铁基合金耐腐蚀性能的理论探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着凝聚态物理学、量子化学等相关基础学科的深入发展,以及计算机计算能力的空前提高,使得从原子、分子水平上进行材料设计,成为现代先进材料合成技术的重要发展方向。而在新材料的微观结构设计的研究中,团簇的计算设计扮演了十分重要的角色。
     本文针对金属电化学腐蚀的本质,应用密度泛函理论方法,对一系列铁铝、铁硅和铁镍的铁基合金团簇,按照“由小到大逐级生长”的方法,从理论上设计和预测了它们的几何和电子结构,寻找了这些团簇的基本结构单元、成键规则和生长机制。主要目的是可望通过理论计算获取一组量化参数并结合实验数据,从原子、分子水平上探讨铁基合金耐腐蚀性能,为今后设计最优耐腐蚀材料提供理论指导。主要研究内容及成果如下:
     1.应用密度泛函的BPW91方法结合Lanl2dz基组研究了Fen(n≤13)团簇的结构和电子性质,该方法被证实能正确反映团簇的基本信息,节约了计算时间,而且获得的平均结合能较其他密度泛函方法更为接近实验值。团簇向着高对称性的方向生长。二阶能量差分表明了n=6和n=8为铁团簇的稳定幻数,且Fen(n≥8)团簇倾向包含Fe6和Fe8簇的方向解离,进一步暗示Fe6和Fe8簇具有相对高的稳定性。Fe8在238 cm-1处有红外强峰出现,恰好对应Fe6团簇的八面体伸缩振动峰值,暗示八面体结构的特殊稳定性。且八面体作为BCC晶格结构的一部分,包含了晶胞的6个面原子,充分说明Fe6簇能很好的体现金属铁的特征,为Al、Si、Ni原子掺杂铁团簇提供了理论模型。
     2.应用BPW91/Lanl2dz/6-31G(d)方法深入研究了Al原子掺杂Fen(n≤8)团簇的基态结构和电子性质,并获得了较为准确的几何信息。为消除基组误差,在Lanl2dz/6-31G(d)混合基组优化结构的基础上,应用全电子基组6-311++G(2d, 2p)进行单点计算,获得的能量与该基组全优化结果一致。
     计算结果发现一个Al原子很难掺杂到铁团簇结构的中间,倾向于分布在铁簇的表面,并且它的掺杂也难以改变铁簇的主体结构。进一步,本文对Fen-1Al团簇进行了稳定性分析,其中,二阶能量差分、HOMO-LUMO能隙以及垂直电离势的分析结果都一致表明Fe3Al具有特殊的稳定性。另一方面,本文以Fe6簇为基体,逐个加入Al原子来模拟不同Al含量掺杂的铁簇的几何和电子结构,计算结果发现随杂质Al原子数目的增多,FemAln(m+n=6)团簇的最稳定构型由八面体结构变为双三角锥戴帽,向着对称性低的方向生长。本文还发现Fe5Al,Fe4Al2以及Fe3Al3簇具有相对高的HOMO-LUMO能隙和较低的HOMO能,揭示这几种团簇具有较高的稳定性,相应的Al的原子百分含量恰好处于Fe3Al和FeAl金属间化合物的Al含量范围内,说明应用密度泛函理论方法获得的量化参数如HOMO能以及HOMO-LUMO能隙可以从原子、分子角度反映Fe-Al合金的耐腐蚀性能。
     此外,为了验证我们的理论结果,本文从实验角度上探讨了Fe3Al金属间化合物的耐海水腐蚀性能。应用失重法测定了Fe3Al在海水环境下的年腐蚀速率,并与碳钢做了比较,发现Fe3Al较碳钢更耐海水腐蚀。通过对二者腐蚀后表面形貌分析以及开路电位的测定结果也都显示出Fe3Al具有优异的抗海水腐蚀性能,很好地支持了我们的理论结果。
     3.应用与铁铝合金簇相同的计算步骤,详细研究了Si掺杂铁团簇的几何和电子结构。与纯铁团簇相比,掺杂Si可以增强团簇的稳定性。此外,计算结果发现Fe3Si为铁硅合金团簇的幻数簇,具有相当高的稳定性。且Si和Fe原子组成比例为1:3时的原子百分含量恰好对应质量百分比14.36%Si,此含量的Fe-Si合金具有最优耐腐蚀性能,可见Fe3Si簇很好的体现出类块体结构特征,进一步说明所有表征Fe-Si团簇稳定性的量化参数都可以用来表征相应块体结构的耐腐蚀性能。
     4. Ni作为不锈钢的主要合金成分,极大的提高了其抗腐蚀性能。基于此,本文应用密度泛函方法研究了铁镍合金簇的基态结构和成键机制。经过稳定性分析发现,Fe3Ni、Fe4Ni、Fe5Ni和Fe6Ni这几种小团簇均具有较高的稳定性,且Fe与Ni的原子组成比例与具有优异抗腐蚀性能的FeNi合金中的Ni的掺杂含量一致。在这几种团簇中,Fe5Ni稳定性最高,对应于Ni的质量百分含量为16.7%,在此,我们大胆预言16.7%Ni为Fe-Ni合金抗腐蚀性能的最佳掺杂含量,期待实验的进一步验证。
With the deep development of the condensed matter physics and quantum chemistry as well as the improvement of the level of the computer, the material design based on the atomic and molecular becomes an important direction of development for the synthesis technology of advanced materials. Moreover, the theoretical calculation of clusters plays a very important role in the study of the new material microstructure design.
     According to the nature of electrochemical corrosion of metal and guided by the DFT, a series of iron-aluminium, iron-silicon and iron-nickel alloy clusters are studied in order to discover their ground state structures and the growth mechanisms as well as the building blocks, to design and predict of their geometric and electronic structure in this paper. Our main purpose is to explore the corrosion-resistant property of iron-based alloy clusters by theoretical calculations in order to obtain a group of quantitative parameters combined with experimental data at the atomic and molecular level, and provide theoretical guidance for designing the most optimal corrosion-resistant materials. The main study contents and results of this paper are described in detail as follows:
     1. Using the BPW91 method combined with Lanl2dz basis sets, we study on the geometric, electronic properties of Fen(n≤13) clusters in this chapter. The BPW91 method is proved to be able to obtain correct information and save the computing time. Moreover, the average bonding energy per atom obtained is closer to the experimental results than that of other DFT methods. The small iron clusters favors highest-dimension. The results of the second finite difference of the total energy and the HOMO-LUMO energy gap show that n=6 and 8 are magic number which are more stable than neighboring ones. And the Fen(n≥8) cluster are easy to be dissociated to Fe6 and Fe8, which further indicate Fe6 and Fe8 clusters have special stablility. A strong peak at 238 cm-1 is found for Fe8 cluster agreed with the stretching vibration frequency of octahedron for Fe6, which indicates the octahedron structure has special stability. Moreover, the octahedral structure is part of BCC lattice structure, including atoms of six cell surface. That fully prove Fe6 cluster can very well reflect the properties of iron metal, and it can provide a theoretical model for Al, Si, and Ni doping iron clusters.
