浊点系统在三苯基甲烷染料微生物脱色中的探索与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三苯基甲烷类染料属于化学合成类染料,结构稳定,难以降解,具有致突变、致畸和致癌的危险。研究三苯基甲烷染料的生物脱色降解对于染料治理和人类健康都意义重大。但目前,三苯基甲烷染料的生物脱色受到底物抑制,产物毒性大等因素限制难以大规模应用。因此,如何在染料生物脱色的同时,有效的脱毒,是染料生物处理中需要克服的重大难题。
     浊点系统(Cloud point system,CPS)是指在一定温度或添加物的存在下,非离子表面活性剂水溶液分相形成的两相系统。其中,表面活性剂聚集的一相为凝聚层相或表面活性剂富相(Coacervate phase,or surfactant-rich phase),表面活性剂浓度较低一相为水相或稀相(Water phase,or dilute phase)。相分离温度称为浊点(Cloud point)。
     本文探索了浊点系统中三苯基甲烷染料的萃取微生物脱色,以期达到同时脱色并脱毒的目的。这是浊点系统中染料萃取生物脱色的首例报道。本文针对浊点系统中染料萃取生物脱色的一系列关键科学问题,从脱色菌Aeromonas hydrophila DN322p的染料脱色机理,三苯基甲烷染料在浊点系统中的分配机理,浊点系统的生物相容性和脱毒能力,以及后期表面活性剂的回收等四个方面开展研究,基本结论如下:
     1、实验选取结晶紫(Crystal violet,CV)作为模式三苯基甲烷染料来研究脱色菌A. hydrophila DN322p的脱色特性,发现菌体可大量吸附染料并同时脱色。脱色初始的0.5小时,菌体吸附大量的结晶紫,离心后细胞沉淀颜色很深而上清液几乎无色。并且,随着脱色时间的延长,细胞的颜色逐渐变浅。通过全波长扫描可知,上清液和菌体的二氯甲烷萃取液都有结晶紫(590nm)和隐性结晶紫(Leuco-crystal violet,LCV)(260nm)的特征吸收峰。结果表明菌体对这两种染料都有吸附能力。在30°C和结晶紫浓度为50mg/L的震荡培养条件下,染料脱色率达到99%(w/w)。通过高效液相色谱(HighPerformance Liquid Chromatography,HPLC)检测结果分析,结晶紫主要被转化为隐性结晶紫。死细胞的染料吸附能力与活细胞大体相当。菌体密度(OD600)为1.0的死菌体,能够吸附约90%的结晶紫(50mg/L)。
     2、研究了四种三苯基甲烷染料,结晶紫、乙基紫(Ethyl violet,EV)、孔雀石绿(Malachite green,MG)和灿烂绿(Brilliant green,BG),在非离子表面活性剂TritonX-114形成的浊点浊点系统中的分配规律。四种染料都会或多或少的增加体系的浊点。其浓度越高,浊点越高。在浊点系统中,染料主要分配在凝聚层相,水相颜色较浅。萃取效率随温度、Triton X-114浓度和盐(NaCl和CaCl2)浓度的升高而增加。通过二氯甲烷萃取的方法,可有效去除稀相中的表面活性剂。本文用朗格缪尔吸附等温线来描述四种染料在浊点系统中的分配行为并根据温度计算了吸附平衡常数m和n。结果显示,染料在浊点系统中的分配作用不仅与疏水性常数(log P)有关,同时受其结构影响。
     3、在明确了脱色菌A. hydrophila DN322p的脱色特性和三苯基甲烷染料在浊点系统中的分配规律基础上,研究了结晶紫在浊点系统中的萃取微生物脱色。根据浊点系统的生物相容性及染料脱色率的结果,实验选取等质量的Brij30和Tergitol TMN-3(20g/L)组成浊点系统。脱色完成后,浊点系统中细胞量更高。通过薄层色谱(Thin-layerchromatography,TLC)检测得知,残留的结晶紫和产生的隐性结晶紫分配在凝聚层相,水相中检测不到染料。因此,浊点系统中的染料萃取微生物脱色完成了水相的脱毒,保证了排水时不会形成染料污染。实验进一步检测了其他三种三苯基甲烷染料在浊点系统中的萃取微生物脱色。孔雀石绿和灿烂绿的脱色效果与结晶紫类似。乙基紫效果不好,其原因可能是脱色菌A. hydrophila DN322p无法将其转化为隐性产物。本研究为三苯基甲烷染料的生物处理开辟了一条新途径。
     4、本研究通过在浊点系统的凝聚层相中添加室温离子液体[BMIM]PF6(1-butyl-3-methylimidazolium hexafluorophosphate),成功回收了表面活性剂TritonX-114。实验研究了室温条件下(25°C)Triton X-114/水/[BMIM]PF6的三元相图。在两相区,选取5个点作为研究对象。分别在25°C和65°C下观察溶液的相行为。发现在高温下,水相中的表面活性剂会转移到离子液体相。在五种染料(蒽醌染料-茜素(Alizarin,AL),偶氮染料-苋菜红(amaranth,AM)和甲基橙(methyl orange,MO),三苯基甲烷染料-结晶紫和孔雀石绿)的Trtion X-114形成的浊点系统中,移除水相并在凝聚层相中添加等质量的[BMIM]PF6。常温下混匀后分相发现,茜素、结晶紫和孔雀石绿三种染料分配到了离子液体相,而表面活性剂Triton X-114留在了水相。说明成功回收了表面活性剂。随后,又通过pH调节的方法分离了茜素并回收了[BMIM]PF6。
Triphenylmethane dyes are chemical synthetic dyes, which are structurally stable,difficult degradation, intense carcinogenesis, tetratogenesis, and mutagenesis. It makes senseto study biodecolorization of these dyes for dye-treatment and human health. However, themicrobial decolorization of these dyes was restricted by substrate inhibition and producttoxicity, which makes the large-scale application difficult. Therefore, how to decolorize anddetoxicate these dyes simultaneously is an essential issue.
     Cloud point system is a two-phase system, which forms by adding nonionic surfactantinto aqueous solution above a certain temperature or additive concentration. One phase isCoacervate phase, or surfactant-rich phase, the other phase is water phase, or dilute phase.The phase separation temperature is cloud point.
     To achieve simultaneous decolorization and detoxification, the microbial decolorizationof triphenylmethane dyes was researched in the cloud point system. Aiming at the scientificproblems in microbial decolorization of these dyes, the study was performed as followed:microbial decolorization mechanism of triphenylmethane dyes by Aeromonas hydrophilaDN322p, participation mechanism of triphenylmethane dyes in the cloud point system, thebiocompatibility and detoxification ability of the cloud point system, and recovering ofsurfactant from coacervate phase. The basic results and conclusions are listed:
     1. A. hydrophila DN322p, an offspring of DN322re-isolated from a5yearslyophilization tube, was test for its decolorization capacity. Decolorization of crystal violetwas achieved within2.5h under shaking condition at30°C. Decolorization rate was up to98%(w/w) for50mg/L crystal violet. HPLC analysis of end product conformed crystal violetwas mainly converted into its leuco form. During the decolorization, dichloromethane extractof cell pellet exhibited obvious crystal violet and leuco crystal violet characteristicsabsorbance peaks at590nm and260nm separately by UV-Vis spectral analysis, whichindicated the strain had strong adsorption capacity on the two dyes. Results suggest the straindecolorizing crystal violet in a complex decolorization way combined adsorption andbiotransformation.
