薄壁不锈钢轴压构件的极限承载力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢材料不锈耐蚀,外观精美,具有良好的力学和工艺性能,是一种外观及使用性能优异的建筑材料,但其受力性能与普通碳素钢存在显著不同:应力—应变关系表现为典型非线性,无屈服平台,比例极限较低,应变硬化性能显著。目前国内对不锈钢结构力学性能方面的研究相对较少,又无相关设计标准,极大地限制了不锈钢材料在建筑结构中的应用与发展。本文对薄壁不锈钢轴压构件的极限承载力进行了深入研究。
     首先对国内外不锈钢应力—应变关系模型的研究成果进行梳理,通过介绍、分析、比较和验证,筛选最佳不锈钢材料应力—应变关系模型。结果表明Quach提出的三段式模型具有较高精度且可采用Ramberg-Osgood三参数表示,是目前可供选用的最佳模型。
     然后针对不锈钢材料,利用广义梁理论基本原理,推导出适用于非线性材料的修正广义梁理论平衡方程,提出不锈钢薄板受压局部屈曲、卷边槽形截面柱畸变屈曲及箱形截面柱弯曲屈曲荷载计算公式。结果表明其计算值与既有试验结果吻合良好,具有较高精度,可用于不锈钢薄板受压局部屈曲荷载、卷边槽形截面柱畸变屈曲荷载及箱形截面柱弯曲屈曲荷载的确定。
     接下来基于既有试验结果建立有限元分析模型,对四边简支不锈钢薄板均匀受压的局部稳定性能进行研究,结合大量参数分析对Winter稳定曲线进行修正,提出适用于不锈钢材料的薄板均匀受压极限承载力和箱形截面构件局部屈曲承载力计算公式。
     之后对薄壁不锈钢圆管柱轴心受压性能进行试验研究,包括标准材料拉伸试验、短柱轴向受压试验和长柱轴向受压试验,并基于试验结果对材料性能、破坏形态、位移、应力分布和初始缺陷等进行分析。
     接着利用有限元软件对上述试验进行数值模拟,建立精确的有限元模型,并通过大量参数分析考察包括长细比、壁厚、直径、径厚比、初始缺陷、材料性能等因素对薄壁不锈钢圆管柱轴心受压极限承载能力的影响,提出临界修正长细比和容许径厚比计算公式。
     最后对薄壁不锈钢圆管柱轴心受压的屈曲性能进行理论分析,并就几种国外不锈钢结构设计规范中的轴压构件极限承载力计算方法进行介绍,最终基于大量有限元分析结果提出薄壁不锈钢圆管长柱、短柱轴心受压极限承载力计算方法。结果表明其计算值与有限元结果吻合良好,与国外规范计算方法相比具有较高精度且偏于安全,可用于薄壁不锈钢圆管柱轴心受压构件极限承载力的确定。
Stainless steel is characterized by its outstanding corrosion resistance, aesthetics virtue, ease of forming and good mechanical performances, which make it an excellent construction material with great appearance and behavior. However, its material properties and mechanical behavior are distinct form carbon steel, featuring for non-linear stress-strain curve, no yield plateau, low proportionality stress, and significant strain-hardening capability. Domestically, there are no sufficient researches or design codes on mechanical behavior of stainless steel members, which limits the development of stainless steel application in structure engineering. The ultimate bearing capacity of thin-walled stainless steel members in axial compression is systemically researched in this paper.
     Firstly, the paper reviews the researches in strain-stress relations models home and abroad, after introducing, analyzing and comparing, presents the best stress-strain model for stainless steel material. It is shown that the three-stage stress-strain model proposed by Quach, which is defined by the three basic Ramberg-Osgood parameters, is the most accurate stress-strain model for stainless steel material.
     Next, by incorporating modifications into the conventional Generalized Beam Theory, the paper derives the equilibrium equation which could be used in non-linear elastic metallic materials, and the expressions are formulated to calculate the local buckling loads of stainless steel plates, the distortional buckling loads of stainless steel lipped channels section columns and the global buckling loads of stainless steel box section columns. Comparing with the existed test results, it is shown that the modified GBT method produces reliable results, which could be used in determining the buckling strength of thin-walled stainless steel members in compression.
     Then FE models are established for analyzing the local buckling behaviour of stainless steel plates in compression, which is based on the results of existing test. After revising the winter curve through the parametric analysis, the expressions are proposed for determining the local buckling strength of stainless steel thin-walled plates and rectangular hollow section members in compression.