     2. After study the ground state and electronic properties of Al-doped Fen(n≤8) clusters by using the BPW91/Lanl2dz/6-31G(d) method, We obtain accurate geometric information in a kind of way. In order to eliminate the error of basis sets, single-point BPW91/6-311++G(d, p) calculations are performed for all the structures by using the geometries obtained from the BPW91/lanl2dz//6-31g(d) optimizations. Furthermore, the single-point BPW91 calculations for Al-doped Fen(n=2~4) are very close to those obtained by the fully optimized BPW91 results.
     Calculated results show an doped Al atom prefers to the surface of the iron structures and do not change the frame structures of iron atoms. Further, we analyze the stability of Fen-1Al clusters, and combined with the results of the second finite difference of the total energy as well as the HOMO-LUMO energy, the vertical ionization potential (VIP) shows that the Fe3Al has special stability. On the other hand, the Fe6 cluster is selected to model the geometric and electronic structures of FemAln with different Al content by adopting Al atom one by one. The most stable structures of FemAln(m+n=6) clusters transfer from octahedron to the capped trigonal bipyramid, growing towards low- dimension. Our calculations show Fe5Al,Fe4Al2 and Fe3Al3 have large HOMO-LUMO gap and low HOMO value, indicating these clusters have high stablility, of which the Al content of atom percentage for these cluster methioned above are within Al content of Fe3Al and FeAl intermetallic compounds. Therefore, the quantitative parameters such as HOMO-LUMO gap and HOMO can characterize Fe-Al alloy corrosion resistance at atom and molecular level.
     Experimentally, we present the electrochemical corrosion behaviors of Fe3Al in seawater due to vertify our theoretical results. the annual corrosion rate of the Fe3Al is compound by using weight loss method, the corresponding results indicate Fe3Al have more excellent corrosion resistance than carbon steel. Subsequently, by analyzing the surface morphology of corrosion of Fe3Al and carbon steel as well as the measurement of the open circuit potential, Fe3Al is found to have excellent corrosion-resistance which indicates that the properties of bulk materials can be obtained from a finite size cluster model.
     3. The geometric and electronic structures of Si-doped iron clusters are investigated by using the same method as that of Fe-Al alloy clusters. Compared with pure iron clusters, the doping of Si atom can improve the stability of iron clusters. By analyzing the stability of Fe-Si alloy clusters, the Fe3Si and Fe5Si are found to be magic clusters. The Si content of Fe5Si is 14%Si which locates in the best Si-doped scope of corrosion resistance of Fe-Si alloy. Clearly, the study on small clusters can make a better understanding of the corresponding materials.
     4. As a major component of stainless steel, Ni-doping steel improved its corrosion resistance greatly. Theoretical, we study the ground-state and the bonding mechanism of Fe-Ni alloy clusters with the density functional theory method. By analyzing the stability of the ground state structures, Fe3Ni、Fe4Ni、Fe5Ni和Fe6Ni are found have high stability, and the corresponding atomic ratio of Fe and Ni atoms for those clusters is consisted with the doped Ni content of Fe-Ni alloy possessing excellent corrosion resistance. Our theoretical results show Fe5Ni is most stable in those clusters, the corresponding content of Ni is 16.7%Ni. In light of the results, we predict 16.7%Ni is the optimized doped contend for the corrosion resistance of Fe-Ni alloy.
引文
[1]王杏卿.热力设备的腐蚀与防护.北京:水利电力出版社. 1988
    [2]肖纪美.腐蚀总论-材料的腐蚀及控制方法.北京:化学工业出版社. 1994
    [3] Dillon, C. P. Corrosion in the chemical process. MCGraw-Hall, New York: 1987
    [4]尤里克,瑞维亚.(翁永基译).腐蚀与腐蚀控制.北京:石油工业出版社. 1994
    [5]陆柱.腐蚀与防护. 1997, 18: 3
    [6]曹楚南.腐蚀电化学.北京:化学工业出版社. 1994
    [7]王广厚.团簇物理的新进展物理学进展, 1994, 14 (2):121-172
    [8]解士杰,韩圣浩.凝聚态物理.济南:山东教育出版社. 2001
    [9]阎守胜.固休物理基础.北京:北京大学出版社. 2000
    [10]王广厚.团簇的结构和奇异性质.物理学进展. 1993, 13 (1-2): 266-279
    [11] Stein.G. D. Atoms and molecules in small aggregates. Phys. Teach. 1979, 17 (8): 503-512
    [12] Becker, E. W. Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum. Phys. 1956, 146: 333-338
    [13] Dimukes, J. P.; Ekstrom, L.; Paff, R. J. Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 1964, 68 (10): 3021-3027
    [14] Knight, W. D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M.Y.; Coh -en, M. L. Electronic Shell Structure and Abundances of Sodium Clusters. Phys. Rev. Lett. 1984, 52 (24): 2141-2143