     2. A method for removing four triphenylmethane dyes from wastewater by cloud pointextraction with the nonionic surfactant Triton X-114(TX-114) was developed. Thetriphenylmethane dyes were crystal violet, ethyl violet, malachite green, and brilliant green. The cloud point of TX-114generally increased in the presence of any of the four dyes. In thecloud point system, these dyes were solubilized into a coacervate phase that left a color-freedilute phase. The extraction efficiency of the dyes increased with the temperature, TX-114concentration, and salt (NaCl and CaCl2) concentration. More than97%TX-114in the dilutephase was recovered by adjusting the volume ratio of dichloromethane to the dilute phase.The Langmuir-type adsorption isotherm was used to describe the dye solubilization. TheLangmuir constants m and n were calculated as functions of temperature. The results showedthat the solubilization of the triphenylmethane dyes in the cloud point system was related tothe partition coefficient (log P) and their molecular structures.
     3. The biological treatment of triphenylmethane dyes is an important issue. Mostmicrobes have limited practical application because they cannot completely detoxicate thesedyes. In this study, the extractive biodecolorization of triphenylmethane dyes by Aeromonashydrophila DN322p was carried out by introducing the cloud point system. The cloud pointsystem is composed of a mixture of nonionic surfactants (20g/L) Brij30and Tergitol TMN-3in equal proportions. After the decolorization of crystal violet, a higher wet cell weight wasobtained in the cloud point system than that of the control system. Based on the results ofthin-layer chromatography, the residual crystal violet and its decolorized product, leucocrystal violet, preferred to partition into the coacervate phase. Therefore, the detoxification ofthe dilute phase was achieved, which indicated that the dilute phase could be dischargedwithout causing dye pollution. The extractive biodecolorization of three othertriphenylmethane dyes was also examined in this system. The decolorization of malachitegreen and brilliant green was similar to that of crystal violet. Only ethyl violet achieved apoor decolorization rate because DN322p decolorized it via adsorption but did not convert itinto its leuco form. This study provides potential application of biological treatment intriphenylmethane dye wastewater.
     4. The Triton X-114was recovered by adding [BMIM]PF6into the coacervate phase ofcloud point system. The ternary phase diagram of Triton X-114/water/[BMIM]PF6at25°Cwas obtained and5points were chose as study subject in the two-phase region. We observedthe phase behavior of the system at room (25°C) and higher temperature (65°C). Aphenomenon of surfactant transfer was found between water phase and ionic liquid phase at65°C. An equal amounts of [BMIM]PF6was added into the coacervate phase, after the dilutephase was removed in the cloud point system of5dyes (anthraquinone dye–alizarin (AL),azo dyes–amaranth (AM) and methyl orange (MO), triphenylmethane dyes–crystal violet (CV) and malachite green (MG)). The AL was extracted into the ionic phase and thesurfactant remained in the water phase. So, the recovery of surfactant was succeeded. Then,the [BMIM]PF6was recovered from AL by adjusting pH value of the system.
引文
1. Lichtfouse E., Schwarzbauer J., Robert D., et al. Bioremediation for theDecolorization of Textile Dyes—A Review, in Environmental Chemistry[M]:Springer Berlin Heidelberg,2005:269-288.
    2. Hu T.L. and Wu S.C. Assessment of the effect of azo dye RP2B on the growth of anitrogen fixing cyanobacterium-Anabaena sp.[J]. Bioresource Technology,2001,77(1):93-95
    3. Forgacs E., Cserhati T., and Oros G. Removal of synthetic dyes from wastewaters: areview[J]. Environment International,2004,30(7):953-971
    4. Azmi W., Sani R.K., and Banerjee U.C. Biodegradation of triphenylmethane dyes[J].Enzyme and Microbial Technology,1998,22(3):185-191
    5. Gregory P., Dyes and dye intermediates, in Encyclopedia of Chemical Technology[M].New York: John Wiley&Sons, Inc.,1993:544–545.
    6. Adams E. The antibacterial action of crystal violet[J]. Journal of Pharmacy andPharmacology,1967,19(12):821-826
    7. Au W., Butler M.A., Bloom S.E., et al. Further study of the genetic toxicity of gentianviolet[J]. Mutation Research/Genetic Toxicology,1979,66(2):103-112
    8. Srivastava S., Sinha R., and Roy D. Toxicological effects of malachite green[J].Aquatic Toxicology,2004,66(3):319-329
    9.林群,梁旭方,王琳,等。孔雀石绿生态毒理学与水产品污染控制技术研究进展[J]。环境与健康杂志,2008,25(07):654-657
    10. Chen C.-H., Chang C.-F., Ho C.-H., et al. Biodegradation of crystal violet by aShewanella sp. NTOU1[J]. Chemosphere,2008,72(11):1712-1720
    11. Zhang H., Wu J., Wang Z., et al. Electrochemical oxidation of crystal violet in thepresence of hydrogen peroxide[J]. Journal of Chemical Technology&Biotechnology,2010,85:1436–1444
    12. Kumar C.G., Mongolla P., Joseph J., et al. Decolorization and biodegradation oftriphenylmethanedye, brilliantgreen, by Aspergillussp. isolated from Ladakh, India[J].Process Biochemistry,2012: ARTICLE IN PRESS
    13.龚朋飞,王权,陈永军。孔雀石绿毒性及其检测研究进展[J]。水利渔业,2007,27(04):1-4
    14. Khorramfar S., Mahmoodi N.M., Arami M., et al. Oxidation of dyes from coloredwastewater using activated carbon/hydrogen peroxide[J]. Desalination,2011,279(1-3):183-189
    15. Robinson T., McMullan G., Marchant R., et al. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative[J].Bioresource Technology,2001,77(3):247-255
    16. Fan H.-J., Huang S.-T., Chung W.-H., et al. Degradation pathways of crystal violet byFenton and Fenton-like systems: Condition optimization and intermediate separationand identification[J]. Journal of Hazardous Materials,2009,171(1-3):1032-1044
    17. Ruiz E.J., Hernandez-Ramirez A., Peralta-Hernandez J.M., et al. Application of solarphotoelectro-Fenton technology to azo dyes mineralization: Effect of current density,Fe2+and dye concentrations[J]. Chemical Engineering Journal,2011,171(2):385-392
    18. Soon A.N. and Hameed B.H. Heterogeneous catalytic treatment of synthetic dyes inaqueous media using Fenton and photo-assisted Fenton process[J]. Desalination,2011,269(1-3):1-16
    19. Fu L., You S.J., Zhang G.Q., et al. Degradation of azo dyes using in-situ Fentonreaction incorporated into H2O2-producing microbial fuel cell[J]. ChemicalEngineering Journal,2010,160(1):164-169
    20. Khataee A.R., Safarpour M., Naseri A., et al. Photoelectro-Fenton/nanophotocatalysisdecolorization of three textile dyes mixture: Response surface modeling andmultivariate calibration procedure for simultaneous determination[J]. Journal ofElectroanalytical Chemistry,2012,672:53-62
    21. Rosales E., Iglesias O., Pazos M., et al. Decolourisation of dyes under electro-Fentonprocess using Fe alginate gel beads[J]. Journal of Hazardous Materials,2012,213:369-377
