大型循环流化床底部区域气固两相流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底部区域的研究对于深入理解循环流化床流动特性具有重要的意义。本文对内径400 mm,高度9100 mm提升管底部区域不同轴向截面12个水平方向位置的颗粒浓度进行了系统的测量,采集了不同轴向壁面位置的压力。根据实验结果,确定了底部区域颗粒浓度的轴向和水平方向分布规律,利用统计方法、功率谱和小波系统分析了压力波动和浓度波动。最后,对双上升管循环流化床煤气化制氢进行了技术经济分析。
     平均颗粒浓度在轴向上呈现上稀下浓的单调指数分布,增大颗粒循环速率或减小表观气速颗粒浓度均增大,且底部区域增大值大于上部区域。水平方向不同位置颗粒浓度受轴向高度和操作参数的影响与平均浓度相同,且边壁区域受到的影响大于中心区域。颗粒浓度水平方向分布呈现环-核结构。边壁区域颗粒浓度高,变化明显,随r/R的增大,颗粒浓度增大,在边壁处达到最大;中心区域颗粒浓度低,而且变化不大。r/R=0.8可以作为环-核分界点。表观气速不变,增大颗粒循环速率可使颗粒浓度增大;颗粒循环速率不变,增大表观气速则使颗粒浓度减小。随操作参数变化,边壁区域受到的影响大于中心区域。水平方向不均匀指数RNI的变化趋势与颗粒浓度的变化趋势相一致。
     压力波动信号分析表明,平均值和标准偏差的轴向分布与颗粒浓度分布一致。分析功率谱发现,存在一个明显的主频。颗粒循环速率增大或表观气速减小,主频减小,振幅则增大。随轴向位置的增高,压力波动的主频基本不变,振幅减小。对压力波动信号进行db2小波的五尺度分解表明,压力波动主要是由低频段引起的。颗粒循环速率减小,4与5尺度差别减小,幅度减小;增大表观气速,低频信号的差别变小;增大轴向高度,幅度减小。
     颗粒浓度波动分析表明,正常流化条件下,标准偏差水平方向上随r/R的增大而增大,轴向上与浓度分布一致。分析浓度波动的功率谱发现,主频不明显,0~10Hz范围内振幅较大,且振幅随操作参数和位置的变化规律与平均颗粒浓度变化规律一致。采用db2小波对浓度波动进行六层分解表明,颗粒浓度波动与压力波动的规律一致。
     最后,在计算双上升管循环流化床煤气化制氢项目总投资的基础上,计算出财务评价所需要素,编制财务评价主要报表,以动态和静态两种指标对项目进行评价。评价分析证明上述项目具有可行性。
An understanding of flow hydrodynamics in bottom zone is very important for circulation fluidized bed. Particle concentrations at 12 horizontal locations at different axial levels in a riser of 400 mm in diameter and 9100 mm in height were measured, and pressure fluctuations at riser wall of different axial levels were studied. Then the distribution of particle concentration at the horizontal and axial directions in the bottom zone were collected, and pressure fluctuations and concentration fluctuations were systematically analyzed using statistical method, power spectrum and wavelet. In addition, technology and economics analysis of coal gasification to product hydrogen utilizing dual risers circulation fluidized bed was carried out.
     Average particle concentration at different axial heights is characterized by monotone exponential function, which is dense in the bottom zone and dilute in the upper zone. Average particle concentration increases with increasing solid circulation rate or decreasing superficial gas velocity. And it increases more sharply in the bottom zone than in the upper zone. Axial height and operating parameters have the same influence on particle concentration at different horizontal locations as well as average concentration, such influence varies more sharply in the wall region than in the centre region. Furthermore, horizontal distribution of concentration is nonuniform with a core-annulus structure, concentration in the centre region is low with slight change, whereas it increases significantly toward the wall, and reaches the highest at the wall. Furthermore, it is found that r/R=0.8 could be the dividing point for the core-annulus structure. At the same superficial gas velocity, particle concentration increases with increasing solid circulation rate, and it increases more sharply in the wall region than in the centre region. By contrast, at a given solid circulation rate, particle concentration decreases with increasing superficial gas velocity, and it decreases more sharply in the wall region than in the centre region. Horizontal Nonuniformity Index has the similar trend with concentration.