    [15] Kroto, H. W.; Heath, J.R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60 Buck- minsterfullerene. Nature. 1985, 318 (6042): 162-163
    [16] Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354 (6348): 56-58
    [17] Ebbesen, T. W.; Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature. 1992, 358 (6383): 220-222
    [18] José-Yacamán, M.; Miki-Yoshida, M.; Rendón, L.; Santiesteban, J. G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett.1993, 62 (2): 202-204
    [19] Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Shiraishi, M.; Kroto, H. W. The Production and Structure of Pyrolytic Carbon Nanotubes (PCNTs). J. Phys.Chem. Solids. 1993, 54 (12): 1841-1848
    [20] Pattanayak, J.; Kar, T.; Scheiner, S. Boron-Nitrogen (BN) Substitution of Full- erenes: C60 to C12B24N24 CBN Ball. J. Phys. Chem. A. 2002, 106 (12): 2970-2978
    [21] Wales, D. J.; Mingos, D.; Michael. P.; Slee, T.; Lin, Z. Y. Clusters in Inorganic and Molecular-Beam Chemistry. Some Unifying Principles. Acc. Chem. Res. 1990, 23 (1): 17-22
    [22] Katakuse, I.; Ichihara, T. ; Fujita, Y.; Matsuo, T.; Sakurai, T.; Matsuda, Mass distributions of negative cluster ions of copper, silver and gold clusters [J]. Int. J.Mass Spectrum Ion processes. 1985, 74 (1):33-41
    [23] Katakuse, I.; Ichihara,T.; Fujita, Y.; Matsuo, T.; Sakurai, T.; Matsuda, H. Mass distributions of copper, silver and gold clusters and electronic shell structure, Int.J. Mass Spectrum Ion processes. 1985, 67 (2): 229-236
    [24] Knickelbein, M. B. Electronic shell structure in the ionization potentials of copper clusters. Chem. Phys. Lett. 1992, 192 (1): 129-134
    [25] Van der Waal, B. W. Stability of face-centered cubic and icosahedral Lennard-Jones clusters. J. Chem. Phys. 1989, 90 (6): 3407-3408
    [26] Miehle, W.; Kangler, O.; Leisner, T. Mass spectrometric evidence for icosahedral tructure in large rare gas clusters: Ar, Kr, Xe. J. Chem. Phys. 1989, 91 (10):5940-5952
    [27] Bloomfield, L. A.; Freemam, R. R.; Brown, W. L. Photofragmentation of Mass- Resolved Si2-12+ Clusters. Phys. Rev. Lett. 1985, 54 (20): 2246-2249
    [28] Hanley, L.; Anderson, S. L. Oxidation of small boron cluster ions (B3+) by oxygen. J. Chem. Phys. 1988, 89 (5): 2848-2860
    [29] Burnin, A.; BelBruno, J. J. ZnnSm+ cluster production by laser ablation. Chem. Phys. Lett. 2002, 362 (3-4): 341-348
    [30] Devienne, F. M.; Combarieu, R.; Teisseire, M. Action of different gases, spec- ially nitrogen, on the formation of uranium clusters - comparison with niobium and tantalum clusters. Surf. Sci. 1981, 106 (1-3): 204-211
    [31] Seliger, R. L.; Ward, J. W.; Wang, V.; Kubena, R. L. A high-intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 1979, 34 (4): 310-312
    [32] Rohlfing, E. A.; Cox, D. M.; Kaldor, A. Photoionization of isolated nickel atom clusters. J. Phys. Chem. 1984, 88: 4497-4502
    [33] Wilenzick, R. M.; Russell, D. C.; Morriss, R. H.; Marshall, S. W. Uniform Micro- crystals of Platinum and Gold. J. Chem. Phys. 1967, 47 (2): 533-536
    [34] Harris, I. A.; Kidwell, R. S.; Northby, J. A. Structure of Charged Argon Clusters Formed in a Free Jet Expansion. Phys. Rev. Lett. 1984, 53 (25): 2390-2393
    [35]陈莹.金属团簇的结构和固液转变的研究[博士论文].济南.山东大学
    [36] Louderback, J. G.; Cox, A. J.; Lising, L. J.; Douglass, D. C.; Bloomfield, L. A. Magnetic properties of nickel clusters. Phys. D. 1993, 26 (1-4): 301-303
    [37] Bucher, J. P.; Douglass, D. C.; Bloomfield, L. A. Magnetic properties of free cobalt clusters. Phys. Rev. Lett. 1991, 66 (23): 3052-3055
    [38] Billas, I. M. L.; Becker, J. A.; Chatelain, A.; de Heer, W. A. Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature. Phys.Rev. Lett. 1993, 71 (24): 4067-4070
    [39] Liu, F.; Khanna, S. N.; Jena, P. Magnetism in small vanadium clusters. Phys. Rev. B. 1991, 43 (10-B): 8179-8182
    [40] Lee, K.; Callaway, J. Electronic structure and magnetism of small V and Cr clus- ters. Phys. Rev. B. 1993, 48 (20): 15358-15364
    [41] Cheng, H.; Wang, L. S. Dimer Growth, Structural Transition, and Antiferroma- gnetic Ordering of Small Chromium Clusters. Phys. Rev. Lett.1996, 77 (1): 51-54
    [42] Cox, A. J.; Louderback, J. G.; Bloomfield, L. A. Experimental observation of magnetism in rhodium clusters. Phys. Rev. Lett. 1993, 71 (6): 923-926
    [43] Sch?n, J. H.; Kloc, Ch.; Batlogg, B. Superconductivity at 52 K in hole-doped C60. Nature. 2003, 422 (6927): 93
    [44] Brack, M. Multipole vibrations of small alkali-metal spheres in a semiclassical description. Phys. Rev. B 1989, 39 (6): 3533-3542
