基于燃烧场瞬态结构的低NO_x旋流燃烧器实验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃烧器是电站锅炉中的重要热工设备,对于燃料的稳定燃烧和燃烧效率有很大影响。旋流燃烧器作为一种高效燃烧器已经广泛应用于锅炉燃烧中,但其通常导致大量的NOx生成。为了在提高能源利用效率的同时适应越来越严格的环境保护要求,对于高效清洁的能源利用方式的需求日益受到重视。因此,开发一种低NOx旋流燃烧器具有重要意义。
     首先,本文借鉴德国SM-4型煤粉旋流燃烧器的建立了可应用于甲烷-空气,煤粉-空气燃烧的旋流燃烧器和小型燃烧室。实验台的设计考虑了在该实验台上能够开展不同燃烧工况的研究,以及如何便于采用目前先进的光学测试手段对燃烧流场进行实验研究。
     其次,在不同的外二次风率和外二次风旋流数的工况下,利用烟气分析仪和热电偶对燃烧室内温度场和烟气组分浓度进行了测量,在以天然气为燃料时,保持过剩空气系数和旋流数等条件不变,增大二次旋流风率可降低燃烧过程中NO的生成,但却会增加CO的生成。增大外二次风旋流数可以降低燃烧过程NO的生成。在以煤粉为燃料时,增大二次旋流风率会增加NO的生成。
     然后,利用二维粒子图像速度仪(PIV)系统对变工况甲烷/空气、煤粉/空气的燃烧速度场进行了一系列测量,得到了较好的速度场信息。从PIV实验可以看出,在以天然气为燃料燃烧的流场中,保持在总风量不变的情况下,增大外二次风率使速度梯度更大,对火焰结构影响更大,从而使得火焰的收缩更明显。在保持外二次风率不变的情况下,增大外二次风旋流数将会削弱前期混合,加强后期混合。对于煤粉燃烧而言,增大外二次风率能增强空气与煤粉混合。在保持外二次风率不变的情况下,增加外二次风的旋流数将加强煤粉与空气混合。
     最后,利用商用CFD软件Fluent,采用大涡模拟方法结合简化PDF燃烧模型和Smagorinsky-Lilly亚网格湍流模型对选定实验工况下的扩散燃烧进行了数值研究。通过大涡模拟计算旋流燃烧室内天然气的燃烧过程,并能较好的符合实验规律。大涡模拟可用于追踪复杂湍流的瞬态结构和时均场。
Burner is important thermal equipment in utility boiler, and it has a significant impact on stable combustion and combustion efficiency. Swirl burner has been widely used in boiler as a highly efficient burner. However, it usually generates a large number of NOx. In order to improve the efficiency of energy utilization and adapt to the increasingly strict restriction on the requirements of environment protection, it is important to develop clear and efficient methods for energy utilization. Therefore, it is meaningful to develop a low-NOx swirl burner.
     First of all, an experimental facility which can used methane-air and coal-air as fuel has been designed and set up. Author placed high premiums on the following two aspects. Firstly, experiment on the facility in different combustion conditions. Secondly, it will be convenient for the application of advanced laser diagnostics during the experimental research of combustion flow fields.
     Secondly, apply flue-gas analyzer and thermocouple to do experiment in chamber which can obtain gas species concentration and temperature field in different external secondary swirl air ratios and swirl numbers. In nature gas combustion, maintained the excess air ratio and swirl number as constant, increasing external secondary swirl air ratios or increasing external secondary swirl number can reduce amount of NOx generation. in pulverized coal combustion, increasing external secondary swirl air ratios can increase amount of NOx generation.
     Then, a 2-D Dantec's PIV(particle image velocimetry) system was used to measure the combustion flow fields of methane/air and pulverized coal/air in different conditions, and reasonable results has been obtained. In nature gas combustion, maintain total air volume and increase the external secondary swirl air ratio result in increasing velocity gradient and shorten flame length. When maintain external secondary swirl air ratio as constant, increase external secondary swirl number can weaken former mixed and strengthening the latter mixed. For pulverized coal combustion, increase external secondary swirl air ratio can enhance mixing of air and coal. When maintain external secondary swirl air ration as constant, increase external secondary air swirl number will strengthen the mixing of pulverized coal and air.
