下排气旋风分离器气固两相流动和优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下排气旋风分离器具有单旋流流场结构,压力损失低,并能满足循环流化床锅炉π型布置的需要。但是,下排气旋风分离器对细颗粒央带严重,导致细颗粒分离效率稍低。为了提高分离效率,同时保持较低的压力损失,需进一步研究其对细颗粒的分离机理,从结构上进行优化设计,以提高分离性能。
     本课题采用数值模拟和理论分析方法,对分离器内气固运动细节、分离机理、内部压力分布及压力损失进行研究。在此基础上提出能提高分离效率,降低阻力的优化方案。通过本文的研究和分析,得到了以下主要结论:
     ①采用渐缩进口时,气固混合物在渐缩管内加速,颗粒团的穿透能力增强,更多颗粒能够穿透分离器内的旋涡场而到达分离器壁面,分离效率提高:随着气流在管内加速后,旋涡更加强烈,压降增大。
     ②随着导流体直径的增加,分离器旋流场得到了强化,旋涡强度加剧,离心作用增强而旋转动能损失增大,可以提高分离效率,但是压力损失增加。
     ③排气管采用圆台入口时,合理设计圆台的倾角和底径,可以有效预防排灰斗内的固体颗粒沿排气管外壁上升进入排气管,从而提高分离效率。
     ④随着排气管不断下移,分离效率增幅减小,最终越来越低,说明导排管间距存在一最佳值。
     ⑤随着排气管直径的减小,分离效率提高,但气流进入排气管时压力损失增加;同时旋转气流的离心力场增强,局部压力损失也增加。
     ⑥排气管插入高度升高,阻力损失增加,同时排气管口远离排灰斗高湍流度、高含灰的气流,分离效率提高。
     ⑦下排气旋风分离器的涡流中心不在其几何中心,排气管偏移合理的角度和距离,可以提高分离效率。
     ⑧对下排气旋风分离器的实际结构进行改进,将进口改为渐缩型、排气管位置下移,并采用圆台入口。改进后的下排气旋风分离器对细颗粒的分离效率明显提高,当颗粒粒径小于于20μm时,相同粒径颗粒的分离效率最大提高37.75%,总分离效率也得到了提高,压降相应增加。
Cyclone separator with downward exhaust outlet has the flow structure of single swirl flow, and it has lower pressure loss. Cyclone separator with downward exhaust outlet is suitable for the theπtype arrangement of CFB boilers, but cyclone separator with upward exhaust gas has a severe entrainment of the fine particles, leading to a low separating efficiency of the fine particles. To increase the separating efficiency of the fine particles and keep pressure drop low, it needs to further study for the separating mechanism and improve its performance by optimization design of the structure.
     The research adopts numerical simulation and theory analysis methods to sudy the gas-solid two-phase flow, separating mechanism, pressure distribution and pressure loss in details. Based on these study results, an optimization scheme to increase the separating efficiency and decrease the pressure loss of the Cyclone separator with downward exhaust outlet is presented in the project. According to the results and analysis, the main conclusions are as follows:
     ①When the Cyclone separator with downward exhaust outlet has the taper import, the gas-particle mixture is accelerated in the tapered duct, and the particles get a higher penetration ability in the flow. Then, more particles can penetrate the vortex to reach the Cyclone separator wall, and the separating efficiency increases. However, with gas accelerated, vortex gets more intensive, and the pressure loss also increases.
     ②When the diameter of diversion object increases, the swirl intensity of cyclone separator gets more acute, the function of centrifugal force is strengthed, but spin kinetic energy loss increases, so separating efficiency may be inhanced and pressure loss increases.
     ③When exhaust pipe uses the cone structure entrance, optimal design of the obliquity and bottom diameter can effectively prevent solid particles in ash bucket turning back into the exhaust pipe along the outside wall of exhaust pipe, consequently, separating efficiency increases.
     ④When the exhaust pipe moves dowmward, separating efficiency increases initially and then decreases. It proves that the distance between the diversion object and the exhaust duct has an optimal value.
     ⑤When the diameter of exhaust duct minishes, separating efficiency is enhanced, but pressure loss increases when gas flows into the exhaust duct. Moreover, centrifugal force field of rotary gas reinforces, local pressure also loss increases.