    [45] Selby, K.; Vollmer, M.; Masui, J.; Krsin, V.; de Heer, W. A.; Knight, W. D. Surface plasma resonances in free metal clusters. Phys. Rev. B 1989, 40 (8): 5417-5427
    [46] Chen, X.; Zhao, J.; Wang, G. Conductance resonance of metal-insulator-metal junction with embedded metal cluster. Appl. Phys. Lett. 1994, 65: 2419-2421
    [47] Ma, J. X.; Han, M.; Zhang, H. Q.; Gong, Y. C.; Wang, G. H. Dense random packing formation of gold cluster-based film characterized by scanning tunneling microscope. Appl. Phys. Lett. 1994, 65(12): 1513-1515
    [48] Holmgren, L.; Rosen, A. Vanadium clusters: Reactivity with CO, NO, O2, D2, N2 . J. Chem. Phys. 1999, 110 (5): 2629-2636
    [49] Jigato, M. P.; Kausala Somasundram; Volker Termath; Nicholas, Handy, C.; and David; King, A. Vibrational frequencies for NO chemisorbed on different sites:DFT calculations on Pd clusters. Surf. Sci. 1997, 380 (1): 83-86
    [50] Bethune, S.; Klang, C. H.; de Vries, M. S. ; Gorman, G.. ; Savoy, R. ; Vazquez, J. ; Beyers, R.Cobalt-catalysed growth of carbon nanotubes with single-atomic- layer wall. Nature. 1993, 363 (6430): 605-607
    [51] Andriotis, A. N.; Menon, M.; Froudakis, G. Catalytic Action of Ni Atoms in the Formation of Carbon Nanotubes: A Molecular Dynamics Study. Phys. Rev. Lett. 2000, 85 (15): 3193-3196
    [52] Majetich, S. A.; Jin, Y. Magnetization Directions of Individual Nanoparticles. Science. 1999, 284 (5413): 470-473
    [53] Douglass, D. C.; Bucher, J. P. Bloomfield, L. A. Magic numbers in the magnetic properties of gadolinium clusters. Phys. Rev. Lett. 1992, 68 (11): 1774-1777
    [54] Messmer, R. P. Knudson, S. K.; Johnson, K. H.; Diamond, J. B.; Molecular- orbital studies of transition- and noble-metal clusters by the self-consistent- field-Xαscattered-wave method .Phys. Rev. 1976, 13 (4): 1396-1415
    [55] Castro, M. Jamorski, C.; Salahub, D. R. Structure, bonding, and magnetism of small Fen, Con, and Nin clusters, n≤5. Chem. Phys. Lett. 1997, 271(1-3): 133- 142
    [56] Ballone, P.; Jones, R. O. Structure and spin in small iron clusters .Chem. Phys. Lett. 1995, 233 (5-6): 632-638
    [57] Yang, C. Y. Johnson, K. H.; Salahub, D. R.; Kaspar, J.; Messmer, R. P. Iron clusters: Electronic structure and magnetism. Phys. Rev. 1981, 24 (10): 5673- 5692
    [58] Andriotis, A. N.; Lathiotakis, N.; Menon, M. Magnetic properties of Ni and Fe clusters: a tight binding molecular dynamics study .Chem. Phys. Lett. 1996, 260 (1-2): 15-20
    [59] Gong, X. G.; Zhang, Q. Q. Local spin-density electronic structure and magneticproperties of small iron clusters. J. Phys. Condens Matter. 1995, 7 (12): 2421- 2427
    [60] Watari, N. Ohnishi, S. Atomic and electronic structures of Pd13 and Pt13 clusters Phys. Rev. 1998, 58 (3): 1665-1677
    [61] Reddy, B. V. Nayak, S. K.; Khanna, S. N.; Rao, B. K.; Jena, P. Electronic structure and magnetism of Rhn (n=2–13) clusters. Phys. Rev. 1999, 59 (7): 5214-5222
    [62] Reddy, B. V. Giant magnetic moments in 4d clusters .Phys. Rev. Lett. 1993, 70 (21): 3323-3326
    [63] Li ,Z. Q.;Yu, J. Z. Ohno, K.; Gu, B. L; Czajka, R.; Kasuya, A.; Nishina, Y.; Kawazoe, Y. Phys. Rev. B. 1995, 52 (3): 1524-1527.
    [64] Reuse, F. A.; Khanna, S.N.; Bernel, S. Electronic structure and magnetic behave- ior of Ni13 clusters. Phys. Rev. B. 1995, 52 (16): R11650-R11653
    [65] Chung. S. C. Kruger, S.; Ruzankin, S. Ph.; Pacchioni, G.; Roesch, N. Effects of relativity on the Ni-CO, Pd-CO, and Pt-CO bonding mechanism: a constrained space orbital variation analysis of density functional results. Chem. Phys. Lett., 1996, 248 (1-2): 109-115
    [66] Papas, I. Comparison of the Binding of carbon, nitrogen, and oxygen atoms to single nickel atoms and to nickel surfaces. J. Phys. Chem. 1988: 92 (1): 3079-3086
    [67] Lian, L. Su. C. X.; Armentrout, P. B. Collision-induced dissociation of nickel (Nin+) (n=2-18) with xenon: bond energies, geometrical structures, and dissoci- ation pathways. J. Chem. Phys. 1992, 96 (10): 7542-7254
    [68] Stave, M. S.; DePristo, A. E. The structure of NiN and PdN clusters: 4≤N≤23. J. . Chem. Phys., 1992, 97 (5): 3386-3398
    [69] Andriotis, A. N. Menon, M. Tight-binding molecular-dynamics study offerromagnetic clusters .Phys. Rev. B. 1998, 57 (16): 10069-10081
    [70] Andriotis, A. N. Lathiotakis, N. N. Magnetic properties of clusters of transition metal atoms Europhys. Lett. 1996, 36 (1): 37-42
    [71] Painter, Cx S. Local bonding trends in transition metal cohesion. Phys. Rev. Lett. 1993, 70 (25): 3959-3962
    [72] Zhang, G. W. Feng, Y. P.; Ong, C. K. Local binding trend and local electronic structures of 4d transition metals. Phys. Rev. B.1996, 54 (23): 17208-17214.