     And then, the paper presents tests on thin-walled stainless steel tubular members in compression, including material tensile property, stub column and long column tests. Based on the tests results, analysis is conducted on material properties, failure modes, displacements, strain distribution and initial imperfection.
     After developing a consistent FE model based on the tests results, extensive parametric studies are carried out to investigate the effect of slenderness, diameter, thickness, diameter-thickness ratio, initial imperfection and material properties on the buckling strength of thin-walled stainless steel tubular members in compression. The formulas are proposed to calculate the critical modified slenderness and limiting diameter-thickness ratio.
     Finally, the paper presents theoretical analysis on buckling behavior of thin-walled members in axial compression, as well as introduces several methods of determining buckling resistance in stainless steel structures design code of foreign country. At last, the expressions are proposed for determining the ultimate bearing capacity of thin-walled stainless steel tubular long columns and stub columns. Comparing with the numerical analysis results, it is shown that the expressions, which produce more reliable results than the existing design code, could be used in determining the ultimate bearing capacity of thin-walled stainless steel members in compression.
引文
[1]于丽.关于钢结构腐蚀及防腐对策问题初探[J].中外建筑.2010(6):193-195.
    [2]中华人民共和国国家标准.钢结构设计规范GB 50017-2003[S].北京:中国计划出版社,2003.
    [3]中华人民共和国国家标准.工业建筑防腐蚀设计规范GB 50046-2008[s].北京:中国计划出版社,2008.
    [4]中华人民共和国国家标准.建筑设计防火规范GB 50016-2006[S].北京:中国计划出版社,2006.
    [5]中华人民共和国国家标准.高层民用建筑设计防火规范(2005年版)GB 50045-1995[S].北京:中国计划出版社,1995.
    [6]中华人民共和国国家标准.钢结构防火涂料GB 14907-2002[s].国家质检总局,2002.
    [7]中国工程建设标准化协会行业标准.钢结构防火涂料应用技术规范CECS 24-1990[S].北京:中国计划出版社,1990.
    [8]中华人民共和国国家标准.不锈钢和耐热钢牌号及化学成分GB/T 20878-2007[S].北京:中国计划出版社,2007.
    [9]Baddoo N R, Burgan B A. Structural design of stainless steel in structures[G]. Berkshire SCI Publication 291,2007.
    [10]王镝,陈涛.不锈钢材料在建筑工程中的推广及应用[J].山西建筑.2004,30(18):104-105.
    [11]陈驹,金伟良,杨立伟.建筑用不锈钢的抗火性能[J].浙江大学学报(工学版).2008(11):1983-1989.
    [12]Waller G., Cochrane D. J不锈钢——高耐用性、防火性和安全性解决方案[J].建筑技艺.2011:254-257.
    [13]代磊.冷弯薄壁不锈钢管轴心受压稳定承载力分析[D].西安:西安建筑科技大学,2007.
    [14]Burgan B A, Baddoo N R, Gilsenan K. A. Structural design of stainless steel members comparison between Eurocode 3, Part 1.4 and test results[J]. Journal of Constructional Steel Research.2000,54(1):51-73.
    [15]Baddoo N R. Stainless steel in construction:A review of research, applications, challenges and opportunities[J]. Journal of Constructional Steel Research.2008,64(11SI):1199-1206.
    [16]王元清,袁焕鑫,石永久等.不锈钢结构的应用和研究现状[J].钢结构.2010(2):1-12.
    [17]廖飞宇,陶忠.不锈钢管混凝土的发展综述[J].工业建筑.2009,4(39):114-118.
    [18]代磊.冷弯薄壁不锈钢管轴心受压稳定承载力分析[D].西安:西安建筑科技大学,2007.
    [19]朱浩川,姚谏.不锈钢材料的应力-应变模型[J].空间结构.2011(1):62-69.
    [20]Macdonald M, Rhodes J, Taylor T G. Mechanical Properties of stainless steel lipped channels[C].2000.
    [21]Olsson A. Stainless Steel Plasticity-Material Modeling and Structural Applications[D]. Sweden:Lulea University of Technology,2001.
    [22]Mirambell E, Real E. On the calculation of deflections in structural stainless steel beams:an experimental and numerical investigation[J]. Journal of Constructional Steel Research.2000, 54(1):109-133.
    [23]Rasmussen K. Full-range stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research.2003,59(1):47-61.
    [24]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behaviour[J]. Journal of Constructional Steel Research.2004,60(9): 1291-1318.
    [25]郑宝锋,舒赣平,沈晓明.不锈钢材料常温力学性能试验研究[J].钢结构.2011[5):1-6.