     Methane/air combustion process has been studied with commercial CFD soft-ware Fluent. Using large-eddy simulation, simplify PDF combustion model and the Smagorinsky-Lilly sub-grid turbulence model to study the combustion process. Through large-eddy simulation on methane/air combustion process in the chamber, its result meets the experiment data appropriately. Large-eddy simulation can be used to track the complex turbulence structure and transient field.
引文
[1]隋建才,杜云贵,徐明厚,刘艺.我国煤燃烧研究发展现状与趋势[J].热能动力工程,2008,23(2):111~116
    [2]崔民选,2007中国能源发展报告,社会文献出版社,2007
    [3]赵亚玲,王丹平,郑长科.浅析我国燃煤污染危害及其防治方法[J].中州煤炭,2006,(6):16~19.
    [4] XU MINGHOU,YAN RONG,ZHENG CHEUGUANG,ed al.Status of trace elements emission in a coal combustion process:a review[J].Fuel Processing Technology,2004,85(2/3):215~237
    [5]王长会.我国氮氧化物的污染现状和治理技术的发展及标准介绍[J].机械工业标准化与质量,2008,(3):20~21
    [6]殷红,陈丰.广州瑞明电厂2_125MW机组氮氧化物减排工艺特点[J].广东科技,2008,(1):178~180
    [7]刘圣华,姚明宇,张宝剑.洁净燃烧技术[M].化学工业出版社,2006
    [8]庄慧颖.旋流燃烧器与直流燃烧器的特点比较及发展前景[J].中国电力,1998,31(2):35~37
    [9]贾荣荣.低压旋流式煤气燃烧器的数值模拟及优化设计[硕士学位论文].北京建筑工程学院,2007.12
    [10]漆凯.旋流式工业燃烧器热态实验[硕士学位论文].北京建筑工程学院,2002.12.
    [11]董志勇.射流力学[M].北京:科学出版社,2005
    [12]董艳,孙博.低NOX旋流燃烧器的研究进展[J]节能,2005,(8):11~14
    [13]何季民.旋流燃烧器技术发展趋势[J].湖南电力,1995,(2):43~51
    [14]吴碧君,刘晓勤.燃煤锅炉低NOX燃烧器的类型及发展[J].电力环境保护,2004,(9):24~27
    [15]毛健雄,毛健全等.煤的清洁燃烧[M].北京:科学出版社,1998
    [16]金振齐.浓淡型煤粉燃烧器述评[J].能源研究与利用,2001,(2):9~12
    [17]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002,293~295
    [18]王军,李如翔等.低NOX燃烧器的新发展及在我国的应用前景[J].华北电力技术,1995,(3):59~62
    [19]秦裕琨,李争起等.旋流煤粉燃烧技术的发展[J].热能动力工程,1997,(7):241~244
    [20]郑义,白大鸣.径向旋流浓淡煤粉燃烧器的试验研究[J].黑龙江电力,1999,(12):31~33
    [21]赵晴川,钱壬章等.开缝钝体燃烧技术及其应用[J].山东电力技术,2000(5)
    [22]赵伶玲.花瓣燃烧器的稳燃性能与应用研究[博士学位论文]东南大学,2005.9
    [23]赵伶玲,周强泰,赵长隧.花瓣稳燃器回流区的特性分析[J].动力工程,2006,26(3):379~382
    [24]李勇,刘志友,安亦然.介绍计算流体力学通用软件-Fluent[J].水动力学研究与进展,2001,16(2):254~258
    [25] Gui,L,Lindken,R,and Merzkirch,W. Phase-separated PIV Measurements of the flow around systems of Bubbles Rising in Warter.ASMEFEDSM’97,June 22-26 paper FESSM97~3103
    [26] K.T.Kiger,C.Pan. PIV Technique for the Simultaneous Measurement of Dilute Two-Phase Flows. Journal of Fluids Engineering,2000,122:811~818
    [27] E.Delnoij, J.Westerweel, et al. Ensemble correlation PIV applied to bubble plumes rising In a bubble column.Chemical Engineering Science,1999,54:5159~5171
    [28] E.Delnoij,J.A.M.Kuipers,et al. Measurement of gas–liquid two-phase flow in bubble columns using ensemble correlation PIV. Chemical Engineering Science,2000,55:3385~3395
    [29] A.Tokuhiro,M.Maekawa,et al. Turbulent flow past a bubble and an ellipsoid using shadow-image and PIV techniques. International Journal of Multiphase Flow,1998,24:1383~1406
    [30] W.X.Jin,S.C.Low,S.C.M.Yu. Some experimental observations on the single and multi-phase flow patterns in a model flash evaporation chamber. Int.Comm. Heat Mass Transfer,1999,26(6):839~848