     By analyzing pressure fluctuations signal, it is found the distributions of average value and standard deviations in the axial direction have the similar trend with concentration distribution. Using power spectrum, it is found there is an obvious principal frequency. Principal frequency decreases and amplitude increases with increasing solid circulation rate or decreasing superficial gas velocity. Pressure amplitude increases with increasing axial height, and principal frequency keeps general constant. Using db2 wavelet to analyze pressure fluctuation with 5 scales, it is found that low frequency band mainly causes fluctuation. Discrepancies among low frequency bands decreases and amplitude decreases with decreasing solid circulation rate. And with increasing superficial gas velocity, discrepancies among low frequency bands decreases. And amplitude decreases withincreasing axial height.
     By analyzing concentration fluctuation signal, it is found standard deviations increase with increasing the value of r/R in the horizontal direction. And standard deviations has the similar trend with concentration in the axial direction. There is not an obvious principal frequency, and concentration amplitude has peak value in the frequency range from 0-10Hz, and its variation has the similar trend with concentration. Six scales db2 wavelet analysis of concentration fluctuation indicates that concentration fluctuation has the similar trend with pressure fluctuation.
     Finally, gross investment of coal gasification to product hydrogen utilizing dual-riser circulation fluidized bed is evaluated. Then factors of financial evaluation and main statements are carried out. And the project is analyzed through static and dynamical indicators. It is found that this project is feasible.
引文
[1]吕俊复,岳光溪,张建胜,等.循环流化床锅炉运行与检修[M].第二版.北京:中国水利水电出版社,2005:1
    [2]吴宗鑫,陈文颖.以煤为主多元化的清洁能源战略[M].清华大学出版社,2001:201
    [3]解玉丽,韩玉峰,赵胜勇.循环流化床煤气化工艺的原理和特点[J].河南化工,2001 (8):37-39
    [4]黄亚继,金保升,仲兆平,等.循环流化床部分煤气化试验研究[J].煤炭科学技术, 2003,31(12):20-23
    [5]胡金榜,李进龙,李艳平,等.循环流化床反应器理论研究进展[J].化工进展,2004,23 (2):173-176
    [6] Guo Q., Werther J.. Flow Behaviors in a Circulation Fluidized Bed with Various Bubble-cap Distributors[J]. Industrial and Engineering Chemistry Research,2004, 43(7): 1756-1764
    [7]白丁荣,金涌,俞芷青.循环流态化(I) [J].化学反应工程与工艺,1991,7(2):203-204
    [8]金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001:106-194
    [9] Davidson J.F..Circulation Fluidised Bed Hydrodynamics[J]. Power Technology,2000, 113(3):249-260
    [10]王勤辉,高琼,石惠娴,等.循环流化床中的颗粒团形成、结构及其运动[J].浙江大学学报(工学版),2006,40(1):118-123
    [11]李晓祥,石炎福,黄卫星,等.气固循环流化床颗粒浓度波动信号的预测[J].过程工程学报, 2003,3(1):8-14
    [12]林宗虎,赵敦崧,安恩科,等.循环流化床锅炉[M].北京:化学工业出版社,2004: 141-142
    [13]漆小波,黄卫星,祝京旭,等.上行气固两相流充分发展段颗粒浓度关联及预测[J].高校化学工程学报,2005,19(5):613-618
    [14]黄卫星,漆小波,潘永亮,等.气固循环床提升管内的局部颗粒浓度及流动发展[J].高校化学工程学报,2002,16(6):626-632
    [15] Zhou J., Grace J.R., Qin, S., et al.Voidage Profiles in a Circulation Fluidized Bed ofSquare Cross-section[J].Chemical Engineering Science,1994,49(19):3217-3226
    [16]漆小波,黄卫星,潘永亮,等.循环流化床气固提升管内的颗粒浓度及环核结构研究[J].四川大学学报(工程科学版),2003,35(1):43-47
    [17]白丁荣,金涌,俞芷青.循环流态化(II)气-固流动规律[J].化学反应工程与工艺,1991,7(3):303-315
    [18] Zhou J., Grace J.R., Lim C.J., et al.Particle Velocity Profiles in a Circulation Fluidized Bed Riser of Square Cross-section[J].Chemical Engineering Science, 1995,50(2):237-244
    [19]孔春林,黄卫星,潘永亮,等.提升管气固两相流中颗粒速度的实验研究[J].四川大学学报(工程科学版),2002,34(3):42-45