    [26]Gardner L, Ashraf M. Structural design for non-linear metallic materials[J]. Engineering Structures.2006,28(6):926-934.
    [27]Quach W M, Teng J G, Chung K F. Three-stage full-range stress-strain model for stainless steels[J]. Journal of Structural Engineering.2008,134:1518-1527.
    [28]Abdella K. An explicit stress formulation for stainless steel applicable in tension and compression [J]. Journal of Constructional Steel Research.2007,63(3):326-331.
    [29]Takahashi Y, Shibamoto H, Inoue K. Development of inelastic constitutive model for austenitic stainless steel for design use[J]. Nuclear Engineering and Design.2008,238(2): 368-379.
    [30]杨庆祥,吴晶,赵宏等.双相不锈钢应力应变曲线数值模拟[J].材料热处理学报.2005(5):124-128.
    [31]Medina S A N F, Hernandez C A. Modelling of the dynamic recrystallization of austenite in low alloy and microalloyed steels[J]. Acta Materialia.1996,44(1):165-171.
    [32]李红,罗海文,方旭东.含铌奥氏体不锈钢AISI 347流变应力曲线及本构方程[J].塑性工程学报.2008(5):1-5.
    [33]Van den Berg G J, Van den Merwe P. Prediction of corner mechanical properties for stainless steels due to cold forming[C]. Proceeding of the eleventh international specialty conference on cold-formed steel structures:1992.
    [34]Rasmussen K, Hancock G J. Design of Cold-Formed Stainless Steel Tubular Members. I: Columns[J]. Journal of Structural Engineering.1993,119:2349-2367.
    [35]Gardner L. A new approach to stainless steel structural design[D]. PhD Thesis. Structures Section, Department of Civil and Environmental Engineering, Imperial College, London, 2002.
    [36]Ashraf M, Gardner L, Nethercot D A. Strength enhancement of the corner regions of stainless steel cross-sections[J]. Journal of Constructional Steel Research.2005,61(1):37-52.
    [37]Cruise R B, Gardner L. Strength enhancements induced during cold forming of stainless steel sections[J]. Journal of Constructional Steel Research.2008,64(11):1310-1316.
    [38]Pentti M, Jyri O. Mechanical Properties of an Austentic Stainless Steel at Elevated Temperatures[J]. Journal of Constructional Steel Research.1998,46(1-3):455-467.
    [39]Chen J, Young B. Stress-strain curves for stainless steel at elevated temperatures[J]. Engineering Structures.2006,28(2):229-239.
    [40]Abdella K. Explicit full-range stress-strain relations for stainless steel at high temperatures [J]. Journal of Constructional Steel Research.2009,65(4):794-800.
    [41]苏庆田,沈祖炎,张其林等.不锈钢强度设计值取值的试验和理论依据[J].建筑结构学报.2003(1):80-83.
    [42]Rasmussen K, Rondal J. Strength curves for metal columns[J]. Journal of Structural Engineering.1997,123(6):721-728.
    [43]Rasmussen K, Rondal J. Column curves for stainless steel alloys[J]. Journal of Constructional Steel Research.2000,54(1):89-107.
    [44]Young B, Rasmussen K. Tests of fixed-ended plain channel columns[J]. Journal of Structural Engineering.1998,124(2):131-139.
    [45]Young B, Hartono W. Compression tests of stainless steel tubular members[J]. Journal of Structural Engineering.2002,128(6):754-761.
    [46]Rasmussen K J R, Burns T, Bezkorovainy P, et al. Numerical modelling of stainless steel plates in compression[J]. Journal of Constructional Steel Research.2003,59(11):1345-1362.
    [47]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 2:Member behaviour of columns and beams[J]. Journal of Constructional Steel Research.2004,60(9): 1319-1332.
    [48]Young B, Liu Y. Experimental investigation of cold-formed stainless steel columns[J]. Journal of Structural Engineering.2003,129(2):169-176.
    [49]Goncalves R, Camotim D. GBT local and global buckling analysis of aluminium and stainless steel columns[J]. Computers & Structures.2004,82(17):1473-1484.
    [50]Ashraf M, Gardner L, Nethercot D A. Compression strength of stainless steel cross-sections[J]. Journal of Constructional Steel Research.2006,62(1):105-115.
    [51]Gardner L, Nethercot D A. Numerical modeling of stainless steel structural components-A consistent approach[J]. Journal of Structural Engineering.2004,130(10):1586-1601.
    [52]Ashraf M, Gardner L, Nethercot D A. Finite element modelling of structural stainless steel cross-sections[J]. Thin-Walled Structures.2006,44(10):1048-1062.
