引进300MW CFB锅炉分离器入口烟道气固流动特性的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床是近20年来发展起来的一种高效清洁燃烧技术,它有效地解决了节能与环保两方面的问题,代表了当今燃烧技术的一大进步。旋风分离器作为保证循环流化床锅炉具有一定颗粒循环倍率、燃烧效率和脱硫效率的关键设备,其性能的优化一直是CFB锅炉发展的一项关键技术。
     为了适应循环流化床锅炉的大型化,目前世界上出现了多种旋风分离器的改进形式。在分离器入口烟道的改进方面,我国四川白马电厂从法国Alstom公司引进的300MW CFB锅炉中,其分离器入口烟道突破了以前的设计,采用了独特的分离器长进口管,这种措施可确保足够大的颗粒加速度和颗粒预分离,大大地提高了分离效率,降低了烟气中的飞灰含炭量。
     为了消化吸收国外先进技术,作者以Alstom公司设计的300MW CFB锅炉改进型长烟道和传统型短烟道两种分离器入口烟道为原型,按相应几何比例缩放,制作了两个入口烟道模型,将其安装在一套循环流化床锅炉冷模试验装置上,进行了冷态试验研究,同时以数值模拟对试验研究进行补充,研究的主要内容有:
     ①对长、短烟道气固两相流动特性,包括烟道压降,颗粒的运动轨迹和加速性能进行试验研究。
     ②分离器分别配长烟道和短烟道时,对其分离效率和压降进行对比试验研究。
     ③对长、短烟道内颗粒运动轨迹,两种烟道分别配分离器时,分离器内部流场和分离器分离效率进行数值模拟,并与试验结果进行比较。
     试验研究得到的主要结论有:
     ①长、短烟道都能对固体颗粒进行加速,且长烟道的加速性能明显优于短烟道的加速性能。
     ②在相同入口风速下,配长烟道的分离器分离效率比配短烟道的分离器分离效率高。
     ③在相同工况下,长烟道的压降比短烟道的压降要大,配长烟道的分离器压降比配短烟道的分离器压降大。
     在冷态试验的基础上,数值模拟得到的主要结论有:
     ①在流场方面,短烟道内的空气流场比长烟道的空气流场稳定,长烟道在转角处的烟道内壁处会形成回流;配短烟道的分离器内部流场比配长烟道的分离器的内部流场的稳定性和对称性好。
     ②模拟得到的颗粒在长、短烟道内的运动轨迹和试验结果基本一致,认为试验中所选取的示踪粒子是正确的。
     ③配长烟道的分离器分离效率要高于配短烟道的分离器分离效率,这与试验结果一致。同时,从烟道入口不同位置进入的相同粒径的颗粒的分离效率有所不同,且配长烟道的分离器由于射入位置的不同而导致分离效率的差异比配短烟道的分离器要大。
As a highly-efficient clean combustion technology, the Circulating Fluidized Bed (CFB) boiler, which effectively solves the problems of energy saving and environmental protection, has developed over 20 years, and it represents the great progress in combustion technology. The cyclone separator is the key equipment for warranting the certain particle circulation rate, good combustion and desulfurization efficiency of the circulating fluidized bed boiler, therefore the optimization of its performance is the key technology in the development of CFB boiler.
     To meet the demand of scale-up of the CFB boiler, a lot of improvements of cyclone separators have been made in the world these days. As for the improvements of cyclone separator’s inlet duct, Alstom 300MW CFB boiler, which was imported by Sichuan BAIMA power station, used a unique duct that made a breakthrough compared with the previous designs of its inlet duct of cyclone. The new design adopts long inlet duct to help particles obtain enough high acceleration and pre-separation, which improves separation efficiency greatly and reduces carbon content of fly ash in flue gas.