    [20]漆小波,黄卫星,祝京旭,等.循环流化床提升管中颗粒速度的径向分布及其沿轴向的发展[J].高校化学工程学报,2002,16(2):168-174
    [21] Johnsson F., Leckner B.. Vertical Distribution of Solids in a CFB Furnace[A]. In Proceedings of 13th Conference on Fluidized Bed Combustion (Edited by Heinschel K. J.)[C]. The American Society of Mechanical Engineers, 1995: 671-679
    [22] Svensson A., Johnsson F., Leckner B.. Bottom Bed Regimes in a Circulation Fluidized Bed Boiler[J].International Journal of Multiphase Flow,1996,22(16):1187-1204
    [23] Bai D., Shibuya E., masuda Y., N.Nakagawa,K.Kato. Flow Structure in a Fast Fluidized Bed[J]. Chemical Engineering Science,1996,51(6):957-966
    [24] Schnitzlein M.G.., Weinstein H.. Flow Characterization in High-velocity Fluidized Beds Using Pressure Fluctuations[J]. Chemical Engineering Science,1988,43(10):2605-2614
    [25] Bolton L.W., Davidson J.F.. Recirculation of Particles in Fast Fluidized Risers[J], in Circulation Fluidized Bed Technology II (Edited by Basu P. and Large J. F.), Oxford, Pergamon Press, 1988:139-146.
    [26] Brereton C.M., Grace J.R..Microstructural Aspects of the Behaviour of Circulation Fluidized Beds[J]. Chemical Engineering Science,1993,48(14):2564-2572
    [27] Werther J.. Fluid Mechanics of Large-scale CFB Units[A], Circulation Fluidized Bed Technology IV (Edited by Avidan A. A.)(C), AIChE, 1994:1-16
    [28] Bai D., Kato K.. Saturation Carrying Capacity of Gas and Flow Regimes in CFB[J]. Journal of Chemical Engineering of Japan,1995,28(2):179-185
    [29] Bai D., Kato K.. Generalized Correlations of Solids Holdups at Dense and DiluteRegions of Circulation Fluidized Beds[A], 7th SCEJ Symposia on CEB[C], Tokyo, 1994:137-144
    [30] Schlichthaerle P., Werther J.. Axial Pressure Profiles and Solids Concentration Distributions in the CFB Bottom Zone[J]. Chemical Engineering Science,1999,54(22): 5485-5493
    [31] Malcus S., Chaplin G., Pugsley T..The Hydrodynamics of the High-density Bottom Zone in a CFB Riser Analyzed by Means of Electrical Capacitance Tomography(ECT) [J].Chemical Engineering Science,2000, 55 (19):4129-4138
    [32] Rhodes M.J., Sollaart M., Wang X.S.. Flow Structure in a Fast Fluidized Bed[J]. Powder Technology,1998, 99(2):194-200.
    [33] Berruti F., Kalogerakis N.. Modeling of the Internal Flow Structure of Circulation Fluidized Beds[J]. Canadian Journal of Chemical Engineering,1989,67(6):1010-1014
    [34] Werther J., Hartge E-U., Kruse M.. Radial Gas Mixing in the Upper Dilute Core of a Circulation Fluidized Bed[J]. Powder Technology,1992,70(3):293-301
    [35]刘石,许华,王海刚,等.迭代法ECT对循环流化床底部固体浓度的测量[J].工程热物理学报,2002,23(6):757-760
    [36]刘石,王海港,姜凡,等.循环流化床固体分布的层析成象测量[J].工程热物理学报,2001,22(5):645-648
    [37] Wei F., Lin H., Cheng Y., et al. Profiles of Particle Velocity and Solids Fraction in a High-density Riser[J].Powder Technology,1998,100(2-3):183-189
    [38] Guo Q., Werther J., Aue-Klett C., et al.Flow Maldistribution at Bubble Cap Distributor in a Plant-scale Circulation Fluidized Bed Riser[J].AIChE Journal, 2005,51(5):1359-1366
    [39] Guo Q., Werther J., Hartge E.. Investigation into Maldistribution in a Circulation Fluidized Bed[J] .China Particuology, 2003,1(4):145-150
    [40]刘会娥,魏飞,金涌.气固循环流态化研究中常用的测试技术[J].化学反应工程与工艺, 2001,17(2):165-173
    [41]黄卫星,石炎福,祝京旭.上行气固两相流充分发展段的颗粒浓度[J].化工学报, 2001,52(1):963-968
    [42] Guo Q.,Werther J. Influence of a Gas Maldistribution of Distributor Design on the Hydrodynamics of a CFB Riser [J]. Chemical Engineering and Processing: ProcessIntensification, 2008, 47(2):237-244.