    22. Su C.C., Pukdee-Asa M., Ratanatamskul C., et al. Effect of operating parameters ondecolorization and COD removal of three reactive dyes by Fenton's reagent usingfluidized-bed reactor[J]. Desalination,2011,278(1-3):211-218
    23. Shahwan T., Abu Sirriah S., Nairat M., et al. Green synthesis of iron nanoparticles andtheir application as a Fenton-like catalyst for the degradation of aqueous cationic andanionic dyes[J]. Chemical Engineering Journal,2011,172(1):258-266
    24. Peralta-Zamora P., Kunz A., de Moraes S.G., et al. Degradation of reactive dyes-I. Acomparative study of ozonation, enzymatic and photochemical processes[J].Chemosphere,1999,38(4):835-852
    25. Sarayu K., Swaminathan K., and Sandhya S. Assessment of degradation of eightcommercial reactive azo dyes individually and in mixture in aqueous solution byozonation[J]. Dyes and Pigments,2007,75(2):362-368
    26. Shu H.Y. and Huang C.R. Degradation of Commercial Azo Dyes in Water UsingOzonation and Uv Enhanced Ozonation Process[J]. Chemosphere,1995,31(8):3813-3825
    27. Silva A.C., Pic J.S., Sant'Anna G.L., et al. Ozonation of azo dyes (Orange II and AcidRed27) in saline media[J]. Journal of Hazardous Materials,2009,169(1-3):965-971
    28. Tang Y.C., Huang X.H., Yu H.Q., et al. Photochemical Degradation of Azo Dyes in thePresence of Hydrogen Peroxide and Hematite under Visible Light Irradiation: SurfaceComplex Forming and Reaction Mechanism[J]. Advanced Materials Research,2011,287-290:1612-1619
    29. de Brito-Pelegrini N.N., Sales P.D.F., and Pelegrini R.T. Photochemical treatment ofindustrial textile effluent containing reactive dyes[J]. Environmental Technology,2007,28(3):321-328
    30. Silva C.G., Wang W.D., and Faria J.L. Photocatalytic and photochemical degradationof mono-, di-and tri-azo dyes in aqueous solution under UV irradiation[J]. Journal ofPhotochemistry and Photobiology a-Chemistry,2006,181(2-3):314-324
    31. Podsiadly R., Sokolowska J., Marcinek A., et al. The relationship between theelectrochemical and photochemical reduction of some azo dyes derived from2-aminobenzothiazole[J]. Journal of Photochemistry and Photobiology a-Chemistry,2005,171(1):69-76
    32. Prousek J. and Domotorova J. Utilization of NaOCl/Fe2+, HOCl/Fe2+, andH2O2/HOCl/Fe2+systems for oxidative degradation of water solutions of dyes[J].Chemicke Listy,2000,94(5):331-333
    33. Karcher S., Kornmuller A., and Jekel M. Cucurbituril for water treatment. Part I:Solubility of cucurbituril and sorption of reactive dyes[J]. Water Research,2001,35(14):3309-3316
    34. Karcher S., Kornmuller A., and Jekel M. Removal of reactive dyes bysorption/complexation with cucurbituril[J]. Water Science and Technology,1999,40(4-5):425-433
    35. Zhao H.M., Li Z.Q., Lee N.Y., et al. Electrochemical DNA detection using Hoechstdyes in microfluidic chips[J]. Current Applied Physics,2012,12(6):1493-1496
    36. Rosales E., Pazos M., and Sanroman M.A. Comparative efficiencies of thedecolourisation of leather dyes by enzymatic and electrochemical treatments[J].Desalination,2011,278(1-3):312-317
    37. Kariyajjanavar P., Jogttappa N., and Nayaka Y.A. Studies on degradation of reactivetextile dyes solution by electrochemical method[J]. Journal of Hazardous Materials,2011,190(1-3):952-961
    38. Vecitis C.D., Gao G.D., and Liu H. Electrochemical Carbon Nanotube Filter forAdsorption, Desorption, and Oxidation of Aqueous Dyes and Anions[J]. Journal ofPhysical Chemistry C,2011,115(9):3621-3629
    39. Wan Z.Q., Jia C.Y., Duan Y.D., et al. Effects of different acceptors inphenothiazine-triphenylamine dyes on the optical, electrochemical, and photovoltaicproperties[J]. Dyes and Pigments,2012,94(1):150-155
    40.潘涛,刘大伟,任随周,等。DTT对三苯基甲烷染料脱色的研究[J]。环境科学,2012,33(03):866-870
    41. Hejazifar M. and Azizian S. Adsorption of Cationic and Anionic Dyes onto theActivated Carbon Prepared from Grapevine Rhytidome[J]. Journal of DispersionScience and Technology,2012,33(6):846-853
    42. Taimur K. and Malay C. Adsorption Capacity of Coconut Coir Activated Carbon in theRemoval of Disperse and Direct Dyes from Aqueous Solution[J]. Research Journal ofChemistry and Environment,2011,15(2):601-605
    43. Wang L., Zhang J., Zhao R., et al. Adsorption of basic dyes on activated carbonprepared from Polygonum orientale Linn: Equilibrium, kinetic and thermodynamicstudies[J]. Desalination,2010,254(1-3):68-74
    44. Sepulveda L., Troncoso F., Contreras E., et al. Competitive adsorption of textile dyesusing peat: Adsorption equilibrium and kinetic studies in monosolute and bisolutesystems[J]. Environmental Technology,2008,29(9):947-957
    45. Sepulveda L., Fernandez K., Contreras E., et al. Adsorption of dyes using peat:Equilibrium and kinetic studies[J]. Environmental Technology,2004,25(9):987-996
    46. Sun Q.Y. and Yang L.Z. The adsorption of basic dyes from aqueous solution onmodified peat-resin particle[J]. Water Research,2003,37(7):1535-1544
    47. Forss J. and Welander U. Decolourization of reactive azo dyes with microorganismsgrowing on soft wood chips[J]. International Biodeterioration and Biodegradation,2009,63(6):752-758
    48. Shaposhnikov A.A., Kuznetsova R.T., Kopylova T.N., et al. Absorption, luminescentand lasing properties of laser dyes in silica gel matrices and thin gel films[J]. QuantumElectronics,2004,34(8):715-721
    49. Trofimchuk A.K. and Tarasova Y.B. Sorption-photometric determination of cationicsurfactants with the use of silica gel and dyes (zincon and thiazine red)[J]. Journal ofAnalytical Chemistry,2004,59(2):114-118
    50. Tajima M., Sugai M., Matsunaga K., et al. Thermochromism of dyes on silica gel[J].Dyes and Pigments,1998,39(2):97-109
    51. Parida S.K. and Mishra B.K. Adsorption of styryl pyridinium dyes on silica gel[J].Journal of Colloid and Interface Science,1996,182(2):473-477
    52. Haldeman R.G. and Emmett P.H. Specific Adsorption of Alkyl Orange Dyes on SilicaGel[J]. Journal of Physical Chemistry,1955,59(10):1039-1043
    53. Das C., Rungta M., Arya G., et al. Removal of dyes and their mixtures from aqueoussolution using liquid emulsion membrane[J]. Journal of Hazardous Materials,2008,159(2-3):365-371
    54. Djenouhat M., Hamdaoui O., Chiha M., et al. Ultrasonication-assisted preparation ofwater-in-oil emulsions and application to the removal of cationic dyes from water byemulsion liquid membrane-Part2. Permeation and stripping[J]. Separation andPurification Technology,2008,63(1):231-238
    55. Lepri L., Desideri P.G., and Coas V. Separation and Identification of Water-SolubleFood Dyes by Ion-Exchange and Soap Thin-Layer Chromatography[J]. Journal ofChromatography,1978,161(Nov):279-286
    56. Lepri L., Desideri P.G., and Coas V. Separation and Identification of Coloring Agentsin Oxidation-Type Hair Dyes by Ion-Exchange Thin-Layer Chromatography[J].Annali Di Chimica,1976,66(7-8):451-460
    57. Vahdat A., Bahrami S.H., Arami M., et al. Decoloration and mineralization of reactivedyes using electron beam irradiation, Part I: Effect of the dye structure, concentrationand absorbed dose (single, binary and ternary systems)[J]. Radiation Physics andChemistry,2012,81(7):851-856