     In order to digest and absorb the advanced foreign technology, the model inlet ducts used the modified long inlet duct and the traditional short inlet duct devised by Alstom Company as their prototypes. The model inlet ducts were reduced according to a certain ratio in geometry size and were installed on a circulating fluidized bed boiler’s cold test rig. Cold tests were carried out on the cold test rig, and based on the cold tests, numerical simulation were carried out as well. The main tasks of the study are as follows:
     ①Cold tests on gas solid flow characteristics, including the pressure drop and the acceleration performance of particle phases in the two inlet ducts were carried out.
     ②Measuring and computing the separation efficiency and the pressure drop of the cyclone connected with the two different inlet ducts.
     ③Simulating the motion trajectories of particles in the two different inlet ducts, the flow fields and the separation efficiency of the cyclone connected with the two different inlet ducts, and the simulation results were compared with the results of cold tests.
     The results of the cold tests mainly include:
     ①Particles in the two kinds of inlet ducts were accelerated and the acceleration performance of particles in the long inlet duct was better than the one in the short inlet duct.
     ②The separation efficiency of the cyclone connected with the long inlet duct was higher than that with the short inlet duct.
     ③The pressure drop of the long inlet duct was higher under the same operating conditions; the pressure drop of the cyclone connected with the long inlet duct was higher under the same operating conditions.
     Based on the cold tests, the simulation results indicate:
     ①The stability of flow fields in the short inlet duct was better than that in the long inlet duct, and there were reflux in the long inlet duct; the stability and the symmetry of flow field in the cyclone connected with the long inlet duct was better than that with the short inlet duct.
     ②Motion trajectories of particles obtained by numerical simulation in the two kinds of the cyclone’s inlet ducts was almost the same as the ones photographed by a high-speed camera, which proved that the tracer particles selected were appropriate.③The separation efficiency of the cyclone connected with the long inlet duct was higher than that with the short inlet duct, which was the same as the results of cold tests; the separation efficiency of particles that injected from different positions of inlet duct’s cross section was different; the difference of separation efficiency was caused by different injection positions of cyclone, and the difference was greater in the case of the cyclone connected with long inlet duct.
引文
[1]王革华等.能源与可持续发展[M].北京:化学工业出版社,2005.
    [2]赵新木等.循环流化床燃烧技术的最新进展[J].电站系统工程,2004,6: 1—3, 29.
    [3]“十一五”先进能源技术领域发展战略研究报告[R].科技部高新司,2007.
    [4] Stamatelopoulos, Seeber and Skowyra. Advancement in CFB Technology: A combination of excellent environmental performance and high efficiency[C]. 18th International Conference on Fluidized Bed Combustion, 2005.
    [5] Bo Leckner. Fluidized Bed Combustion: Mixing and Pollutant Limitation[J]. Energy Combust. Sci, 1998, 24: 31—61.
    [6] M.M.Marchetti. ALSTOM’s Large CFBS and Results[C]. Proceedings of 17th International Fluidized Bed Combustion Conference, 2003.
    [7]中国洁净煤技术“九五”计划和2010年发展纲要[R].国家计委,1997.
    [8]产业结构调整指导目录(2005年本)[R].国务院,2005.
    [9]产业结构调整指导目录(2005年本)[R].国家发改委,2005.
    [10]国务院关于加快振兴装备制造业的若干意见[R].国务院,2006.
    [11]国家中长期科学和技术发展规划纲要(2006—2020年)[R].国务院,2006.
    [12]中华人民共和国国民经济和社会发展第十一个五年规划纲要[R].国务院,2006.
    [13]汪播.法国循环流化床技术大型化最新发展[J].山东电力技术,2003,4: 81.
    [14]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006.
    [15] Zhongyang Luo, Kefa Cen. Research and Development on Circulating Fluidized Bed Combustion Technology in China[C]. The 8th International Conference on Circulating Fluidized Beds, 2005.
    [16]冯俊凯等.循环流化床燃烧锅炉[M].北京:中国电力出版,2003.