    [43] Moran J.C., Glicksman L.R.. Mean and Fluctuating Gas Phase Velocities inside a Circulation Fluidized Bed [J]. Chemical Engineering Science, 2003, 58(9):1867-1878.
    [44] Zhu J., Manyele S.V.. Radial Nonuniformity index (RNI) in Fluidized Beds and Other Multiphase Flow Systems[J]. Canadian Journal of Chemical Engineering,2001,79(2): 203-213
    [45]孔春林.气固循环床提升管内颗粒浓度和速度的实验研究[D].成都:四川大学, 2002
    [46]赵贵兵,李天铎,阳永荣,等.气固两相流压力波动信号分析[J].中国粉体技术,2001,7(3) ):6-10
    [47]黄海,黄轶伦,张卫东.气固流化床压力脉动信号的相关结构模型与分析[J].化工学报,1999,50(6):812-817
    [48] Bi H.T.. A Critical Review of the Complex Pressure Fluctuation Phenomenon in Gas-solids Fluidized Beds[J]. Chemical Engineering Science, 2007, 62(13):3473-3493
    [49]郭庆杰,王启民,徐猛,等.高温鼓泡流化床的压力波动[J].燃烧科学与技术,2002,8(6):487-492
    [50]陈亚勇. MATLAB信号处理详解[M].人民邮电出版社,2001:131-153
    [51]胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计—小波分析[M].西安电子科技大学出版社,1999:1-6
    [52] Wu B.Y.,Kantzas A.,Bellehumeur C.T., et al. Multiresolution Analysis of Pressure Fluctuations in a Gas-solids Fluidized Bed: Application to Glass Beads and Polyethylene Powder Systems[J]. Chemical Engineering Journal, 2007,131(1-3):23-33
    [53] Sasic S., Leckner B.,Johnsson F.. Time-frequency Investigation of Different Modes of Bubble Flow in a Gas-solid Fluidized Bed[J]. Chemical Engineering Journal,2006,121(1): 27-35
    [54]田子平,陈永国,熊天柱,等.循环流化床压力波动信号的小波多分辨率分析[J].过程工程学报,2004,4(增刊):685-692
    [55]赵贵兵,陈纪忠,阳永荣.Daubechies小波对流化床压力波动的分解研究[J].高校化学工程学报,2003,17(3):273-279
    [56]马丽萍,石炎福,黄卫星,等.循环流化床颗粒浓度波动信号多重分形测度分析[J].高校化学工程学报,2002,5(12):496-502
    [57] Bai D., Issangya A.S., Grace J.R.. Characteristics of Gas-fluidized Beds in Different Flow Regimes[J]. Industrial and Engineering Chemistry Research,1999,38(3):803-811
    [58]宋航,付超.化工技术经济[M].北京,化学工业出版社,2002:7
    [59]郭庆杰,梁治国,申文忠,等.双上升管循环流化床煤气化装置[P].中国专利:200510044925.7, 2006-03-22
    [60]王立业.化工装置技术[M].大连:大连理工大学出版社,2005:37-45.
    [61]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006:1-6.
    [62]中国石化集团上海工程有限公司.化学工艺设计手册[M].第三版.北京:化学工业出版社,2003:66-93
    [63]苏健民.化工技术经济[M].第二版.北京:化学工业出版社,1999:119
    [64]孙丽萍.技术经济分析[M].北京:科学出版社,2005:5-23
    [65]毕梦林.技术经济学[M].第二版.沈阳:东北大学出版社,1999:220-256