷效率差异的2个水稻品种IR74和IR64,在全磷和低磷条件下取1h、3h、6h、1d、3d、6d的根系和叶片进行蛋白质组学比较研究,旨在揭示水稻蛋白质响应低磷胁迫的应答及动态调控过程,主要研究结果如下:
     1、不同磷效率水稻根系蛋白对低磷胁迫的差异表达
     本研究利用双向电泳技术构建了磷高效水稻IR74和磷低效水稻IR64根系低磷胁迫六个时间点的差异表达蛋白谱。全磷培养各时期无显著变化,低磷培养与全磷培养间存在显著变化的两种磷效率水稻根系蛋白,磷高效水稻IR74共检测到26个,磷低效水稻IR64共检测到25个,其中20个蛋白点既在磷高效水稻也在磷低效水稻表现差异。鉴于这些蛋白对磷胁迫的响应和在两个基因型水稻中量的差异,可以认为它们是低磷诱导相关蛋白。取代表性强的31个根系蛋白进行了LC-MS质谱检测和数据库检索,27个根系蛋白成功鉴定,依据其在植物体生命活动中的主要功能归类为四大类群,一是参与转录调控的蛋白,4个;二是参与代谢的蛋白,10个;三是参与细胞生长的蛋白,3个;四是参与细胞防御的蛋白,10个。
     2、不同磷效率水稻叶片蛋白对低磷胁迫的差异表达
     全磷培养各时期无显著变化,低磷培养与全磷培养间存在显著变化的两种磷效率水稻叶片蛋白,磷高效水稻共检测到22个,磷低效水稻检测到19个,14个为磷高效水稻和磷低效水稻应对低磷胁迫诱导共同蛋白。取代表性变化的27个蛋白点进行LC-MS质谱检测,数据库检索有25个蛋白功能得到成功鉴定,依据在植物体生命活动中的主要功能归类为四类,一是参与光合作用的蛋白,7个;二是参与代谢的蛋白,8个;三是参与逆境反应的蛋白,7个;四是其它蛋白,3个。
As one of essential macronutrients for plant growth, phosphorus (P) is involved in almost all of plant life activities. Phosphorus deficiency in soil is one of the major abiotio stresses that limit plant growth and crop productivity worldwide. Rice is one of the world's major food crops, but also to monocotyledonous species. Proteomics approach to study the rice to phosphorus stress response mechanism, further study on tolerance mechanisms comprehensively reveal the genetic basis of use by the phosphorus nutrition of rice, is of great significance to explorephosphorus response genes, proteins and metabolites.
     In this study, we choose IR74(high P-absorption efficiency) and IR64(low P-absorption efficiency) as the materials to investigate phosphorus stress resistance mechanism. The total proteins in the root and leaves are obtained respectively of IR74and IR64at low P stress after1hours,3hours,6hours,1days,3days,6days. All the proteins are separated by two-dimensional gel electrophoresis (2-DE) to reveal rice protein response to low phosphorus stress response and dynamic control process.The results obtained are summarized as follows:
     1. The differentially expressed of root proteins in different P efficiencies rice uptake efficiency genotype
     Differential expression profile of P-dificiency responsive protein between IR74and IR64is constructed by using2-D technology. As an object of study,we choose that in the culture of each period of full-phosphorus have no significant change, but low phosphorus culture the two phosphorus efficiency between culture and total phosphorus there are significant changes in rice root protein. It is found that26proteins of IR74and25proteins of IR64expressed differently.Twenty of them is found in both IR74and IR64expressed differentially in the different treatment time courses significantly. In view of these protein response to phosphorus stress in two rice genotypes in the amount of the difference, that they are low-phosphorus-related protein induced.31root proteins are detected by LC-MS and database searching,27of them are identified. According to their function in plants, those proteins are divided into4categories:4proteins in transcriptional regulation,10proteins in metabolism,3proteins in cell growth,10proteins in cellular defense.
     2. The differentially expressed of leaf proteins in different P efficiencies rice uptake efficiency genotype
     The results show that22proteins of IR74and19proteins of IR64expressed differently.14of them is found expressed differentially in both1R74and IR64.27of leaf proteins are detected by LC-MS and database searching,25of them are identified. According to their function in plants, those proteins are divided into four categories:7proteins in photosynthesis,8proteins in metabolism,7proteins in Stress responses,3proteins in other processes
引文
1. Del Pozo J C, Allona I, Rubio V, et al. A type 5 acid phosphatasegenes from Arabidopsis thalianais induced by phosphate starvation and by some other types of phosphate mobilizing/oxidative stress conditions [J]. Plant Journal,1999,19:579-589.