    [73] Reuse, F. A.; Khanna , S. N. Geometry, electronic structure, and magnetism of small Nin (n = 2–6, 8, 13) clusters .Chem. Phys. Lett., 1995, 234 (1-3): 77-81
    [74] Nayak, S. K.; Reddy, B. K.; Rao, S. N.; Khanna, P. J. Structure and properties of Ni7 cluster isomers .Chem. Phys. Lett. 1996, 253 (5-6): 390-396
    [75] Castro, M. The role of the Jahn-Teller distortions on the structural, binding, and magnetic properties of small Fen clusters, n≤7. Internatioal Journal of Quantum Chemistry.1997, 64 (2): 223-230
    [76] Kietzmann, H.; Morenzien, J.; Bechthold, P. S.; Gantef?r, G.; Eberhardt, W. Photoelectron spectra of Nbn-clusters: Correlation between electronic structure and hydrogen chemisorption. J. Chem. Phys. 1998, 109 (6): 2275-2278
    [77] Zhao, J. J.; Han, M.; Wang, G. H. Ionization potentials of transition- metal clust- ers. Phys. Rev. B. 1993, 48 (20): 15297-15300
    [78] Billas, I. M. L.; Chatelain, A.; de Heer, W. A. Magnetism from the Atom to the atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science. 1994, 265 (5197): 1682-1684
    [79] Cox, A. J.; Louderback, J. G.; Apsel, S. E. Bloomfield, L. A. Magnetism in 4d-transtiion metal clusters. Phys. Rev. B. 1994, 49 (17): 12295-12298
    [80] Janssens, E.; Neukermans, S.; Lievens, P. Shells of electrons in metal doped simple metal clusters. Current Opinion in Solid State and Material Science 2004,8(3-4):185-189
    [81] Alonsa, J. A.; Baladron, C. Stability and magic numbers of hetero-atomic clus- ters of simple metals. Phys. B. 1988, 154 (1): 73-81
    [82] Kappes, M. M.; Schur M. and Schumacher, E. Are Cluster Abundances Therm- odynamic Properties Observation of Lithium Enrichment in LixNan-x, n≤42. J. Phys. Chem. 1987, 91 (3): 658-663
    [83] Nakajima, A.; Hoshino, K.; Sugioka, T.; Nagamuma, T. Taguwa, T.; Yamada, Y.; Watanabe, K.; Kaya, K. Electronic shell structure of indium-sodium(InnNam) bimetallic clusters examined by their ionization potentials and mass distributions. J. Chem. Phys.1993, 97 (1): 86-90
    [84] Nonose, S.; Sone, Y.; Onodera, K.; Sudo, S.; Kaya, K. Structure and Reactivity of Bimetallic ConVm Clusters. J. Phys. Chem. 1990, 94 (7): 2744-2746
    [85]廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京:清华大学出版社. 1984
    [86] Martin, R. M. Electronic Structure: Basic Theroy and Practical Methods, Cambri- dge University Press, Cambridge, 2004
    [87] Kaxirs, E. Atomic and Electronic Structure of Solids. Cambridge University Press, 2003
    [88]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社. 2002
    [89] Born, M.; Oppenheimer, R. Quantum theory of the molecules. Ann. Phys. 1927, 84: 457-484
    [90] Born, M.; Huang, K. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press, 1954
    [91] Hatree, D. R. The wave mechanics of an atom with a non-Coulomb central field. Proc. Camb. Pil. Soc. 1928, 24(1): 111-118
    [92] (a) Fock, V. Noherungsmethode zur Losung des quantenmechanischen mehrkor- per problems. Z. Phys. 1930, 61: 126; Fock, V.“Self-consistent field”with interchange for sodium. Z. Phys. 1930, 62: 795-805 (b) Fock, V.; Petrashen, M. J. On the numerical solution of generalized equations of the generalized equations of the self-consistent field. Phys. Z. Sowjetunion 1934, 6: 368-376
    [93] Hohenberg, P. and Kohn ,W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136(3B): 864-869
    [94] Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Corre- lation effects. AEC Access. Nos. 1965, 21
    [95] Mao, H. P.; Wang, H. Y.; Ni, Y.; Xu, G. L.; Ma, M. Z.; Zhu Z. H.; Tang, Y. J. Geometry and electronic properties of Aun(n=2-9)clusters. Acta. Phys. Sin. 2004 53 (6): 1766-1773
    [96] Grigoryan, V. G.; Springborg, M. Structural and energetic properties of nickel clusters: 2≤N≤150. Phys. Rev. B., 2004, 70 (20): 205415/1-205415/15
    [97] Jones, N. O.; Beltran, M. R.; Khanna, S. N. Hydrogen adsorption and magnetic behavior of Fen and Con clusters: Controlling the magnetic moment and anisotropy one atom at a time. Phys. Rev. B., 2004, 70 (16): 165406/1-165406/7.
    [98] Wang, W. H.; Chen, J. L .; Gao, S. X.; Wu, G. H.; Wang, Z.; Zheng, Y. F.; Zhao, L. C.; Zhan, W. S. Effect of low dc magnetic field on the premartensitic phase transition temperature of ferromagnetic Ni2MnGa single crystals. J. Phys. 2001, 13 (11): 2607-2613
    [99]肖慎修,王崇愚,陈大朗.密度泛函理论的离散变分法在化学和材料物理中的应用.北京:科学出版社. 1998
    [100] Yang, W. T.; Ayers, P. W. and Wu, Q. Potential Functionals: Dual to Density Functionals and Solution to the v-Representability Problem. Phys. Rev. Lett. 2004, 92 (14): 146404
    [101] Luders, M.; Ernst, A.; Temmerman, W. M.; Szotek, Z. Durham, P. J. Ab initio angle-resolved photoemission in multiple-scattering formulation. J. Phys. 2001, 13 (38): 8587-8606
    [102] Zhao, J .J.; Xie, R. H. Cluster-assembled materials based on Na6Pb. Phys. Rev. B. 2003, 68 (3): 035401/1-035401/5
    [103] Thomas, L. H. The calculation of atomic fields Proc. Cambridge Philos. Soc. 1927, 23: 542-548
    [104] Fermi, E. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements Z. Phys. 1928, 48: 73-79
    [105]徐克尊,陈宏芳,周子肪.近代物理学.高等教育出版社, 1993
    [106] Kroto, H. W.; Heath, J. R. C60: buckminsterfullerene. Nature (London, United Kingdom) 1985, 318 (6042): 162-163
    [107] Stowasser, R.; Hoffmann, R. What Do the Kohn-Sham Orbitals and Eigenvalues Mean. J. Am. Chem. Soc. 1999, 121 (14): 3414-3420
    [108] Hoffmann, R. An Extended Huckel Theory. I. Hydrocarbons J. Chem. Phys. 1963, 39 (6): 1397-412
    [109] Muscat, J.; Wander, A.; Harrison, N. M. On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett. 2001, 342 (3-4): 397-401
    [110] Slater, J. C. Quantum Theory of Molecular and Solids. 4 The Self-Consistent Field for Molecular and Solids. McGraw- Hill 1974