     ⑥When insertion height of exhaust duct increases, pressure loss increases. At the same time, the exhaust gas entrance is far away from high turbulence intensity area, so separating efficiency increases;
     ⑦The center of vertex in cyclone separator with downward exhaust gas is not at the center of its geometric center. When exhaust gas duct offsets in right angle with right distance, separating efficiency increases.
     ⑧The cyclone separator with downward exhaust gas is improved by adopting tapered entrance and cone shaped exhaust pipe entrance, moveing the exhaust pipe dowmward.The separating efficiency for fine particles increases evidencely , especially when the particle size less than 20μm, the separating efficiency for the same particle size increasing 37.75% at most.The total separating efficiency also increases as well as the pressure drop.
引文
[1]赵黛青.我国的能源现状及发展.科学对社会的影响,2006,2:25-29
    [2]陈超,姚强.洁净煤技术.北京:化学工业出版社,2005:293-296
    [3]四川省电力局编.循环流化床燃烧技术.北京:中国电力出版社,1998,9-29[4]卢啸风.人型循环流化床锅炉设备与运行.北京:中国电力出版社,2006,12-24
    [5]J.R.Grace,A.A.Avidan and T.M.Knowlton.Circulating Fluidized beds.New York,USA:Blackie Academic & Professional,1997,17-38
    [6]岑可法,倪明江,严建华,等.气同分离理论及技术.杭州:浙江人学山版社,1999,12-27
    [7]陈汉平.循环流化床气同分离的理论与应用[学位论文].武汉:华中理工大学,2001:48-103
    [8]张百麟.旋风分离器的设计技巧.石化技术,2003,10(2):17-21.
    [9]刘德吕,陈汉平,武正舜,等.下排气旋风分离器循环流化床锅炉的研究与开发.煤炭加工与综合用,2000,3:47-49
    [10]黄盛珠.下排气旋风分离器改进设计.动力工程,2004,25(5):736-738.
    [11]高根树.循环流化床旋风分离器改进途径.节能改造,2005,2:37-41
    [12]奚金祥.下排气旋风分离器分离机理的实验研究.西安交通大学学报,2000,34(5):28-31.
    [13]MA L,INGHAM D B,WEN X.Numerical modeling of the fluid and particle penetration through small sampling cyclones.J Aerosol Sci,2000,31(9):1097-1119.
    [14]黄兴华.旋风分离器中气相流动特性及颗粒分离效率的数值研究.动力工程,2004,24(3):436-441.
    [15]王海刚.不同湍流模型在旋风分离器三维数值模拟中的应用和比较.热能动力工程,2003,18(4):337-342.
    [16]JOLIUS GIMBUN,CHUAH T G,FAKHUR'L-RAZI A,etal.The inlet fluence of temperature and inlet velocity on cyclone pressure drop:a CFD study.Chemical Engineering and Processing,2005,44:7-12.
    [17]余战英.下排气旋风分离器流场的测定及数值模拟.动力工程,2002,22(5):1941-1944.
    [18]潘维.不同抽气率下细粉分离器流场数值模拟.电站系统工程,2003,9(6):10-12.
    [19]HOEKSTRA A J,DERKSEN J J,VAN DEN AKKER H E A.An experimental and numerical study of turbulent swirling flow in gas cyclones.Chemical Engineering Science,1999,54:2055-2065.
    [20]CHARLES SPEZIALE G,SUTANANU SARKAR,THOMAS GATSKIB.Modelling the pressure strain correlation of turbulent:an invariant dynamic system approach.J Fluid Mech,1991,227:245-272.