    58. Odo J., Torimoto S., Nakanishi S., et al. Photodegradation of Environmental Mutagensby Visible Irradiation in the Presence of Xanthene Dyes as Photosensitizers[J].Chemical&Pharmaceutical Bulletin,2012,60(7):846-853
    59. Zahrim A.Y., Tizaoui C., and Hilal N. Coagulation with polymers for nanofiltrationpre-treatment of highly concentrated dyes: A review[J]. Desalination,2011,266(1-3):1-16
    60. El-Gohary F. and Tawfik A. Decolorization and COD reduction of disperse andreactive dyes wastewater using chemical-coagulation followed by sequential batchreactor (SBR) process[J]. Desalination,2009,249(3):1159-1164
    61. Canizares P., Martinez F., Jimenez C., et al. Coagulation and electrocoagulation ofwastes polluted with dyes[J]. Environmental Science and Technology,2006,40(20):6418-6424
    62. McMullan G., Meehan C., Conneely A., et al. Microbial decolourisation anddegradation of textile dyes[J]. Applied Microbiology and Biotechnology,2001,56(1-2):81-87
    63. Yatome C., Ogawa T., Koga D., et al. Biodegradability of Azo and Triphenylmethanedyes by Pseudomonas pseudomallei13NA[J]. Journal of the Society of Dyers andColourists,1981,97(4):166-169
    64. Yatome C., Ogawa T., and Matsui M. Degradation of crystal violet by bacillussubtilis[J]. Journal Of Environmental Science And Health Part A-toxic/HazardousSubstanc,1991,26(1):75-87
    65. Roth P., Sattler K., Berger R., et al. Hydrophobicity and Microbial Activities.3.Discoloring, Detoxification and Degradation of Triphenylmethane Dyes[J].Zentralblatt Fur Mikrobiologie,1992,147(6):409-417
    66. Xu M.Y., Guo J., Cen Y.H., et al. Shewanella decolorationis sp nov., adye-decolorizing bacterium isolated from activated sludge of a waste-water treatmentplant[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55:363-368
    67. Xu M., Guo J., Zeng G., et al. Decolorization of anthraquinone dye by Shewanelladecolorationis S12[J]. Applied Microbiology and Biotechnology,2006,71(2):246-251
    68. An S.-Y., Min S.-K., Cha I.-H., et al. Decolorization of triphenylmethane and azo dyesby Citrobacter sp.[J]. Biotechnology Letters,2002,24(12):1037-1040
    69. Jang M.S., Lee Y.M., Kim C.H., et al. Triphenylmethane reductase from Citrobactersp. strain KCTC18061P: purification, characterization, gene cloning, andoverexpression of a functional protein in Escherichia coli[J]. Applied andEnvironmental Microbiology,2005,71(12):7955-7960
    70. Kim M.H., Kim Y., Park H.J., et al. Structural insight into bioremediation oftriphenylmethane dyes by Citrobacter sp. triphenylmethane reductase[J]. Journal ofBiological Chemistry,2008,283(46):31981-31990
    71. Yatome C., Yamada S., Ogawa T., et al. Degradation of crystal violet by Nocardiacorallina[J]. Applied Microbiology and Biotechnology,1993,38(4):565-569
    72. Kwasniewska K. Biodegradation of crystal violet (hexamethyl-p-rosaniline chloride)by oxidative red yeasts[J]. Bulletin of Environmental Contamination and Toxicology,1985,34(3):323-330
    73. Bumpus J.A. and Brock B.J. Biodegradation of crystal violet by the white rot fungusPhanerochaete chrysosporium[J]. Applied and Environmental Microbiology,1988,54(5):1143-1150
    74. Vasdev K., Kuhad R.C., and Saxena R.K. Decolorization of Triphenylmethane Dyesby the Birds Nest Fungus Cyathus-Bulleri[J]. Current Microbiology,1995,30(5):269-272
    75. Yesilada C. Decolourization of Crystal-Violet by Fungi[J]. World Journal ofMicrobiology&Biotechnology,1995,11(5):601-602
    76. Ren S.Z., Guo J., Zeng G.Q., et al. Decolorization of triphenylmethane, azo, andanthraquinone dyes by a newly isolated Aeromonas hydrophila strain[J]. AppliedMicrobiology and Biotechnology,2006,72(6):1316-1321
    77. Krulikovska T., Patakova P., and Lukco M. Method of Isolation of Carotenoid Dyesfrom Rhodotorula Yeasts[J]. Chemicke Listy,2008,102(12):1145-1149
    78. Deng D.Y., Guo J., Zeng G.Q., et al. Decolorization of anthraquinone,triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11[J].International Biodeterioration and Biodegradation,2008,62(3):263-269
    79. Joe M.H., Lim S.Y., Kim D.H., et al. Decolorization of reactive dyes by Clostridiumbifermentans SL186isolated from contaminated soil[J]. World Journal ofMicrobiology and Biotechnology,2008,24(10):2221-2226
    80. Hadibarata T., Yusoff A.R.M., Aris A., et al. Decolorization of Azo, Triphenylmethaneand Anthraquinone Dyes by Laccase of a Newly Isolated Armillaria sp F022[J]. WaterAir and Soil Pollution,2012,223(3):1045-1054
    81. Aftab U., Khan M.R., Mahfooz M., et al. Decolourization and Degradation of TextileAzo Dyes by Corynebacterium sp Isolated From Industrial Effluent[J]. PakistanJournal of Zoology,2011,43(1):1-8
    82. Diorio L.A., Mercuri A.A., Nahabedian D.E., et al. Development of a bioreactorsystem for the decolorization of dyes by Coriolus versicolor f. antarcticus[J].Chemosphere,2008,72(2):150-156
    83. Itoh K. and Yatome C. Decolorization and degradation of xanthene dyes by a white rotfungus, Coriolus Versicolor[J]. Journal of Environmental Science and Health Parta-Toxic/Hazardous Substances&Environmental Engineering,2004,39(9):2383-2389
    84. Wang H., Zheng X.W., Su J.Q., et al. Biological decolorization of the reactive dyesReactive Black5by a novel isolated bacterial strain Enterobacter sp EC3[J]. Journalof Hazardous Materials,2009,171(1-3):654-659
    85. Zhuo R., Ma L., Fan F.F., et al. Decolorization of different dyes by a newly isolatedwhite-rot fungi strain Ganoderma sp.En3and cloning and functional analysis of itslaccase gene[J]. Journal of Hazardous Materials,2011,192(2):855-873
    86. Elizalde-Gonzalez M.P., Fuentes-Ramirez L.E., and Guevara-Villa M.R.G.Degradation of immobilized azo dyes by Klebsiella sp UAP-b5isolated from maizebioadsorbent[J]. Journal of Hazardous Materials,2009,161(2-3):769-774
    87. Guerra-Lopez D., Daniels L., and Rawat M. Mycobacterium smegmatis mc(2)155fbiC and MSMEG_2392are involved in triphenylmethane dye decolorization andcoenzyme F-420biosynthesis[J]. Microbiology-Sgm,2007,153:2724-2732
    88. Jones J.J. and Falkinham J.O. Decolorization of malachite green and crystal violet bywaterborne pathogenic mycobacteria[J]. Antimicrobial Agents and Chemotherapy,2003,47(7):2323-2326
    89. Isik M. and Sponza D.T. Effect of oxygen on decolorization of azo dyes byEscherichia coli and Pseudomonas sp and fate of aromatic amines[J]. ProcessBiochemistry,2003,38(8):1183-1192
    90. Yu J., Wang X.W., and Yue P.L. Optimal decolorization and kinetic modeling ofsynthetic dyes by Pseudomonas strains[J]. Water Research,2001,35(15):3579-3586
    91. Chang J.S., Chou C., and Chen S.Y. Decolorization of azo dyes with immobilizedPseudomonas luteola[J]. Process Biochemistry,2001,36(8-9):757-763
    92. Hu T.L. Decolourization of Reactive Azo Dyes by Transformation withPseudomonas-Luteola[J]. Bioresource Technology,1994,49(1):47-51