    2. Fukuda T,Saito A,Wasaki J,et al.Metabolic alterations proposed by proteome in rice rots grown under low P and high AI concentration under low Ph[J].Plant Sci,2007,172(6):1157-1165
    3. Garfin D E. Two-dimensional gel electrophoresis:An overview. Trend Anal Chem,2003,22:263-272
    4. Goldstein A H,Mayfield S D,Mcdaniel R G,et al.Phosphate starvation inducible metabolism in Lesculeutum Ⅲ Protein secretion by suspension cultured cells [J].Plant Physiol,1989,91:175-182
    5. Hajduch M, Rakwal R, Agrawal G K, et al. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice(Ooza sativa L.)leaves, drastic reduetions fraganentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related protein [J]. Electrophoresis,2001,22:2824-2831.
    6. Henningsen R, Gale BL, Straub KM, DeNegel DC. Application of zwitterionic detergents to solubilization of intergral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics,2002,2:1479-1488
    7. Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as by root-induced chemical changes:a review [J]. Plant and Soil,2001,237:173-195.
    8. Koller A, Washburn M P, Markus-Lange B, et al.Proteomie survey of metabolic pathways in rice[J].Proc Natl Acad Sci USA,2002,99:11969-11974.
    9. Komatsu S, Kajiwara H, Hirano H. A rice protein library:a data-file of rice proteins separated by two-dimensional electrophoresis[J]. Theoretical and Applied Genetics,1993,86(8):935-946.
    10. Komatsu S, Yano H. Update and challenges on proteomies in rice. P加teomics.2006,6(14):4057-4068.
    11. Kristensen B K, Askerlund P, Bykova N V, et al. Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensiona liquid chromatography-tan-dem mass spectrometry[J]. Phytochemistry,2004,65(12):1839-1851
    12. Otani T, Ae N, Tanaka H. Phosphorus (P) uptake mechanisms of crops grown in soils with low P status Ⅱ. Significance of organic acids in root exudates of pigenopea [J]. Soil Science and Plant Nutrition,1996,42:553-560.
    13. Miller S S, Liu J, Allan D L, et al. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin[J]. Plant Physiology,2001,127:594-606.
    14. Millar A H, Trend A E, Heazlewood J L. Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes[J].J Biol Chem,2004, 279(38):39471-39478
    15. Rao lid,Terry N.leaf phosphate status photosynthesis and carbon partioning in sugar Beet. Diurnal
    16. changes in sugar phosphates adenylates and nicotinamide nucleotides. Plant phyiol.,1989,90:820-826
    17. Rengel Z. Genetic control of root exudation [J]. Plant and Soil,2002,245:59-70.
    18. Salekdeh GH,Siopongco J,Wade Id,et al.Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics,2002 (2):1131-1145.
    19. Schachtman DP, Reid RJ, and Ayling SM. Phosphorus uptake by plants:from soil to cell. Plant Physiol,1998,116:447-453.
    20. Tanaka N,Fujita M, Handa H,et al.Proteomies of the rice cell systematic identification of the protein populations in subcellular compartments[J].Mol Genet Genomics,2004,271(5):566-576
    21. Theodorou M E, Plaxton WC. Metabolic adaptations of plant respiration to nutritional phosphate deprivation [J]. Plant Physiology,1993,101:339-344.
    22. Theodorou M E, Plaxton W C. Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells [J]. Plant Physiology,1996, 112:343-351.
    23. Tsugita A, Kamo M.2-D electrOphOresis of plant proteins[J].Methods in molecular biology, 1999,112:95-97.
    24. Torabi S,W issuwa M,Heidari M,et al.Proteomies,2009,9:159-170
    25. Vance CP,Uhde SC,and Allan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phyto,2003,57:423-447.
    26. Agarwal GK,Rakwal R,Yonekura M,et al.. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice(Oryza sativa L.) seedlings. Proteomics 2002(2),947-959.