    [111] Vosko, S. H.; Wilk, L. Nusair, M. Accurate spin-dependent electronliquid corr- elation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, 58 (8): 1200-1211
    [112] Martin ,R. M. Electronic Structure: Basic Theory and Practical Methods, New Ed. Canbridge University Press, 2004
    [113] Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988, 38 (6): 3098-100
    [114] Burke, K.; Perdew, J. P.; Wang, Y. Electronic Density Functional Theory: Re- cent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, and M. P. Das, Plenum. 1998, 177
    [115] Adamo, C.; Barone, V. Exchange functionals with improved long- range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108 (2): 664-675
    [116] Perdew, J. P.; Burke, K. M. Ernzerhof Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18): 3865-3868
    [117] Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys.Rev. B. 1986, 33(12): 8822-8829
    [118] Lee, C.; Yang, W.; Parr, R. G. Development of the Colle- Salvetti correlation -energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37 (12): 785-789
    [119] Filippi, C.; Umrigar, C. J.; Taut, M. Comparison of exact and approximate den- sity functionals for an exactly soluble model. J. Chem. Phys. 1994, 100 (2): 1290-1296
    [120] Xu, X.; Goddard, W. A. III, Proc. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Natl. Acad. Sci. USA 2004, 101 (9): 2673-2679
    [121] Becke, A. D. Density-functional thermochemistry. III. The role of exact exchan- ge. J. Chem. Phys. 1993, 98 (7): 5648-5652
    [122] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78 (7): 1396
    [123]徐雪松.丙酮分子团簇及其单分子异构化过程的理论研究[博士论文].吉林.吉林大学. 2003
    [124] James B. Foresman, Eleen Frisch. Exploring Chemistry with Electronic Struc- ture Methos.Second Edition, 1996, Gaussian, Inc, USA
    [125] Montano, P. A. Shenoy, G. EXAFS study of iron monomers and dimmers isolated in solid argon. Solid State Commun. 1980, 35 (1): 53-56
    [126] Purdum, H.; Montano, P. A.; Shenoy, G. K.; Morrison, T. Extended-x-ray- absorption-fine-structure study of small Fe molecules isolated in solid neon. Phys. Rev. B. 1982, 25 (7): 4412-4417
    [127] Moskovits M.; DiLella, D. P. Di-iron and nickeliron. J. Chem. Phys. 1980, 73 (10): 4917-4924
    [128] Nour, E. M.; Alfaro-Franco, C.; Gingerich, K. A.; Laane, J. Spectroscopic stu- dies of nickel and iron clusters at 12 K. J. Chem. Phys. 1987, 86(9): 4779-4782
    [129] Haslett, T. L.; Bosnick, K. A.; Fedrigo, S.; Moskowits M. J. Chem. Phys. 1999, 111 (14): 6456-6461
    [130] Wang. L. S.; Cheng, H. S.; Fan, J. W. Photoelectron spectroscopy f size- oselected transition metal clustersFen-, n=3-24. J. Chem. Phys. 1995, 102 (24): 9480-9493
    [131] Wang, L. S.; Xi, L.; Zhang, H. F. Probing the electronic structure of iron clus- ters using photoelectron spectroscopy. Chem. Phys., 2000, 262 (1): 53-63
    [132] Rohlfing, E. A.; Cox, D. M.; Kaldor, A.; Johnson, K. H. Photoionization spectra and electronic structure of small iron clusters. J. Chem. Phys. 1984, 81 (9): 3846-3851.
    [133] Yang, S.; Knickelbein, M. B. Photoionization studies of transition metal clusters: ionization potentials for iron and cobalt clusters(Fen and Con). J. Chem. Phys. 1990, 93 (3): 1533-1539
    [134] Parks, E. K.; Weiller, B. H.; Klots, T. D.; Riley, S. J. Evidence for polyicosah- edral structure in ammonitated iron, cobalt, and nickel clusters. J. Chem. Phys. 1990, 92: 3813-3826
    [135] Brucat, P. J.; Zheng, L.-S.; Pettiette, C. L.; Yang, S.; Smalley, R. E. Metal cluster ion photofragmentation. J. Chem. Phys. 1986, 84 (6): 3078-3088
    [136] Loh, S. K.; Hales, D. A.; Lian, L.; Armentrout, P. B. Collision-induced dissociation of iron cluster ions (1+) (Fen+) (n=2-10) with xenon: ionic and neutral iron binding energies. J. Chem. Phys. 1989, 90 (10): 5466-85
    [137] Lian, L.; Su, C.-X.; Armentrout, P. B. J. Chem. Phys. 1992, 97 (6): 4072-83
    [138] Armentrout, P. B. In Metal-Ligand Interactions: Structure and ReactiVity; Vol. 474 of NATO Advanced Studies Institute, Science Series C: Mathematical and Physical Sciences; Russo, N.; Salahub, D. R., Eds.; Kluwer Academic Publi- shers: Amsterdam. 1996, 23
    [139] Markin, E. M.; Sugawara, K. Energy-Resolved Collision-Induced Dissociation of. Fe2 (CO)y+ (y = 1-9). J. Phys. Chem. A., 2000, 104 (7): 1416-1422
    [140] Armentrout, P. B. Electronic State-Specific Transition Metal ION Chemistry Annu. Rev. Phys. Chem. 1990, 41: 313-344
    [141] Chatelain, A. Philos. Mag. B. 1999, 79, 1367. Hirt, A.; Gerion, D.; Billas, I. M. L.; Chatelain, A.; de Heer, W. A. Z. Phys. D. 1997, 40 (1-4): 160-163
    [142] Cox, D. M.; Trevor, D. J.; Whetten, R. L.; Rohlfing, E. A.; Kaldor, A. Magnetic behavior or free-iron and iron oxid clusters, Phys. Rev. B. 1985, 32 (11): 7290-7298
    [143] Deaven, D. M.; Ho,K. M. Molecular Geometry Optimization with a Genetic Algorithm, Phys. Rev. Lett., 1995, 75 (2): 288-291
    [144] Chen, J. L.; Wang, C. S.; Jackson, K. A.; Pederson, M. R. Theory of magnetic and structural ordering in iron clusters. Phys. Rev. B., 1991, 44 (12): 6558-6561
    [145] Castro, M.; Salahub, D. R. Density-functional calculations for small iron clus- ters: Fen, Fen+, and Fen- for n≤5. Phys. Rev. B. 1994, 49 (17): 11842-11852
    [146] Gutsev, G. L.; Bauschlicher, C.W.; Jr. Electron Affinities, Ionization Energies, and Fragmentation Energies of Fen clusters( n = 2 ? 6): A Density Functioanl Theory Study, J. Phys. Chem. A., 2003, 107 (36): 7013-7023
    [147] Diéguez, O.; Alemany, M. M. G.; Rey, C.; Ordejon, P.; Gallego, L. J. Density- functional calculations of the structures, binding energies, and magneticmoments of Fen clusters with 2 to 17 atoms. Phys. Rev. B. 2001, 63 (20): 205407/1-205407/6
    [148] K?hler, C.; Seifert, G.; Frauenheim, T. Density functional based calculations for Fen(n≤32). Chem. Phys. 2005, 309 (1): 23-31.