    93. Chen C.-C., Liao H.-J., Cheng C.-Y., et al. Biodegradation of crystal violet byPseudomonas putida[J]. Biotechnology Letters,2007,29(3):391-396
    94. Heiss G.S., Gowan B., and Dabbs E.R. Cloning of DNA from a Rhodococcus StrainConferring the Ability to Decolorize Sulfonated Azo Dyes[J]. Fems MicrobiologyLetters,1992,99(2-3):221-226
    95. Verma P. and Madamwar D. Decolourization of synthetic dyes by a newly isolatedstrain of Serratia marcescens[J]. World Journal of Microbiology&Biotechnology,2003,19(6):615-618
    96. Kim S.J., Ishikawa K., Hirai M., et al. Characteristics of a Newly Isolated Fungus,Geotrichum-Candidum Dec-1, Which Decolorizes Various Dyes[J]. Journal ofFermentation and Bioengineering,1995,79(6):601-607
    97. Mazmanci M.A., Unyayar A., Erkurt E.A., et al. Colour removal of textile dyes byculture extracts obtained from white rot fungi[J]. African Journal of MicrobiologyResearch,2009,3(10):585-589
    98. Wang H.L., Li P., Pang M., et al. Rapid decolourization of azo dyes by a new isolatedhigher manganese peroxidase producer: Phanerochaete sp HSD[J]. BiochemicalEngineering Journal,2009,46(3):327-333
    99. Knapp J.S., Newby P.S., and Reece L.P. Decolorization of Dyes by Wood-RottingBasidiomycete Fungi[J]. Enzyme and Microbial Technology,1995,17(7):664-668
    100. Yildirim N., Yildiz A., and Aydin H. Agar-Plate Screening for Acid DyesDecolourization by Three Strains of Pleurotus eryngii Isolated from Tunceli, Elazigand Hakkari Province of Turkey[J]. Asian Journal of Chemistry,2010,22(9):7171-7177
    101. Zeng X.K., Cai Y.J., Liao X.R., et al. Decolorization of synthetic dyes by crudelaccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrialresidue[J]. Journal of Hazardous Materials,2011,187(1-3):517-525
    102. Yang Y., Ma F.Y., Yu H.B., et al. Characterization of a laccase gene from the white-rotfungi Trametes sp5930isolated from Shennongjia Nature Reserve in China andstudying on the capability of decolorization of different synthetic dyes[J]. BiochemicalEngineering Journal,2011,57:13-22
    103. Yang X.Q., Zhao X.X., Liu C.Y., et al. Decolorization of azo, triphenylmethane andanthraquinone dyes by a newly isolated Trametes sp SQ01and its laccase[J]. ProcessBiochemistry,2009,44(10):1185-1189
    104. Zouari-Mechichi H., Mechichi T., Dhouib A., et al. Laccase purification andcharacterization from Trametes trogii isolated in Tunisia: decolorization of textile dyesby the purified enzyme[J]. Enzyme and Microbial Technology,2006,39(1):141-148
    105. Nyanhongo G.S., Gomes J., Gubitz G.M., et al. Decolorization of textile dyes bylaccases from a newly isolated strain of Trametes modesta[J]. Water Research,2002,36(6):1449-1456
    106. Wu W.T. The Decolorization Property of Azo Dyes Using a Tsukamurella sp J8025Isolated from Activated Sludge[J]. Fundamental of Chemical Engineering,2011,233-235:2909-2912
    107. Ollikka P., Alhonmaki K., Leppanen V.M., et al. Decolorization of Azo, TriphenylMethane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes fromPhanerochaete chrysosporium[J]. Applied and Environmental Microbiology,1993,59(12):4010-4016
    108. Delee W., O'Neill C., Hawkes F.R., et al. Anaerobic treatment of textile effluents: Areview[J]. Journal of Chemical Technology and Biotechnology,1998,73(4):323-335
    109. Van der Zee F.P., Lettinga G., and Field J.A. The role of (auto)catalysis in themechanism of an anaerobic azo reduction[J]. Water Science and Technology,2000,42(5-6):301-308
    110. Carliell C.M., Barclay S.J., and Buckley C.A. Treatment of exhausted reactive dyebatheffluent using anaerobic digestion: Laboratory and full-scale trials[J]. Water Sa,1996,22(3):225-233
    111. Chinwekitvanich S., Tuntoolvest M., and Panswad T. Anaerobic decolorization ofreactive dyebath effluents by a two-stage UASB system with tapioca as aco-substrate[J]. Water Research,2000,34(8):2223-2232
    112. Razo-Flores E., Luijten M., Donlon B., et al. Biodegradation of selected azo dyesunder methanogenic conditions[J]. Water Science and Technology,1997,36(6-7):65-72
    113. Carliell C.M., Barclay S.J., Naidoo N., et al. Anaerobic decolorisation of reactive dyesin conventional sewage treatment processes[J]. Water Sa,1994,20(4):341-344
    114. Bell J., Plumb J.J., Buckley C.A., et al. Treatment and decolorization of dyes in Ananaerobic baffled reactor[J]. Journal of Environmental Engineering-Asce,2000,126(11):1026-1032
    115. Plumb J.J., Bell J., and Stuckey D.C. Microbial populations associated with treatmentof an industrial dye effluent in an anaerobic baffled reactor[J]. Applied andEnvironmental Microbiology,2001,67(7):3226-3235
    116. Weber E.J. and Adams R.L. Chemical-and sediment-mediated reduction of the azodye disperse blue79[J]. Environmental Science&Technology,1995,29(5):1163-1170
    117. Carliell C.M., Barclay S.J., Naidoo N., et al. Microbial decolorization of reactive azodyes under aerobic conditions[J]. Water Sa,1995,21(1):61-69
    118. Van Lier J.B., Van der Zee F.P., Tan N.C.G., et al. Advances in high-rate anaerobictreatment: staging of reactor systems[J]. Water Science and Technology,2001,44(8):15-25
    119. Van der Zee F.P., Lettinga G., and Field J.A. Azo dye decolourisation by anaerobicgranular sludge[J]. Chemosphere,2001,44(5):1169-1176
    120. Van der Zee F.P., Bouwman R.H.M., Strik D., et al. Application of redox mediators toaccelerate the transformation of reactive azo dyes in anaerobic bioreactors[J].Biotechnology and Bioengineering,2001,75(6):691-701
    121. Carliell C.M., Barclay S.J., Shaw C., et al. The effect of salts used in textile dyeing onmicrobial decolourisation of a reactive azo dye[J]. Environmental Technology,1998,19(11):1133-1137
    122. An H., Qian Y., Gu X.S., et al. Biological treatment of dye wastewaters using ananaerobic-oxic system[J]. Chemosphere,1996,33(12):2533-2542
    123. Luangdilok W. and Panswad T. Effect of chemical structures of reactive dyes on colorremoval by an anaerobic-aerobic process[J]. Water Science and Technology,2000,42(3-4):377-382
    124. Basibuyuk M. and Forster C.F. The use of sequential anaerobic/aerobic processes forthe biotreatment of a simulated dyeing wastewater[J]. Environmental Technology,1997,18(8):843-848
    125. Fitzgerald S.W. and Bishop P.L. Two stage anaerobic/aerobic treatment of sulfonatedazo dyes[J]. Journal of Environmental Science and Health Part a-EnvironmentalScience and Engineering&Toxic and Hazardous Substance Control,1995,30(6):1251-1276
    126. Seshadri S., Bishop P.L., and Agha A.M. Anaerobic/aerobic treatment of selected azodyes in wastewater[J]. Waste Management,1994,14(2):127-137
    127. Jiang H. and Bishop P.L. Aerobic biodegradation of azo dyes in biofilms[J]. WaterScience and Technology,1994,29(10-11):525-530
    128. O'Neill C., Hawkes F.R., Esteves S.R.R., et al. Anaerobic and aerobic treatment of asimulated textile effluent[J]. Journal of Chemical Technology and Biotechnology,1999,74(10):993-999