    [53]Lecce M, Rasmussen K J R. Distortional buckling of cold-formed stainless steel sections: Experimental investigation[A]. Journal of Structural Engineering,2006:497-504.
    [54]Lecce M, Rasmussen K. Distortional buckling of cold-formed stainless steel sections: Finite-element modeling and design[A]. Journal of Structural Engineering,2006:505-514.
    [55]Gardner L, Talja A, Baddoo N R. Structural design of high-strength austenitic stainless steel[J]. Thin-Walled Structures.2006,44(5):517-528.
    [56]Becque J, Lecce M, Rasmussen K J. The direct strength method for stainless steel compression members[J]. Journal of Constructional Steel Research.2008,64(11): 1231-1238.
    [57]Ashraf M, Gardner L, Nethercot D A. Resistance of stainless steel CHS columns based on cross-section deformation capacity[J]. Journal of Constructional Steel Research.2008,64(9): 962-970.
    [58]Theofanous M, Chan T M, Gardner L. Structural response of stainless steel oval hollow section compression members[J]. Engineering Structures.2009,31(4):922-934.
    [59]Theofanous M, Gardner L. Testing and numerical modelling of lean duplex stainless steel hollow section columns[J]. Engineering Structures.2009,31(12):3047-3058.
    [60]Becque J, Rasmussen K. Experimental investigation of local-overall interaction buckling of stainless steel lipped channel columns[J]. Journal of Constructional Steel Research.2009, 65(8-9):1677-1684.
    [61]Becque J, Rasmussen K. A numerical investigation of local-overall interaction buckling of stainless steel lipped channel columns[J]. Journal of Constructional Steel Research.2009, 65(8-9):1685-1693.
    [62]Becque J, Rasmussen K J. Experimental investigation of the interaction of local and overall buckling of stainless steel I-columns[J]. Journal of Structural Engineering.2009,135(11): 1340-1348.
    [63]Becque J, Rasmussen K J. Numerical investigation of the interaction of local and overall buckling of stainless steel I-Columns[J]. Journal of Structural Engineering.2009,135(11): 1349-1356.
    [64]Rossi B, Jaspart J, Rasmussen K J. Combined distortional and overall flexural-torsional buckling of cold-formed stainless steel sections:design[J]. Journal of Structural Engineering. 2009,136(4):361-369.
    [65]Rossi B, Jaspart J, Rasmussen K J. Combined distortional and overall flexural-torsional buckling of cold-formed stainless steel sections:experimental investigations[J]. Journal of Structural Engineering.2009,136(4):354-360.
    [66]Patton M L, Singh K D. Numerical modeling of lean duplex stainless steel hollow columns of square, L-, T-, and+-shaped cross sections under pure axial compression[J]. Thin-Walled Structures.2012,53:1-8.
    [67]王来,刘锡良.综合考虑缺陷影响时不锈钢管轴压稳定的计算[J].山东矿业学院学报.1997(1):54-57.
    [68]陈晓明,王来.厚壁不锈钢管受压柱单侧出现塑性时的稳定分析[J].山东矿业学院学报(自然科学版).1999(2):101-104.
    [69]梁爱华,Van Den Berg G. J., Laubscher R. F冷弯薄壁不锈钢受压构件变形屈曲的分析[J].钢结构.2000(4):53-56.
    [70]梁爱华.冷弯薄壁不锈钢受压构件临界荷载的计算理论和方法[J].钢结构.1999(2):58-62.
    [71]张永园.冷弯薄壁不锈钢箱形截面柱轴心受压承载力研究[D].西安:西安建筑科技大学,2010.
    [72]刘芳,范圣刚.不锈钢冷弯薄壁构件有效截面的分析[J].江苏钢结构.2011(5):20-25.
    [73]宾阳.不锈钢冷弯薄壁方型钢残余应力及其对结构极限承载力的影响分析[D].长沙:中南大学,2011.
    [74]舒赣平,郑宝峰,沈晓明.冷成型不锈钢管轴心受压柱试验研究[J].建筑结构学报.2013,34(5):87-95.
    [75]舒赣平,郑宝锋,沈晓明.不锈钢轴心受压构件稳定承载能力计算方法研究[J].工业建筑.2012(5):21-28.
    [76]郑宝锋,舒赣平,沈晓明.不锈钢冷成型管截面轴心受压构件的有限元分析[J].工业建筑.2012(5):12-20.