    27. Yan S P, Zhang Q Y,Tang Z C,et al.Comparative proteomicanalysis provides new insights into chilling stress responses in rice[J].Mol Cell Proteomics,2006(5):484-496
    28.柏栋阴,冯国华,张会云,等.低磷胁迫下磷高效基因型小麦的筛选.麦类作物学报[J],2007,27(3):407-410
    29.曹黎明,潘晓华.水稻耐低磷基因型种质的筛选和鉴定[J].江西农业大学学报,2000,22(2):162-168
    30.曹黎明,潘晓华.水稻耐低磷机理的初步研究[J].作物学报,2002,28(2):260-264
    31.陈熙,崔香菊,张炜等.低叶绿素b水稻突变体类囊体膜的比较蛋白质组学术.生物化学与生物物理进展.2006.33(7):653-659
    32.程彦伟,李建友,姜爱良等.蛋白质组学在植物科学研究中的进展[J].江苏农业科学,2010,1:17-20
    33.范海延,崔娜,邵美妮等.植物应答逆境胁迫的蛋白质组学研究进展[J].生物技术通报,2009,10:15-19
    34.范燕萍,余让才,杨跃生等.缺磷对烟草悬浮细胞交替呼吸途径的影响及其与活性氧积累的关系[J].植物生理与分子生物学报[J].2004,30(9):339-344
    35.谷俊涛,鲍金香,王效颖等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因[J].作物学报,2009,35(9):1597-1605
    36.侯兴亮.水稻OsIPSI与OsIPS2基因磷饥饿信号及激素讥控模式的比较研究.浙江大学博士论文,2004
    37.高佳,刘雄伦,刘玲等.水稻磷酸盐转运蛋白Pht1家族研究进展.中国农学通报,2009,25(15):31-34
    38.郭玉春,林文雄,石秋梅等.低磷胁迫不同磷效率水稻苗期根系的生理适应性研究[J].应用生态学报,2003,14(1):61-65
    39.郭玉春.不同基因型水稻对低磷胁迫的响应及其分子机制研究.福建农林大学博士论文,2005
    40.郭再华,贺立源,徐才国等.不同耐低磷水稻基因型秧苗对难溶性磷的吸收利用[J].作物学报,2005,31(10):1322-1327
    41.李海波.水稻侧根生长对低磷胁迫的适应性反应及其机理研究.浙江大学硕士学位论文,2001
    42.李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报,2001,43(11):1154-1160
    43.李海波,王小兵,夏铭等.不同氮磷状况对水稻根生长及细胞周期蛋白激酶(CDKs)基因表达的影响[J].植物生理与分子生物学学报,2002,28(1):59-64
    44.李锋,曲雪艳,潘晓华,等.不同水稻品种对难溶性磷利用能力的初步研究[J].植物营养与肥料学报,2003,9(4):420-422
    45.李锋,李木英,潘晓华.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性[J].中国水稻科学,2001,18(1):48-52
    46.李德华,向春雷,姜益泉等.低磷胁迫下不同水稻品种根系生理特性的研究[J].华中农业大学学报,2006,25(6):626-629
    47.李坤朋.不同基因型玉米对磷胁迫的反应及根系蛋白质组学研究.山东大学.博士学位论文,2007
    48.李利华,邱旭华,李香花等.低磷胁迫水稻根部基因表达谱研究.生命科学学报,2009,39(6):549-558
    49.李永夫,罗安程,黄继德等.不同磷效率水稻基因型根系形态和生理特性的研究[J].浙江大学学报:农业与生命科学版,2006,32(6):658-664
    50.李永夫.水稻适应低磷胁迫的营养生理机理研究.浙江大学.博士论文,2006
    51.李绍长,龚江,王军.玉米自交系苗期耐低磷基因型的筛选[J].玉米科学,2003,11:85-89
    52.李淑芳,于志晶,林秀峰等.水稻耐低磷胁迫研究现状及未来发展方向[J].吉林农业科学,2009,34(6):37-39,44
    53.李雪梅,李玥莹,马莲菊等.逆境胁迫下水稻蛋白质组学研究进展[J].沈阳师范大学学 报,2009,27(3):257-263
    54.李兆伟,梁义元,熊君等.水稻灌浆期叶片蛋白质差异表达及其作用机理分析.作物学报2009.35(1):132-139