    129. O'Neill C., Hawkes F.R., Hawkes D.L., et al. Anaerobic-aerobic biotreatment ofsimulated textile effluent containing varied ratios of starch and azo dye[J]. WaterResearch,2000,34(8):2355-2361
    130. Henderson A., Schmitt T., Heinze T., et al. Reduction of malachite green toleucomalachite green by intestinal bacteria[J]. Applied and EnvironmentalMicrobiology,1997,63(10):4099-4101
    131. Wang Z.L. and Dai Z.W. Extractive microbial fermentation in cloud point system[J].Enzyme and Microbial Technology,2010,46(6):407-418
    132.王志龙。萃取微生物转化[M]。北京:化学工业出版社,2012
    133. Miozzari G.F., Niederberger P., and Huetter R. Permeabilization of microorganisms byTriton X-100[J].Analytical Biochemistry,1978,90(1):220-233
    134. Zhao F. and Yu J. L-asparaginase release from Escherichia coli cells with K2HPO4andTriton X-100[J]. Biotechnology Progress,2001,17(3):490-494
    135. Koshy L., Saiyad A.H., and Rakshit A.K. The effects of various foreign substances onthe cloud point of Triton X100and Triton X114[J]. Colloid And Polymer Science,1996,274(6):582-587
    136. Bordier C. Phase separation of integral membrane proteins in Triton X-114solution[J].Journal of Biological Chemistry,1981,256(4):1604-1607
    137. Galera-Gómez P.A. and Gu T. Cloud point of mixtures of polypropylene glycol andtriton X-100in aqueous solutions[J]. Langmuir,1996,12(10):2602-2604
    138. Pourreza N., Rastegarzadeh S., and Larki A. Micelle-mediated cloud point extractionand spectrophotometric determination of rhodamine B using Triton X-100[J]. Talanta,2008,77(2):733-736
    139. Laane C., Boeren S., Vos K., et al. Rules for Optimization of Biocatalysis inOrganic-Solvents[J]. Biotechnology and Bioengineering,1987,30(1):81-87
    140. León R., Fernandes P., Pinheiro H.M., et al. Whole-cell biocatalysis in organicmedia[J]. Enzyme And Microbial Technology,1998,23(7-8):483-500
    141. Quina F.H. and Hinze W.L. Surfactant-mediated cloud point extractions: Anenvironmentally benign alternative separation approach[J]. Industrial&EngineeringChemistry Research,1999,38(11):4150-4168
    142. Huddleston J.G., Willauer H.D., Griffin S.T., et al. Aqueous polymeric solutions asenvironmentally benign liquid/liquid'extraction media[J]. Industrial and EngineeringChemistry Research,1999,38(7):2523-2539
    143. Gil R.A., Salonia J.A., Gasquez J.A., et al. Flow injection system for the on-linepreconcentration of Pb by cloud point extraction coupled to USN-ICP OES[J].Microchemical Journal,2010,95(2):306-310
    144. Shemirani F., Jamali M.R., Kozani R.R., et al. Cloud point extraction andpreconcentration for the determination of Cu and Ni in natural water by flame atomicabsorption spectrometry[J]. Separation Science and Technology,2006,41(13):3065-3077
    145. Glembin P., Kerner M., and Smirnova I. Cloud point extraction of microalgaecultures[J]. Separation and Purification Technology,2013,103(0):21-27
    146. Linder M.B., Qiao M., Laumen F., et al. Efficient Purification of RecombinantProteins Using Hydrophobins as Tags in Surfactant-Based Two-Phase Systems [J].Biochemistry,2004,43(37):11873-11882
    147. Chiang C.L. Separation of cholesterol esterase in cloud point extraction system[J].Journal Of The Chinese Institute Of Chemical Engineers,1999,30(2):171-176
    148. Li J.L. and Chen B.H. Solubilization of model polycyclic aromatic hydrocarbons bynonionic surfactants[J]. Chemical Engineering Science,2002,57(14):2825-2835
    149. An L., Deng J., Zhou L., et al. Simultaneous spectrophotometric determination oftrace amount of malachite green and crystal violet in water after cloud point extractionusing partial least squares regression[J]. Journal of Hazardous Materials,2010,175(1-3):883-888
    150. Pourreza N. and Zareian M. Determination of Orange II in food samples after cloudpoint extraction using mixed micelles[J]. Journal of Hazardous Materials,2009,165(1-3):1124-7
    151. Regel-Rosocka M. and Szymanowski J. Direct Yellow and Methylene Blueliquid-liquid extraction with alkylene carbonates[J]. Chemosphere,2005,60(8):1151-6
    152. Weschayanwiwat P., Kunanupap O., and Scamehorn J.F. Benzene removal from wastewater using aqueous surfactant two-phase extraction with cationic and anionicsurfactant mixtures[J]. Chemosphere,2008,72(7):1043-8
    153. TATARA E., MATERNA K., SCHAADT A., et al. Cloud Point Extraction of DirectYellow[J]. Environmental Science&Technology,2005,39:6
    154. Pei Y.C., Wang J.J., Xuan X.P., et al. Factors affecting ionic liquids based removal ofanionic dyes from water[J]. Environmental Science&Technology,2007,41(14):5090-5095
    155. Purkait M.K., Banerjee S., Mewara S., et al. Cloud point extraction of toxic eosin dyeusing Triton X-100as nonionic surfactant[J]. Water Research,2005,39(16):3885-3890
    156. Wang Z. Predicting organic compound recovery efficiency of cloud point extractionwith its quantitative structure-solubilization relationship[J]. Colloids and Surfaces A:Physicochemical and EngeneeringAspects,2009,349(1-3):214-217
    157. Gül ü.D. and D nmez G. Effect of surfactants on remazol blue bioremoval capacity ofRhizopus arrhizus strain growing in molasses medium[J]. Fresenius EnvironmentalBulletin,2011,20(10A):2677-2683
    158. Baczynski T.P. and Pleissner D. Bioremediation of chlorinated pesticide-Contaminatedsoil using anaerobic sludges and surfactant addition[J]. Journal of EnvironmentalScience and Health-Part B Pesticides, Food Contaminants, and Agricultural Wastes,2010,45(1):82-88
    159. Grimberg S.J., Stringfellow W.T., and Aitken M.D. Quantifying the biodegradation ofphenanthrene by Pseudomonas stutzeri P16in the presence of a nonionic surfactant[J].Applied and Environmental Microbiology,1996,62(7):2387-2392
    160. Fava F. and Di Gioia D. Effects of Triton X-100and Quillaya Saponin on the ex situbioremediation of a chronically polychlorobiphenyl-contaminated soil[J]. AppliedMicrobiology and Biotechnology,1998,50(5):623-630
    161. Catherine N M. Environmental applications for biosurfactants[J]. EnvironmentalPollution,2005,133(2):183-198
    162. Wang Z. Bioavailability of organic compounds solubilized in nonionic surfactantmicelles[J]. Applied Microbiology and Biotechnology,2011,89(3):523-534
    163. Saxena N. and Gupta R.K. Decolourization and delignification of pulp and paper milleffluent by white rot fungi[J]. Indian Journal of Experimental Biology,1998,36(10):1049-1051
    164. Avramova T., Stefanova L., Angelova B., et al. Bacterial decolorization of acid orange7in the presence of ionic and non-ionic surfactants[J]. Zeitschrift fur Naturforschung-Section C Journal of Biosciences,2007,62(1-2):87-92
    165. Zhang Y. and Miller R.M. Enhanced octadecane dispersion and biodegradation by aPseudomonas rhamnolipid surfactant (biosurfactant)[J]. Applied and EnvironmentalMicrobiology,1992,58(10):3276-3282