    [77]舒赣平,郑宝锋,沈晓明.不锈钢压弯构件平面内稳定承载力计算方法研究[J].工业建筑.2012(5):41-44.
    [78]王元清,袁焕鑫,石永久等.不锈钢结构构件稳定性的研究进展[J].工业建筑.2012(5):1-11.
    [79]AISI. Specification for the design of light gauge cold-formed stainless steel structural members [S]. Washington, D C:American Iron and Steel Institute,1968.
    [80]AS/NZS. Cold-formed stainless stainless steel structures AS/NZS 4673:2001 [S]. Sydney: 2001.
    [81]ASCE. Specification for the design of cold-formed stainless steel structural members SEI/ASCE 8-02[S]. New York:American Society of Civil Engineers,2002.
    [82]EN. Eurocode 3:Design of steel structures-part 1.4:General rules-supplementary rules for stainless steels EN 1993-1-4[S]. CEN,2006.
    [83]Baddoo N R. Stainless steel in construction:A review of research, applications, challenges and opportunities[J]. Journal of Constructional Steel Research.2008,64(11 SI):1199-1206.
    [1]中华人民共和国国家标准.碳素结构钢GB/T 700-2006[s].中国计划出版社,2006.
    [2]Rasmussen K J R, Burns T, Bezkorovainy P, et al. Numerical modelling of stainless steel plates in compression[J]. Journal of Constructional Steel Research.2003,59(11):1345-1362.
    [3]ASCE. Specification for the design of cold-formed stainless steel structural members SEI/ASCE 8-02[S]. New York:American Society of Civil Engineers,2002.
    [4]AS/NZS. Cold-formed stainless stainless steel structures AS/NZS 4673:2001 [S]. Sydney: 2001.
    [5]EN Eurocode 3:Design of steel structures-part 1.4:General rules-supplementary rules for stainless steels EN 1993-1-4[S]. CEN,2006.
    [6]Macdonald M, Rhodes J, Taylor T G. Mechanical Properties of stainless steel lipped channels[C].2000.
    [7]Olsson A. Stainless Steel Plasticity-Material Modeling and Structural Applications[D]. Sweden:Lulea University of Technology,2001.
    [8]Mirambell E, Real E. On the calculation of deflections in structural stainless steel beams:an experimental and numerical investigation[J]. Journal of Constructional Steel Research.2000, 54(1):109-133.
    [9]Rasmussen K. Full-range stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research.2003,59(1):47-61.
    [10]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behaviour[J]. Journal of Constructional Steel Research.2004,60(9): 1291-1318.
    [11]Quach W M, Teng J G, Chung K F. Three-stage full-range stress-strain model for stainless steels[J]. Journal of Structural Engineering.2008,134:1518-1527.
    [12]郑宝锋,舒赣平,沈晓明.不锈钢材料常温力学性能试验研究[J].钢结构.2011(5):1-6.
    [13]Chen J, Young B. Stress-strain curves for stainless steel at elevated temperatures[J]. Engineering Structures.2006,28(2):229-239.
    [14]陈驹,金伟良,杨立伟.建筑用不锈钢的抗火性能[J].浙江大学学报(工学版).2008(11):1983-1989.
    [15]Ramberg W, Osgood W R. Description of stress-strain curves by three parameters[C]. National Advisory Committee for Aeronautics Technical note No.902,Washington(DC): 1943.
    [16]Hill H N. Determination of stress-strain relations from the offset yield strength values[C]. National Advisory Committee for Aeronautics Technical note No.927,Washington(DC): 1944.
    [17]Van der Merwe P. Development of design criteria for ferritic stainless steel cold-formed structural members and connections[D]. University of Missouri-Rolla,1987.
    [18]Gardner L, Ashraf M. Structural design for non-linear metallic materials[J]. Engineering Structures.2006,28(6):926-934.
    [19]Gardner L. A new approach to stainless steel structural design[D]. PhD Thesis. Structures Section, Department of Civil and Environmental Engineering, Imperial College, London, 2002.
    [20]Gardner L, Nethercot D A. Numerical modeling of stainless steel structural components-A consistent approach[J]. Journal of Structural Engineering.2004,130(10):1586-1601.
    [21]Abdella K. An explicit stress formulation for stainless steel applicable in tension and compression[J]. Journal of Constructional Steel Research.2007,63(3):326-331.
    [22]Quach W M, Teng J G, Chung K F. Residual stresses in press-braked stainless steel sections, Ⅱ:Press-braking operations[J]. Journal of Constructional Steel Research.2009,65(8-9): 1816-1826.