    [17]刘德昌,陈汉平.循环流化床锅炉大型化中的问题[J].东方锅炉, 1996,4: 12—18 .
    [18]庄慧颖.循环流化床大型化的几个关键问题探讨[J].华北电力技术, 1998,10: 26—28.
    [19]周一工.国外大型循环流化床锅炉的发展与问题[J].北京节能,1999,2: 7—10.
    [20]岑可法等.循环流化床锅炉理论、设计与运行[M].北京:中国电力出版社,1998.
    [21] P.巴苏,S.A.弗雷泽著.岑可法,倪明江,骆仲泱等译.循环流化床锅炉设计与运行[M].北京:科学出版社,1994.
    [22] A.C.霍夫曼,L.E.斯坦因著.彭伟明,姬忠礼译.旋风分离器——原理、设计和工程应用[M].北京:化学工业出版社,2004.
    [23]张海红.旋风分离器流场与分离性能的数值模拟研究.郑州大学学报(工学版)[J].2004,5:6—9.
    [24] Abdually A F, et al. Operating Experience of a Circulating Fluidized Bed Boiler Designed by Foster Wheeler[C]. Proc of Fifth Annual Fluidized Bed Conference, 1989
    [25] Robert Gamble,et al. Pyroflow Compact: A Second Generation CFB Boiler by Ahlstrom Pyropower[C]. Proc of 13th Inter. Conf. on FBC, 1993
    [26]姚建奎,倪明江,骆仲泱等.下排气旋风分离器颗粒轨道模型[C].高校工程热物理第四届学术会议论文集,1992.
    [27] Ruotta S, et al. Development of a CFB Reactor with a Horizontal Cyclone[C]. Proc of 9th Int. Conf. on FBC, 1987.
    [28]曹柏林,宋泽唏,毛国峰.旋风分离器的循环流化床锅炉的实验研究[J].动力工程, 1992,.6: 31—35.
    [29]富震宗,刘柏谦,李勇等.用于循环流化床的迷宫式分离器的冷态试验研究[C].第五届全国流态化会议文集,1990.
    [30]吴小林等.双入口直切式旋风分离器流场内旋进涡流核现象的研究[J].化工机械,2002,1: 1—4.
    [31]廖艳芬,王树荣,骆仲泱等.方形分离器的实验研究与分析[J].电站系统工程,2003,3: 12—14.
    [32]王玉召,吕俊复,张建胜等.220t/h水冷方形分离器循环流化床锅炉的性能[J].动力工程, 2005,3: 343—348.
    [33]刘守文,张衍国,目涛等.通道式分离器的特性研究[J].动力工程, 2003, 6: 2461—2465.
    [34]武俊,李清海,张衍国.通道式分离器性能的优化及其应用[J].动力工程, 2004, 5: 732—733.
    [35]李军,刘汉周,卢啸风.循环流化床锅炉旋风分离器的最新发展[J].能源研究与信息, 2004, 2: 21—22.
    [36]黄永军,卢啸风,刘汉周.大型循环流化床锅炉的结构布置与试验研究[J].动力工程, 2006, 1: 49—53, 115.
    [37]黄永军,卢啸风,刘汉周.循环流化床大型化技术方案分析[J].电站系统工程, 2005, 11: 11—13, 16.
    [38]杨金华.高温旋风分离器中心管的改进与问题探讨[J].工业锅炉, 1998, 4: 29.
    [39] Jong-Min Lee, Jae-Sung Kim, Jong-Jin Kim, et al. Status of the 200MWe Tonghae CFB Boiler after Cyclone Modification[C]. Proceedings of Second Korea-China Joint Workshop on Coal & Clean Energy Utilization Technology. Taejion, Korea, 1998.
    [40]彭雷,李军,王国鸿.排气管偏置对CFB锅炉旋风分离器性能的影响[J].热能动力工程, 2004, 2: 153—156.