    [21]李金镇.75t/h循环流化床旋风分离器优化设计.小氮肥,2005,8:1-3
    [22]蒲舸,张力,辛明道.CFBC旋风分离器气固两相流数值模拟与优化.工程热物理学报,2006,27(2):268-270
    [23]Atakan Avci,Irfan Karagoz.Efects of Flow and Geometrical Parameters on the Collection Eficiency in Cyclone Separators.Aerosol Science,2003,34(7):937-955
    [24]冉景煜,张力,辛明道.旋流气固分离器内气粒两相运动特性及分离效率.化工学报,2003,54(10):1391-1396
    [25]彭雷,李军,王国鸿.排气管偏置对CFB锅炉旋风分离器性能的影响.热能动力工程,2004,19(2):153-157
    [26]李双权,孙国刚,时铭显.排气管偏置对PV型旋风分离器性能影响的研究.石油炼制与化工,2006,37(5):45-48
    [27]周韬,谷传纲,王彤.微粒在旋风分离器中的分离特性与数值模拟.煤矿机械,2007,28(5):45-47
    [28]王洪刚,项曙光.旋风分离器的计算机模拟与设计.化工装备技术,2004,25(2):10-14
    [29]李功祥.旋风分离器的程序设计.化学工程.1994.22(1):64-67
    [30]陈建义,罗晓兰,时铭显.旋风分离器分离空间流场的理论分析.中国石油大学学报(自然科学版),2006,30(6):83-88
    [31]钱付平,章名耀.旋风分离器分离性能的经验模型与数值预测.东南大学(自然科学版),2005,35(1):35-39
    [32]Grifiths W D,Boysan F.Computational fluid dynamics(CFD)and empiileal modeling of the performance ofanumerical of cyclone samplers.J Aerosol Sci,1996,27(2):281-304
    [33]Triesch O,Bohnet M.Measurement and CFD prediction of velocity and concentration profiles in a decelerated gas-solids flow.Powder Technology,2001,115(2):101-113.
    [34]Coker A K.Understand cyclone design.Chemical Engineering Progress,1993,89(12):51-55.
    [35]李仁年,王浩,苏吉鑫等.旋风分离器内部流场及分离效率的数值仿真.兰州理工大学学报,2007,33(2):50.53
    [36]YOSHIDA H,FUKUI K,YOSHIDAK.Particle separation by Iinoya's type gas cyclone.Power Technology,2001,118:16-23
    [37]彭维明.切向旋风分离器内部流场的数值模拟及研究.农业机械学报,2001,32(4):20-24.
    [38]王福军.计算流体动力学分析--CFD软件原理与应用.北京:清华大学出版社,2004.
    [39]魏新利,张海红,王定标,等.旋风分离器内颗粒轨迹的数值模拟口.郑州大学学报:工学版,2004,25(3):14-17
    [40]刘晓琴,张吉光,杜付昌.旋风分离器内压力损失的计算.节能,2006,3:20-23
    [41]苏虎,曾先茂等.循环流化床锅炉旋风分离器内气固两相流动的数值模拟.东方锅炉,2004, 3:9-15
    [42]张海红.旋风分离器流场与分离性能的数值模拟研究[学位论文].郑州:郑州大学,2004:24-40
    [43]Kazuyoshi Matsuzaki,Hideaki Ushijima,Mizue Munekata,etal.Numerical study on particle motions in swirling flows in a cyclone separator.J.Thermal Science,2006,115(2):181-185
    [44]Yamamoto,Y,Potthoff,M,Tanaka,T,etal.Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel:Effect of Considering Inter-Particle Collisions.J.Fluid Mech,2001,442:303-334
    [45]Verzicco,R,Orlandi,P.A Finite-Difference Scheme for Three-dimensional Incompressible Flows in Cylindrical Coordinates.Journal of Comput.Phys.,1996,23:402-414
    [46]Zhiguang Ling,Xingyong Deng.Study of a novel cyclone gas-solid separator.J.of Thermal Science,2003,12(3):275-282
    [47]Deng,Xingyong.Theoretical and Experimental Investigation on the Gas-Particle Swirling Separation Flow and the Rotary Separators:[Doctor Dissertation].Shanghai:The University of Shanghai for Science and Technology,1991
    [48]Rudinger,G.Fundamentals of Gas-Particle Flow.Elsevier Scientific Publishing Company,Amsterdam,1980,28-36
    [49]Akira Ogawa.Estimation of Collection Efficiency Depended on Feed Particle Concentration for Axial Flow Cyclone Dust Collector.J.of Thermal Science,1999,8(3):143-156
    [50]冷碧霞,陈由旺,吴学安.新型扩散式下排气气固分离器的实验研究.热能动力工程,2002,17:251-253.
    [51]黄盛珠,朱琳,马春元,等.新型下排气旋风分离器的流场和性能数值模拟.热能动力工程,2006,21(1):70-74.
    [52]Rascr S M,Abdullah M Z.LDA measurement on modified cyclone.Laser Anemomctry ASME,1995,229:395-403.
    [53]王道连.旋风分离器流动特性及分离性能的数值研究[学位论文].上海:上海交通大学,2004:38-48