    [23]Quach W M, Teng J G, Chung K F. Residual stresses in press-braked stainless steel sections, I:Coiling and uncoiling of sheets[J]. Journal of Constructional Steel Research.2009,65(8-9): 1803-1815.
    [1]Tvergaard V, Needleman A. On the foundations of plastic buckling[J]. Developments in thin-walled structures.1982,1:205-233.
    [2]Hutchinson J W. Plastic buckling[J]. Advances in Applied Mechanics.1974,14:67-144.
    [3]Schardt R. Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke[J].Der Stahlbau.1966,35:161-171.
    [4]Schardt R. Verallgemeinerte technische biegetheorie(Generalized beam theory)[G]. Berlin: Springer-Verlag,1989.
    [5]Davies J M, Leach P. First-order generalised beam theory[J]. Journal of Constructional Steel Research.1994,31(2-3):187-220.
    [6]Davies J M, Leach P, Heinz D. Second-order generalised beam theory[J]. Journal of Constructional Steel Research.1994,31(2-3):221-241.
    [7]Leach P, Davies J M. An experimental verification of the generalized beam theory applied to interactive buckling problems[J]. Thin-Walled Structures.1996,25(1):61-79.
    [8]Jiang C, Davies J M. Design of thin-walled purlins for distortional buckling[J]. Thin-Walled Structures.1997,29(1-4):189-202.
    [9]Kesti J, Davies J M. Local and distortional buckling of thin-walled short columns[J]. Thin-Walled Structures.1999,34(2):115-134.
    [10]Schardt R. Generalized beam theory--an adequate method for coupled stability problems[J]. Thin-Walled Structures.1994,19(2-4):161-180.
    [11]Schardt R. Lateral torsional and distortional buckling of channel-and hat-sections[J]. Journal of Constructional Steel Research.1994,31(2-3):243-265.
    [12]Davies J M. Generalised beam theory (GBT) for coupled instability problems[J]. Courses and Lectures-International Centrel for Mechanical Science.1998:151-224.
    [13]Camotim D, Silvestre N, Goncalves R, et al. GBT-based structural analysis of thin-walled members:overview, recent progress and future developments[J]. Advances in Engineering Structures, Mechanics \& Construction.2006:187-204.
    [14]Goncalves R, Camotim D. GBT local and global buckling analysis of aluminium and stainless steel columns[J]. Computers & Structures.2004,82(17):1473-1484.
    [15]Quach W M, Teng J G, Chung K F. Three-stage full-range stress-strain model for stainless steels[J]. Journal of Structural Engineering.2008,134:1518-1527.
    [16]Handelman G H, Prageb W. Plastic buckling of a rectangular plate under edge thrusts [J]. ratio. 1948,100:4-5.
    [17]Bijlaard P. Theory and tests on the plastic stability of plates and shells[J]. J Aeronaut Sci. 1949(16):529-541.
    [18]童根树著.钢结构的平面外稳定[M].北京:中国建筑工业出版社,2007.
    [19]Silvestre N, Camotim D. Second-order generalised beam theory for arbitrary orthotropic materials[J]. Thin-Walled Structures.2002,40(9):791-820.
    [20]Bradford M A, Azhari M. Buckling of plates with different end conditions using the finite strip method[J]. Computers & Structures.1995,56(1):75-83.
    [21]姚谏,夏志斌编著.钢结构——原理与设计[M].北京:中国建筑工业出版社,2011.
    [22]Rasmussen K J R, Burns T, Bezkorovainy P, et al. Numerical modelling of stainless steel plates in compression[J]. Journal of Constructional Steel Research.2003,59(11):1345-1362.
    [23]Silvestre N, Camotim D. Distortional buckling formulae for cold-formed steel C and Z-section members:Part Ⅰ-Derivation[J]. Thin-Walled Structures.2004,42(11):1567-1597.
    [24]Silvestre N, Camotim D. Distortional buckling formulae for cold-formed steel C and Z-section members Part Ⅱ-Validation and application[J]. Thin-Walled Structures.2004, 42(11):1599-1629.
    [25]Schafer B W. CUFSM 4.05:elastic buckling analysis of thin-walled members with general end boundary conditionshttp://www.ce.jhu.edu/bschafer/cufsm.
    [26]Lecce M, Rasmussen K J R. Distortional buckling of cold-formed stainless steel sections: Experimental investigation[A]. Journal of Structural Engineering,2006:497-504.
    [27]陈绍蕃.钢结构设计原理[M].北京:科学出版社,2005.