    [41] Muschelknautz U, Muschelknautz E. Special design of inserts and short entrance ducts to recirculating cyclones[C]. Circulating fluidized bed technology conference, 1997.
    [42]白玉刚,吕俊复,岳光溪等.入口带有加速段方形分离器结构优化的试验研究[J].中国粉体技术, 1991, 5: 1—4.
    [43]赵兵涛.旋风分离器进口结构的优化及其性能的试验研究[J].化工机械, 2003, 4:195—205.
    [44]赵兵涛,沈恒根.旋风器进口回转通道分离效率模型[J].化工机械, 2001, 6: 321—323.
    [45]赵兵涛,沈恒根,张吉光.不同进口回转通道旋风器性能的关联评价[J].建筑热能通风, 2003, 2: 21—22.
    [46]沈恒根,刁永发,党义荣等.多进口旋风分离器单体性能的试验研究[J].环境工程, 1998, 4: 33—34.
    [47] Zhao B. T. Experimental investigation of flow patterns in cyclone with conventional and symmetrical inlet geometries[J]. Chem. Eng. Technol, 2005, 9: 969—972.
    [48] Qian F. P. Zhang M. Y. Effects of the inlet section angle on the flow field of a cyclone[J]. Chem. Eng. Technol, 2007, 11: 1564—1570.
    [49]赵斌,田小藏,郑水山.提高传统型旋风除尘器除尘效率的措施[J].河南冶金, 2007, 1: 45—47.
    [50]黄星玮,钱付平.旋风分离器入口结构改进及其对“短路流量”的影响[J].过滤与分离, 2008, 1: 8—10.
    [51]陈枫,胡筱斌.高温旋风分离器在循环流化床锅炉上的应用[J].热电技术, 2004,1: 14—16.
    [52]蒋茂庆,孙献斌.我国首台引进的300MW循环流化床锅炉及其关键技术[J].热力发电, 2004, 9: 1—3.
    [53]尹刚,陈继辉,卢啸风等.引进300MW循环流化床锅炉的技术特点分析[J].锅炉技术, 2007, 5: 29—33, 66.
    [54]由长福,祁海鹰,徐旭常等.采用PTV技术研究循环流化床气固两相流动[J].应用力学学报, 2004, 12: 1—5.
    [55] W.P. Jones and B.C. Launder. The Prediction of Laminarization with a Two-equation Model of Turbulence[J]. Heat and mass Transfer, 1972, 15: 301—314.
    [56] V. Yakhot and S. A. Orszag. Renormalized Group Analysis of Turbulence I[J]. Basic Theory. J. Sicent. Compt. 1986, l: 39—51.
    [57] V. Yakhot and S. A. Orszag. Development of Turbulence Models for Shear Flows by a double Expansion Technique[J]. Physics. Fluids A, 1992, 7: 1510—1520.
    [58]费祥麟等.高等流体力学[M].陕西:西安交通大学出版社, 1989.
    [59] A J Hoekstra, J J Derksen and H E A Van DenAkker. An experimental and numerical study of turbulent swirling flow in gas cyclones[J]. Chemical Engineering Science, 1999, 54—58.
    [60] F Boysan, J Swithenbank and W H ayers. Mathematical modeling of gas-particle flow sin cyclone separators [J]. Heat and mass Transfer, 2001, 13: 964-969.
    [61]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程, 2003, 4: 337—342.
    [62] Fluent Inc. Fluent 6.0 User’s Guide[Z]. Fluent Inc, 1998.
    [63]罗志浩.方形上排气型分离器内气固两相流东特性的数值模拟研究[D].浙江:浙江大学, 2001.
    [64]包文红,腾汉平.旋风分离器料腿失效分析[J].石油化工设备, 2007, 4: 44—45.
    [65] Barth W. Berechnung and Auslegung Von Zyklonabscheidem auf Grund neuerer Untersuchungen[J]. B rennstoff-Warme-Kraft, 1956, 8: 1—6.