    166. Churchill P.F. and Churchill S.A. Surfactant-Enhanced Biodegradation of SolidAlkanes[J]. Journal of Environmental Science and Health-Part A Toxic/HazardousSubstances and Environmental Engineering,1997,32(1):293-306
    167. Owsianiak M., Szulc A., Chrzanowski., et al. Biodegradation andsurfactant-mediated biodegradation of diesel fuel by218microbial consortia are notcorrelated to cell surface hydrophobicity[J]. Applied Microbiology and Biotechnology,2009,84(3):545-553
    168. Liu Z.F., Zeng G.M., Wang J., et al. Effects of monorhamnolipid and Tween80on thedegradation of phenol by Candida tropicalis[J]. Process Biochemistry,2010,45(5):805-809
    169. Ding Y., Yuan X.Z., Zeng G.M., et al. Effects of surfactants on the biodegradation ofphenol by Candida tropicalis[J]. Huanjing Kexue/Environmental Science,2010,31(4):1047-1052
    170. Chan W.C. and You H.Z. Nonionic surfactant Brij35effects on toluene biodegradationin a composite bead biofilter[J]. African Journal of Biotechnology,2009,8(20):5406-5414
    171. Chan W.C. and You H.Y. The influence of nonionic surfactant Brij30onbiodegradation of toluene in a biofilter[J]. African Journal of Biotechnology,2010,9(36):5914-5921
    172. Inakollu S., Hung H.C., and Shreve G.S. Biosurfactant enhancement of microbialdegradation of various structural classes of hydrocarbon in mixed waste systems[J].Environmental Engineering Science,2004,21(4):463-469
    173. Deschenes L., Lafrance P., Villeneuve J.P., et al. The effect of an anionic surfactant onthe mobilization and biodegradation of PAHs in a creosote-contaminated soil[J].Hydrological Sciences Journal,1995,40(4):471-484
    174. Liu Z., Jacobson A.M., and Luthy R.G. Biodegradation of naphthalene in aqueousnonionic surfactant systems[J]. Applied and Environmental Microbiology,1995,61(1):145-151
    175. Tsomides H.J., Hughes J.B., Thomas J.M., et al. Effect of surfactant addition onphenanthrene biodegradation in sediments[J]. Environmental Toxicology andChemistry,1995,14(6):953-959
    176. Boonchan S., Britz M.L., and Stanley G.A. Surfactant-enhanced biodegradation ofhigh molecular weight polycyclic aromatic hydrocarbons by stenotrophomonasmaltophilia[J]. Biotechnology and Bioengineering,1998,59(4):482-494
    177. Yang J.G., Liu X., Long T., et al. Influence of nonionic surfactant on the solubilizationand biodegradation of phenanthrene[J]. Journal of Environmental Sciences,2003,15(6):859-862
    178. Rodriguez S. and Bishop P.L. Enhancing the biodegradation of polycyclic aromatichydrocarbons: Effects of nonionic surfactant addition on biofilm function andstructure[J]. Journal of Environmental Engineering,2008,134(7):505-512
    179. Zhou Y., Zhang J., Su E., et al. Phenanthrene biodegradation by an indigenousPseudomonas sp. ZJF08with TX100as surfactant[J]. Annals of Microbiology,2008,58(3):439-442
    180. Song Y., Sun T., and Xu H. Effect of surfactant TW-80on biodegradation of PAHs insoil[J]. Chinese Journal ofApplied Ecology,1999,10(2):230-232
    181. Yang J.G., Liu X., Yu G., et al. Influence on the biodegradation of phenanthrene bynonionic surfactant, Tween20[J]. Huanjing Kexue/Environmental Science,2004,25(1):53
    182. Zang S.Y., Li P.J., Yang Y.J., et al. Study on biodegradation of BaP in the presence ofsurfactant TW-80[J]. Liaoning Gongcheng Jishu Daxue Xuebao (Ziran KexueBan)/Journal of Liaoning Technical University (Natural Science Edition),2007,26(3):467-469
    183. Sarma S.J. and Pakshirajan K. Surfactant aided biodegradation of pyrene usingimmobilized cells of Mycobacterium frederiksbergense[J]. InternationalBiodeterioration and Biodegradation,2011,65(1):73-77
    184. Kim I.S., Park J.-S., and Kim K.-W. Enhanced biodegradation of polycyclic aromatichydrocarbons using nonionic surfactants in soil slurry[J]. Applied Geochemistry,2001,16:1419-1428
    185. Bernardez L.A. A rotating disk apparatus for assessing the biodegradation ofpolycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid tosolutions of surfactant Brij35[J]. Bioprocess and Biosystems Engineering,2009,32(3):415-424
    186. Bueno-Montes M., Springael D., and Ortega-Calvo J.J. Effect of a nonionic surfactanton biodegradation of slowly desorbing PAHs in contaminated soils[J]. EnvironmentalScience and Technology,2011,45(7):3019-3026
    187. Zhu H. and Aitken M.D. Surfactant-enhanced desorption and biodegradation ofpolycyclic aromatic hydrocarbons in contaminated soil[J]. Environmental Science andTechnology,2010,44(19):7260-7265
    188. Shin K.-H., Ahn Y., and Kim K.-W. Toxic effect of biosurfactant addition on thebiodegradation of phenanthrene[J]. Environmental Toxicology and Chemistry,2005,24(11):2768-2774
    189. Kile D.E. and Chiou C.T. Water solubility enhancements of DDT and trichlorobenzeneby some surfactants below and above the critical micelle concentration[J].Environmental Science and Technology,1989,23(7):832-838
    190. You G., Sayles G.D., Kupferle M.J., et al. Anaerobic DDT biotransformation:Enhancement by application of surfactants and low oxidation reduction potential[J].Chemosphere,1996,32(11):2269-2284
    191. Aislabie J.M., Richards N.K., and Boul H.L. Microbial degradation of DDT and itsresidues a review[J]. New Zealand Journal of Agricultural Research,1997,40(2):269-282
    192. Rojas-Avelizapa N.G., Rodríguez-Vázquez R., Saval-Bohorquez S., et al. Effect ofC/N/P ratio and nonionic surfactants on polychlorinated biphenyl biodegradation[J].World Journal of Microbiology and Biotechnology,2000,16(4):319-324
    193. Singer A.C., Gilbert E.S., Luepromchai E., et al. Bioremediation of polychlorinatedbiphenyl-contaminated soil using carvone and surfactant-grown bacteria[J]. AppliedMicrobiology and Biotechnology,2000,54(6):838-843
    194. Xia C., Lam J.C.W., Wu X., et al. Levels and distribution of polybrominated diphenylethers (PBDEs) in marine fishes from Chinese coastal waters[J]. Chemosphere,2011,82(1):18-24
    195. Huang Y., Chen L., Peng X., et al. PBDEs in indoor dust in South-Central China:Characteristics and implications[J]. Chemosphere,2010,78(2):169-174
    196. Deng D., Guo J., Sun G., et al. Aerobic debromination of deca-BDE: Isolation andcharacterization of an indigenous isolate from a PBDE contaminated sediment[J].International Biodeterioration and Biodegradation,2011,65(3):465-469
    197. Zhou J., Jiang W., Ding J., et al. Effect of Tween80and β-cyclodextrin on degradationof decabromodiphenyl ether (BDE-209) by White Rot Fungi[J]. Chemosphere,2007,70(2):172-177
    198. Ding J., Zhou J., Jiang W.Y., et al. Aerobic microbial degradation of polybrominateddiphenyl ethers[J]. Huanjing Kexue/Environmental Science,2008,29(11):3179-3184
    199. Scott M.J. and Jones M.N. The biodegradation of surfactants in the environment[J].Biochimica et Biophysica Acta-Biomembranes,2000,1508(1-2):235-251
    200. Saichek R.E. and Reddy K.R. Electrokinetically Enhanced Remediation ofHydrophobic Organic Compounds in Soils: A Review[J]. Critical Reviews inEnvironmental Science and Technology,2005,35(2):115-192