    [28]Rasmussen K, Hancock G J. Design of cold-formed stainless-steel tubular members. Ⅰ: Columns[J]. Journal of Structural Engineering.1993,119:2349-2367.
    [29]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 2:Member behaviour of columns and beams[J]. Journal of Constructional Steel Research.2004,60(9): 1319-1332.
    [30]徐翔.基于广义梁理论(GBT)的线弹性薄壁梁考虑截面畸变的翘曲研究[D].西安:西安建筑科技大学,2003.
    [1]Stowell E. A unified theory of plastic buckling of columns and plates[R]. Washington, D.C: Technical Note.1556, National Advisory Committee for Aeronautics,1948.
    [2]Bleich F, Ramsey L B, Bleich H H. Buckling strength of metal structures[M]. New York: McGraw-Hill,1952.
    [3]Rasmussen K. J R, Burns T, Bezkorovainy P, et al. Numerical modelling of stainless steel plates in compression[J]. Journal of Constructional Steel Research.2003,59(11):1345-1362.
    [4]Bambach M R, Rasmussen K. Experimental techniques for testing unstiffened plates in compression and bending[J]. Thin-Walled Structures:Advances and Developments.2001: 719-727.
    [5]Quach W M, Teng J G, Chung K F. Three-stage full-range stress-strain model for stainless steels[J]. Journal of Structural Engineering.2008,134:1518-1527.
    [6]Rasmussen K. Full-range stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research.2003,59(1):47-61.
    [7]Gardner L, Ashraf M. Structural design for non-linear metallic materials[J]. Engineering Structures.2006,28(6):926-934.
    [8]Hill R. The mathematical theory of plasticity[M]. Oxford:Oxford Science Publications,1950.
    [9]Abaqus. ABAQUS/Standard user's manual and ABAQUS post manual. Version 6.4[M]. Pawtucket, USA:Hibbitt, Karlsson & Sorensen, Inc.,2003.
    [10]中华人民共和国国家标准.冷弯薄壁型钢结构技术规范GB 50018-2002[s].北京:中国计划出版社,2002.
    [11]EN. Eurocode 3:Design of steel structures-part 1.4:General rules-supplementary rules for stainless steels EN 1993-1-4[S]. CEN,2006.
    [12]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behaviour[J]. Journal of Constructional Steel Research.2004,60(9): 1291-1318.
    [1]赵昌盛.不锈钢的应用及热处理[M].北京:机械工业出版社,2010.
    [2]李维钺.中外不锈钢和耐热钢速查手册[M].北京:机械工业出版社,2008.
    [3]中华人民共和国国家标准.结构用无缝钢管GB/T 8162-2008[S].北京:中国计划出版社,2008.
    [4]中华人民共和国国家标准.金属材料室温拉伸试验方法GB/T 228-2010[s].北京:中国计划出版社,2010.
    [5]中华人民共和国国家标准.钢及钢产品力学性能试验取样位置及试件制备GB/T2975-1998[s].北京:中国计划出版社,1998.
    [6]AS/NZS. Cold-formed stainless stainless steel structures AS/NZS 4673:2001[S]. Sydney: 2001.
    [7]Ziemian R D. Guide to Stability Design Criteria for Metal Structures[M]. New Jersey:John Wiley & Sons, Inc.,2010.
    [8]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behaviour[J]. Journal of Constructional Steel Research.2004,60(9): 1291-1318.
    [9]郑宝锋,舒赣平、沈晓明.不锈钢材料常温力学性能试验研究[J].钢结构.2011(5):1-6.
    [10]Gardner L, Nethercot D A. Numerical modeling of stainless steel structural components-A consistent approach[J]. Journal of Structural Engineering.2004,130(10):1586-1601.
    [11]Ashraf M, Gardner L, Nethercot D A. Finite element modelling of structural stainless steel cross-sections[J]. Thin-Walled Structures.2006,44(10):1048-1062.
    [12]Young B, Hartono W. Compression tests of stainless steel tubular members[J]. Journal of Structural Engineering.2002,128(6):754-761.
    [1]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [2]庄茁等编著.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [3]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2009.
    [4]张永园.冷弯薄壁不锈钢箱形截面柱轴心受压承载力研究[D].西安:西安建筑科技大学,2010.
    [5]Rasmussen K J R, Burns T, Bezkorovainy P, et al. Numerical modelling of stainless steel plates in compression[J]. Journal of Constructional Steel Research.2003,59(11):1345-1362.
    [6]Becque J, Rasmussen K. A numerical investigation of local-overall interaction buckling of stainless steel lipped channel columns[J]. Journal of Constructional Steel Research.2009, 65(8-9):1685-1693.