    55.李振兴.小麦耐低磷胁迫相关性状的QTL定位及低磷胁迫诱导基因和蛋白的表达谱分析.中国农业大学.博士学位论文,2007
    56.林文雄,石秋梅,郭玉春等.水稻磷效率差异的生理生化特性[J].应用与环境生物学报,2003,9(6):578-583
    57.阮松林,马华升,王世恒等.植物蛋白质组学研究进展Ⅰ蛋白质组关键技术[J].遗传,2006,28(11):1472-1486
    58.刘厚诚,邝炎华,陈日远.缺磷胁迫对长豇豆幼苗乙烯产生量的影响[J].中国农业科学,2006,39(4):855-859
    59.刘治刚,徐中平,张可炜.磷胁迫对玉米APase活性变化的影响[J].安徽农业科学,2007,35(20):6013-6015
    60.廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异[J].植物学报,2000,42(2):158-163
    61.陆锦池,王海斌,陈荣山等.化感水稻PI312777响应低磷胁迫的差异蛋白质组学分析[J].中国农学通报,2009,25(14):148-152
    62.明凤,郑先武.水稻对低磷反应的基因型差异及其生理适应机制的初步研究[J].应用与环境生物学报,2000,6(2):138-141
    63.明凤,娄玉霞,梁斌等.低磷胁迫下不同水稻品种根系吸收能力差异的生理与遗传本质[J].应用与环境生物学报,2002,(8)5:473-477
    64.明凤,郭滨,梁斌等.水稻磷酸盐转运蛋白编码基因的表达研究[J].复旦学报(自然科学版),2003,42(4):546-549
    65.明凤,路群,戴薇等.水稻高亲和力磷酸盐转运蛋白功能的初步研究[J].中国水稻科学,2004,18(3):203-207
    66.潘相文,唐才贤,王光华等.作物耐低磷适应机制研究进展[J].吉林农业大学学报,2005,27(4):434-441
    67.石秋梅,林文雄,陈芳育等.水稻苗期耐低磷基因型差异研究[J].中国生态农业学报,2004,12(1):36-39
    68.陶佩琳.低磷胁迫下玉米叶片的光合特性及叶蛋白质组学研究.山东大学.硕士学位论文,2009
    69.王萍,陈爱群,余玲等.植物磷转运蛋白基因及其表达调控的研究进展[J].植物营养与肥料学报,2006,12(4):584-591
    70.王海斌,何海斌,曾聪明等.低磷胁迫下不同品种水稻秧苗生长的分子生理特性[J].应用与环境生物学报,2008,14(5):593-598
    71.王汝慈,程式华,曹立勇等.水稻耐低磷胁迫研究进展[J].中国农学通报,2009,6:77-83
    72.万延慧,朱龙英,杨志杰等.低磷胁迫对不同番茄基因型苗期影响的研究[J],农业工程学报,2005:57-59
    73.温福平,张檀,张朝晖等.赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析.作物学报,2009,35(3):483-489
    74.吴平,印莉萍,张立平等.植物营养分子生理学.北京:科学出版社,2001.103-106
    75.吴照辉,贺立源,左雪冬等.低磷胁迫对不同基因型水稻阶段生物学特征的影响.植物营养与肥料学报,2008,14(2):227-234
    76.谢金水,邵彩虹,唐秀英等.养分胁迫对籽粒灌浆期水稻叶片衰老影响的蛋白质组学分析.中国水稻科学,2011,25(2):143-149
    77.薛大伟,钱前,王慧中等.蛋白质组学在水稻逆境胁迫研究中的应用[J].中国稻米,2009,5:11-14
    78.徐惠龙.磷高效水稻根系响应低磷胁迫的生理特性与相关蛋白研究.福建农林大学.硕士学位论文.2007
    79.许秀美,邱化蛟,贺明荣等.不同磷效率小麦品种根系吸收特性差异浅析[J].莱阳农学院学报,2003,20(4):272-275
    80.严顺平,苏维埃,汤章城等.水稻根中盐胁迫响应蛋白的蛋白质纽学的分析[A].中国蛋白质纽学第二届学术大会论文摘要论文集[C],2004
    81.严小龙,张福锁.植物营养遗传学.北京:中国农业大学出版社,1997.1-30
    82.张福锁.植物营养生态生理学与遗传学.北京:中国科学技术出版社,1993.53-61
    83.张浩,张凤文,和忠等.水稻耐低磷研究进展[J].云南农业大学学报,2009,24(5):754-758,768
    84.张焕朝,王改萍,徐锡增等.杨树无性系根系吸收H2P04-动力学特征与磷营养效率[J].林业科学,2003,39(6):40-46
    85.周建朝,王孝纯,邓艳红.磷胁迫对不同基因型甜菜根系形态及根分泌物的影响[J].中国农学通报,2011,27(02):157-161