    [149] Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B., 1992, 45 (10): 13244-13249
    [150] Chrétin, S., Salahub, D. R. Kohn-Sham density-funtional study of low-lying states of the iron clusters Fen+/ Fen / Fen-(n=4). Phys. Rev. B.2002, 66 (15): 155425/1-155425/12
    [151] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, H. B.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, B.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian,H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari,K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A., Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03, ReVision B.03 ed.; Gaussian, Inc.: Pittsburgh, PA. 2003.
    [152] Wadt, W. R. Ab initio effective core potentials for molecular calculateons. Potentials for the transition metal. J. Chem. Phys. 1985, 82 (1): 284-298
    [153] Guo, J. J.; Yang, J. X.; Die, D. First principle calculation on AunPt2 (n = 1-4) cluster. J. Mol. Struct.: Theochem. 2006, 764 (1-3): 117-121
    [154] Han, J. G. Xiao, C.; Hageberg, F. Geometric and Electronic Structure of WSiN (N=1-6, 12) Struct. Chem. 2002, 13 (2): 173-191
    [155] Han, J. G.; Hageberg, F. A density functional theory investigation of CrSin (n=1-6) clusters. Chem. Phys. 2001, 263(2-3): 255-262
    [156] Han, J. G. A theoretical investigation on electronic properties and stability of IrSix(x=1-6). Chem. Phys. 2003, 286 (2-3): 181-192
    [157] Rohlfing, E. A.; Cox, D. M.; Kaldor, A. Photoionization measurements on isolated iron-atom clusters. Chem. Phys. Lett., 1983, 99 (2): 161-166
    [158] Gutsev, G. L.; Khanna, S. N.; Jena, P. Unambiguous assignment of the ground state of a nearly degenerate cluster. Phys. Rev. B. 2000, 62 (3): 1604-1606
    [159] Gutsev. G. L. Key role of antiferrimagnetic states in remagnetization of iron clusters, Phys. Rev. B. 2002, 65 (13): 132417/1-132417/4
    [160] Morse, M. D. Clusters of transition-metal atoms. Chem. Rev. 1986, 86 (6): 1049-1109
    [161] B?yükata, M.; Borges, E.; Brage, J. P.; Belchior, J. C. Size evolution of structures and energetics of iron clusters(Fen, n≤36): Molecular dynamics studies using a Lennard-Jones type potential. Journal of Alloys and co mpounds 2005, 403 (1-2): 349-356
    [162] Ma, Q. M.; Xie, Z.; Wang, J.; Liu, Y.; Li, Y. C. Structure, binding energies and magnetic moments of small iron clusters: A study based on all-electron DFT. Solid. State. Communications. 2007, 142 (1-2): 114-119
    [163] Oda, T.; Pasquarello, A.; Car, R. Fully Unconstrained Approach to Noncollinear Magnetism: Application to small Fe clusters. Phys. Rev. Lett. 1998, 80 (16): 3622-3625
    [164]张永刚.金属间化合物结构材料.北京:国防工业出版社. 2001
    [165]范润华. Fe3A1金属间化合物材料的强韧化机制研究. [硕士学位论文].济南:山东工业大学材料科学与工程学院. 1998
    [166]尹衍升,施忠良,刘俊友.铁铝金属间化合物一合金化与成分设计.上海:上海交通大学出版社,1996
    [167] Ikeda, O.; Ohnuma, I.; Kainuma, R. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe-Al system. Intermatallics, 2001 (9): 755-761
    [168]谭明辉,郭建亭. Fe3Al和FeAl合金的高温氧化行为.腐蚀科学与防护技术, 1993, 5 (2): 109-112
    [169] Kai, W.; Huang, R. T. The corrosion behavior of Fe-Al alloys in H2/H2S/ H2O atmosphere at 700-900℃. Oxid. Met. 1977, 48 (1-2): 59-64
    [170] Nachman, J. F.; Duffy, E. R. Effect of alloying additions on sea water corrosion resistance of iron--aluminum base alloys. Corrosion , 1974, 30 (10): 357-365
    [171] Defrancq, J. N. Cast Iron With High Al Content in H2SO4. Corrosion Journal 1977, 28 (7): 480-485
    [172] Shankar Rao, V.; Baligidad, R.G.; Raja, V. S. Effect of Carbon on the Long- Term Oxidation Behavior Fe3Al Iron Aluminides. Oxidation of Metals. 2002, 57 (5-6): 449-471.
    [173] Shankar Rao, V.; Effect of Carbon on the corrosion behavior of Fe3Al interm- etallic in 0.5N sulphuric acie. Corros. Sci. 2002, 44 (10): 521-533
    [174] Frangini, S. Corrosion rate and anodic dissolution behavior of B2- iron alumi- nide alloy in sulfuric acid. Corrosion. 1999, 55 (1): 89-95
    [175] Frangini, S.; Lascovich , J.; De Cristofaro, N. Pitting susceptibility of chromium modified passive films of a B2-FeAl intermetallic alloy Mater. Sci. Forum 1995, 185-188: 1041-1048
    [176] Frangini, S.; De Cristofaro, N. B.; Mignone, A. Lascovich, J.; Giorgi, R. A. combined electrochemical and XPS study on the passivity of B2 iron aluminides in sulphuric acid. Corros. Sci. 1997, 39 (8): 1431-1442
    [177] Frangini, S.; Lascovich, J. AC-Impedance Study of Passive B2 FeAl Intermeta- llic Alloy in Sulfuric-Acid. Electrochim. Acta. 1995, 40 (5): 637-42
    [178] Seri, O.; Tagashira, K. Effects of sodium chloride concentration in solution on corrosion weight loss and dissolution of iron-aluminum(FeAl3) intermetallic compound in aluminum-1% iron alloy. Journal of Japan Institute of Light Metals, 1988, 38 (7): 407-413
    [179]余兴泉.孙扬善. Fe3Al基合金耐氯离子介质腐蚀研究.东南大学学报, 1995, 25 (5): 77-83
    [180]刘江南.杨德庄. Fe3Al-Mn合金的电化学腐蚀特性.西安工业学院学报. 1996, 16 (4): 331-335
    [181] Cristofaro, D. N.; Frangini, S. Passivity and passivity breakdown on aβ-FeAl intermetallic compound in sulphate and chloride containing solutions. Corros. Sci. 1996, 38 (2): 307-315