    [31] T.W.Martin,R.D. Wildman, et al. Capturing gas and particle motion in an idealized gas-granular flow. Powder Technology,2005,155:175~180
    [32] A.Zachos, M.Kaiser,W. Merzkirch. PIV measurements in multiphase flow with nominally high concentration of the solid phase[J].Experiments in Fluids,1996,20:229~231
    [33] Kaoru Miyazaki,Gang Chen,et al. PIV measurement of particle motion in spiral gas–solid two-phase flow[J].Experimental Thermal and Fluid Science,1999,19:194~203
    [34] M.I.Yorquez-Ramirez,G.R.Duursma. Insights into the instantaneous freeboard flow above a bubbling fluidised bed.Powder Technology,2001,116:76~84
    [35] G.R.Duursma,D.H.Glass,et al. PIV investigations of flow structures in the fluidised bed freeboard region.Powder Technology,2001,120:2-11
    [36] G.A.Bokkers,M.van Sint Annaland,J.A.M.Kuipers. Mixing and segregation in a bidisperse gas–solid fluidised bed a numerical and experimental study.Powder Technology, 2004, 140: 176~186
    [37]王希麟,张大力等.两相流场粒子成像测速技术(PTV-PIV)初探[J].力学学报,1998,30(1):121~125
    [38]潘晓辉,罗锐等.悬浮颗粒两相流图像处理方法[J].清华大学学报,2002,42(5):680~683
    [39]张东东,许宏庆,何枫.气固两相射流瞬时速度场和浓度场的PIV研究[J].清华大学学报,2003,43(11):1491~1494
    [40]杨任刚,张东东等.气固两相自由射流的瞬态流场研究[J].实验流体力学,2005,19(1):22~25
    [41]白建基,郑水华等.雷诺数对气固两相圆湍射流影响的实验研究[J].浙江大学学报,2006,40(3):432~437
    [42]罗坤,陈松等.气固两相圆柱绕流近场特性的实验研究[J].中国电机工程学报,2006,26(24):116~120
    [43]高翔,李兴华等.半干法烟气脱硫塔内速度场研究[J].能源工程,2005,(2):26~29
    [44]石惠娴.PIV技术应用于循环流化床颗粒运动测试[J].化学反应工程与工艺,2004,20(4):294~299
    [45] SHI Hui-xian. Experimental Research of flow Structure in A gas-solid circulating fluidized bed riser by PIV. Journal of Hydrodynamics, 2007, 19(6):712-719
    [46]由长福,祁海鹰,徐旭常等.采用PTV技术研究循环流化床气固两相流动[J].应用力学学报,2004,21(4):1~5
    [47]赵海亮,由长福等.两相流显微PIV/PTV系统的开发[J].实验力学,2005,20(4):595~600
    [48]宫武旗,张义云等.PIV适用于两相流稀相微粒速度场测量的算法探讨[J].水动力学研究与进展,2004,19(4):547~551
    [49]王大伟,王元,杨斌.风沙两相PIV测量算法研究[J].力学学报,2006,28(3):302-308
    [50]王玲玲.大涡模拟理论及其应用综述[J].河海大学学报,2004,32(2):261~265
    [51] Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment[J]. Month Wea Rev, 1963, 91:99~164.
    [52] Deardorff J W.A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.Journal of Fluid Mechanics,1970,41:453~480
    [53] Poimelli U,Ferziger J H,Moin P,et al. New approximation boundary conditions for large eddy simulations of wall-boundary flows. Physics of Fluids,1989,1:1061~1068
    [54] Moin P,Kim J. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics,1982,118:341~377
    [55] Rodi W, Ferziger J H, Breuer M, et al. Status of large eddy simulation results of a workshop. Journal of Fluids Engineering,1997,119:248~262
    [56]赵坚行.燃烧的数值模拟.北京:科学出版社.2002
    [57] Lilly D K. On the Application of the Eddy Viscosity Concept in the Inertial Subrange of Turbulence[R]. NCAR Manuscript 123, 1966.
    [58] L.X. Zhou. Theory and numerical modeling of turbulent Gas-particle Flows and Combustion,Chap.9,CRC Press, Boca Raton,FL,1993