    [7]Gardner L, Nethercot D A. Numerical modeling of stainless steel structural components-A consistent approach[J]. Journal of Structural Engineering.2004,130(10):1586-1601.
    [8]Patton M L, Singh K D. Numerical modeling of lean duplex stainless steel hollow columns of square, L-, T-, and+-shaped cross sections under pure axial compression[J]. Thin-Walled Structures.2012,53:1-8.
    [9]Chen W F, Ross D A. Test of fabricated tubular columns[J]. Journal of the Structural Divison-ASCE.1977,103(3):619-634.
    [10]Ostapenko A. Local buckling of welded rubular columns.Report No.406.11[R]. Bethlehem: Fritz Engineering Laboratory, Lehigh University,1977.
    [11]Gao S B, Usami T, Ge H B. Ductility of steel short cylinders in compression and bending[J]. Journal of Engineering Mechanics.1998,124(2):176-183.
    [12]郑宝锋,舒赣平,沈晓明.不锈钢冷成型管截面轴心受压构件的有限元分析[J].工业建筑.2012(5):12-20.
    [13]Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behaviour[J]. Journal of Constructional Steel Research.2004,60(9): 1291-1318.
    [14]Abaqus. ABAQUS/Standard user's manual volumes Ⅰ-Ⅲ and ABAQUS post manual. Version 6.4[M]. Pawtucket, USA:Hibbitt, Karlsson & Sorensen, Inc.,2003.
    [15]EN. Eurocode 3:Design of steel structures-part 1.4:General rules-supplementary rules for stainless steels EN 1993-1-4[S]. CEN,2006.
    [1]童根树.钢结构的平面内稳定[G].北京:中国建筑工业出版社,2005.
    [2]郭小农.铝合金轴心受压构件理论和试验研究[D].上海:同济大学,2006.
    [3]中华人民共和国国家标准.结构用不锈钢无缝钢管GB/T 14975-2002[S].北京:中国计划出版社,2002.
    [4]中华人民共和国国家标准.钢结构设计规范GB 50017-2003[s].北京:中国计划出版社,2003.
    [5]舒赣平,郑宝锋,沈晓明.不锈钢轴心受压构件稳定承载能力计算方法研究[J].工业建筑.2012(5):21-28.
    [6]中华人民共和国国家标准.冷弯薄壁型钢结构技术规范GB 50018-2002[s].北京:中国计划出版社,2002.
    [7]Gardner L, Nethercot D A. Numerical modeling of stainless steel structural components-A consistent approach[J]. Journal of Structural Engineering.2004,130(10):1586-1601.
    [8]Ashraf M, Gardner L, Nethercot D A. Finite element modelling of structural stainless steel cross-sections[J]. Thin-Walled Structures.2006,44(10):1048-1062.
    [9]Young B, Hartono W. Compression tests of stainless steel tubular members[J]. Journal of Structural Engineering.2002,128(6):754-761.
    [10]EN. Eurocode 3:Design of steel structures-part 1.6:General rules-supplementary rules for shell structures EN 1993-1-4[S]. CEN,2006.
    [11]Ziemian R D. Guide to Stability Design Criteria for Metal Structures[M]. New Jersey:John Wiley & Sons, Inc.,2010.
    [12]Von Karman T, Tsien H S. The buckling of thin cylindrical shells under axial compression[J]. Journal of the Aeronautical Sciences.1941,8(8):303-312.
    [13]Koiter W T. On the Stability of Elastic Equilibrium[D]. Delft University,1945.
    [14]Donnell L H, Wan C C. Effect of imperfections on buckling of thin cylinders and columns under axial compression[J]. Journal Of Applied Mechanics.1950,17(1):73-83.
    [15]Budiansky B, Hutchinson W J. A survey of some buckling problems[J]. AIAA Journal.1966, 4(9):1505.
    [16]唐家祥.结构稳定理论[G].北京:中国铁道出版社,1989.
    [17]EN. Eurocode 3:Design of steel structures-part 1.4:General rules-supplementary rules for stainless steels EN 1993-1-4[S]. CEN,2006.
    [18]ASCE. Specification for the design of cold-formed stainless steel structural members SEI/ASCE 8-02[S]. New York:American Society of Civil Engineers,2002.
    [19]AS/NZS. Cold-formed stainless stainless steel structures AS/NZS 4673:2001 [S]. Sydney: 2001.
    [1]中华人民共和国国家标准.冷弯薄壁型钢结构技术规范GB 50018-2002[S].北京:中国计划出版社,2002.