    [182] Gonzalez-Rodriguez, J.G. Electrochemical noise generated during pitting corr- osion of sprayed Fe40Al intermetallics. Electrochemical and Solid-State Letters. 2000, 3 (10): 470-472
    [183] Reddy, B. V.; Jena, P.; Deevi, S. C. Electronic structure and transport properties of Fe-Al alloys. Intermetallics 2002, 8 (9-11):1197-1207
    [184] Das, G. P.; Rao, B. K.; Jena, P. Electronic structure of substoichiometric Fe-Al intermetallics .Phys. Rev. B. 2002, 66 (18): 184203/1-184203/13
    [185] Reddy, B. V.; Khanna, S. N.; Deevi, S. C. Electronic structure and magnetism in (FeAl)n (n≤6) clusters Chem. Phys. Lett. 2001, 333 (6): 465-470
    [186] Huber, K. P.; Herzberg, G. Constants of Diatomic molecules, Molecular Spectra and Molecular Structure, Vol.4, Van Nostrand Rienhold, New York, 1979
    [187] Yu, S. Q.; Chen, S. G.; Zhang, W. W.; Yu, L. H.; Yin, Y. S. Theoretical study of electronic structures and magnetic properties in iron clusters (n≤8). Chem. Phys.Lett 2007, 446 (1-3): 217-222
    [188] Hariharan, P. C. Influence of polarization functions on MO hydrogenate on ene- rgies. Theor. Chim. Acta. 1973, 28 (3): 213-22
    [189] Jones, R. O. Structure and bonding in small aluminum clusters. Phys. Rev. Lett. 1991, 67 (2), 224-7; Jones, R. O. Simulated annealing study of neutral and charged aluminum and gallium clusters: Aln and Gan. J. Chem. Phys. 1993, 99 (2), 1194-206
    [190] Boustani, I.; Pewestorf, W.; Fantucci, P.; Bonaic-Kouteck?, V.; Kouteck?, J. Systematic ab initio configuration-interaction study of alkali-metal clusters: relation between electronic structure and geometry of small lithium clusters. Phys. Rev. B 1987, 35 (18): 9437-9450
    [191] Spiegelmann, T.; Pavolini, D. Ab inition calculations of the electronic structures of small sodium and potassium atomic and ionic clusters(Nan, Nan+, Kn, and Kn+(n≤6) including core-valence interaction. J. Chem. Phys. 1988, 89 (8): 4954-64
    [192] Upton, T. H. A perturbed electron droplet model for the electronic structure of small aluminum clusters. J. Chem. Phys. 1987, 86 (12), 7054-64
    [193] Kolchin, A. M.; Hall, R. W. Electronic properties of small neutral and charged beryllium clusters. J. Chem. Phys. 2000, 113 (10): 4083-4092
    [194] Zhai, H. J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I.; Zakrzewski, V. G.; Photoelectron Spectroscopy and ab Initio Study of B3- and B4- Anions and Their Neutrals. J. Phys. Chem. A. 2003, 107 (44): 9319-9328
    [195] Boustani, I.; Structure and stability of small boron clusters: A density functional theoretical study. Chem. Phys. Lett. 1995, 240 (1-3): 135-140
    [196] Apiňaniz, E.; Garitaonandia, J. S.; Plazaola, F. Influence of disorder on the magnetic properties of FeAl alloys: theory. Journal of Non-Crystalline Solids,2001, 287 (1-3): 302-307
    [197] Reddy, B. V.; Deevi, S. C.; Reuse, F. A. Effect of size, disorder, and impurities on magnetism in FeAl. Phys. Rev. B. 2001, 64 (13): 132408/1-132408/4
    [198] Jartych, E.; Zurawicz, J. K.; Oleszak, D. J. Magn. Mater, 1998,186:299.
    [199] Apiňaniz, E.; Plazaola,F.; Garitaonandia, J. S.; Martín D.; Jimenez J. A. Study of the Enhancement of theMagnetic Properties of Fe70Al30 in the Order-disorder Transition. J. Appl. Phys. 2003, 93 (10): 7649-7651
    [200] Ouyang, Y.; Chen, H.; Zhang, X. Ab initio studies of small AlmFen clusters. Theor. Chem. Acc. 2005.
    [201] Schultz, N. E.; Staszewska, G.; Staszewski, P.; Truhlar, D. G. Validation of Theoretical Methods for the Structure and Energy of Aluminium Clusters. J. Phys. Chem. B. 2004, 108 (15): 4850-4861.
    [202] Erkoc, S.; Oymak, H. AlTiNi Ternary Alloy Clusters: Molecular Dynamics Simulations and Density Functional Theory Calculations. J. Phys. Chem. B 2003, 107 (44): 12118-12125
    [203] Deshpanda, M. D.; Kanhere, D. G.; Vasiliev, I.; Martin, R. M. Ab initio absorp- tion spectra of Aln(n=2-13) clusters. Phys. Rev. B. 2003, 68 (3): 035428/1 -035428/5.
    [204] Pacchioni, G.;Koutecky, J. Electronic structure and properties of small alumin- um and germanium clusters. Berichte der Bunsen-Gesellschaft. 1984, 88 (3): 242-5.
    [205]夏兰廷.黄桂桥.丁路平.碳钢及低合金钢的海水腐蚀性能.铸造设备研究. 2002, 4: 14-17
    [206]何忠治.电工钢.北京:冶金工业出版社. 1996
    [207]李国栋.当代磁学.合肥:中国科学技术大学出版社. 1999
    [208]李具仓,赵爱民,王丽娜.硅对铁基合金组织和耐蚀性能的影响.腐蚀与防护. 2006, 27 (10): 492-495.
    [209] Nishino, Y.; Inoue. S. Y. Anomalous Temperature Dependence of the Electrical Resistivity in Binary and Pseudobinary Alloys Based on Fe3Si. Phy. Rev. B,1993. 48 (18):13607-13613
    [210] Beck, S. M. Mixed metal-silicon clusters formed by chemical reaction in a supersonic molecular beam: implications for reactions at the metal/silicon interface. J. Chem.Phys.1989, 90 (11): 6306-6312.
    [211]徐增华.金属耐蚀材料.专题讲座.
    [212]徐增华.金属耐蚀材料.腐蚀与防护. 2001, 22(1): 46-48.
    [213] Ho, J.; Polak, M. L.; Ervin, K. M.; Lineberger, W. C. Photoelectron spectrosc- opy of nickle group dimers: the nickel palladium, and platinum diatomic mononegative ions(Ni2-, Pd2-, and Pt2-). J. Chem. Phys. 1993, 99 (11): 8542-8551.