    201. Straathof A.J.J. Auxiliary phase guidelines for microbial biotransformations of toxicsubstrate into toxic product[J]. Biotechnology Progress,2003,19(3):755-762
    202. Nikolova P. and Ward O.P. Whole cell yeast biotransformations in two-phase systems:Effect of solvent on product formation and cell structure[J]. Journal of IndustrialMicrobiology,1992,10(3-4):169-177
    203. Cruz A., Fernandes P., Cabral J.M.S., et al. Whole-cell bioconversion of β-sitosterol inaqueous-organic two-phase systems[J]. Journal of Molecular Catalysis-B Enzymatic,2001,11(4-6):579-585
    204. Cruz A., Fernandes P., Cabral J.M.S., et al. Solvent partitioning and whole-cellsitosterol bioconversion activity in aqueous-organic two-phase systems[J]. EnzymeAnd Microbial Technology,2004,34(3-4):342-353
    205. Etschmann M.M.W. and Schrader J. An aqueous-organic two-phase bioprocess forefficient production of the natural aroma chemicals2-phenylethanol and2-phenylethylacetate with yeast[J]. Applied Microbiology And Biotechnology,2006,71(4):440-443
    206. Sinha J., Dey P.K., and Panda T. Aqueous two-phase: The system of choice forextractive fermentation[J]. Applied Microbiology and Biotechnology,2000,54(4):476-486
    207. Zijlstra G.M., de Gooijer C.D., and Tramper J. Extractive bioconversions in aqueoustwo-phase systems[J]. Current Opinion In Biotechnology,1998,9(2):171-176
    208. Jiang Y., Xia H., Guo C., et al. Enzymatic hydrolysis of penicillin in mixed ionicliquids/water two-phase system[J]. Biotechnology Progress,2007,23(4):829-835
    209. Wang Z., Zhao F.S., Hao X.Q., et al. Microbial transformation of hydrophobiccompound in cloud point system[J]. Journal of Molecular Catalysis B-enzymatic,2004,27(4-6):147-153
    210. Wang Z.L., Zhao F.S., Hao X.Q., et al. Model of bioconversion of cholesterol in cloudpoint system[J]. Biochemical Engineering Journal,2004,19(1):9-13
    211. Wang Z.L., Zhao F.S., Chen D.J., et al. Cloud point system as a tool to improve theefficiency of biotransformation[J]. Enzyme and Microbial Technology,2005,36(4):589-594
    212. Wang L., Wang Z., Xu J.-H., et al. An Eco-Friendly and Sustainable Process forEnzymatic Hydrolysis of Penicillin G in Cloud Point System[J]. Bioprocess andBiosystems Engineering,2006,29(3):157-162
    213. Wang Z.L., Zhao F.S., Chen D.J., et al. Biotransformation of phytosterol to produceandrosta-diene-dione by resting cells of Mycobacterium in cloud point system[J].Process Biochemistry,2006,41(3):557-561
    214. Wang Z., Wang L., Xu J., et al. Enzymatic hydrolysis of penicillin G to6-aminopenicillanic acid in cloud point system with discrete countercurrentexperiment[J]. Enzyme and Microbial Technology,2007,41(1-2):121-126
    215. Wang Z., Xu J.-H., and Chen D. Whole cell microbial transformation in cloud pointsystem[J]. Journal of Industrial Microbiology&Biotechnology,2008,35(7):645-656
    216. Wang Z.L., Xu J.H., Wang L., et al. Thermodynamic equilibrium control of theenzymatic hydrolysis of penicillin G in a cloud point system without pH control[J].Industrial&Engineering Chemistry Research,2006,45(24):8049-8055
    217. Wang Z., Xu J.H., Zhang W., et al. In situ extraction of polar product of whole cellmicrobial transformation with polyethylene glycol-induced cloud point system[J].Biotechnology Progress,2008,24(5):1090-1095
    218. Pan T., Wang Z., Xu J.-H., et al. Extractive fermentation in cloud point system forlipase production by Serratia marcescens ECU1010[J]. Applied microbiology andbiotechnology,2010,85(6):1789-96
    219. Liang R., Wang Z., Xu J.-H., et al. Novel polyethylene glycol induced cloud pointsystem for extraction and back-extraction of organic compounds[J]. Separation andPurification Technology,2009,66(2):248-256
    220. Dhamole P.B., Wang Z.L., Liu Y.Q., et al. Extractive fermentation with non-ionicsurfactants to enhance butanol production[J]. Biomass&Bioenergy,2012,40:112-119
    221.王志龙,王劲松,赵凤生。双水相胶束萃取苯酚[J]。化工学报,2002,53(03):269-273
    222. Minuth T., Th mmes J., and Kula M.R. A closed concept for purification of themembrane-bound cholesterol oxidase from Nocardia rhodochrous by surfactant-basedcloud-point extraction, organic-solvent extraction and anion-exchangechromatography[J]. BiotechnologyAndApplied Biochemistry,1996,23(2):107-116
    223. Collén A., Persson J., Linder M., et al. A novel two-step extraction method withdetergent/polymer systems for primary recovery of the fusion protein endoglucanaseI-hydrophobin I[J]. Biochimica et Biophysica Acta-General Subjects,2002,1569(1-3):139-150
    224. Draye M., Thomas S., Cote G., et al. Cloud-point extraction for selective removal ofGd(III) and La(III) with8-hydroxyquinoline[J]. Separation Science and Technology,2005,40(1-3):611-622
    225. Sun C., Xie Y., Tian Q., et al. Cloud point extraction of glycyrrhizic acid from licoriceroot[J]. Separation Science and Technology,2007,42(14):3259-3270
    226. Cheng H. and Sabatini D.A. Separation of organic compounds from surfactantsolutions: Areview[J]. Separation Science and Technology,2007,42(3):453-475
    227. Olsson U., Shinoda K., and Lindman B. Change of the structure of microemulsionswith the hydrophile-lipophile balance of nonionic surfactant as revealed by NMRself-diffusion studies[J]. Journal Of Physical Chemistry,1986,90(17):4083-4088
    228. Tricoli V., Farnesi M., and Nicolella C. Bicontinuous microemulsions as adsorbentsfor liquid-phase separation/purification[J]. Aiche Journal,2006,52(8):2767-2773
    229. Pan T., Wang Z., Xu J.-H., et al. Stripping of nonionic surfactants from the coacervatephase of cloud point system for lipase separation by Winsor II microemulsionextraction with the direct addition of alcohols[J]. Process Biochemistry,2010,45(5):771-776
    230. Gao Y., Han S., Han B., et al. TX-100/water/1-butyl-3-methylimidazoliumhexafluorophosphate microemulsions[J]. Langmuir,2005,21(13):5681-5684
    231. He Y. and Lodge T.P. The micellar shuttle: Thermoreversible, intact transfer of blockcopolymer micelles between an ionic liquid and water[J]. Journal Of The AmericanChemical Society,2006,128(39):12666-12667
    232. Kumar R. and Ahmad R. Biosorption of hazardous crystal violet dye from aqueoussolution onto treated ginger waste (TGW)[J]. Desalination,2011,265(1-3):112-118
    233. Wu J., Jung B.-G., Kim K.-S., et al. Isolation and characterization of Pseudomonasotitidis WL-13and its capacity to decolorize triphenylmethane dyes[J]. Journal ofEnvironmental Sciences,2009,21(7):960-964
    234. Asad S., Amoozegar M.A., Pourbabaee A.A., et al. Decolorization of textile azo dyesby newly isolated halophilic and halotolerant bacteria[J]. Bioresource Technology,2007,98(11):2082-2088
    235. Zengler K. Central Role of the Cell in Microbial Ecology[J]. Microbiology andMolecular Biology Reviews,2009,73(4):712-729
    236. Hinze W.L. and Pramauro E. A critical review of surfactant-mediated phaseseparations (cloud-point extractions): Theory and applications[J]. Critical Reviews inAnalytical Chemistry,1993,24(2):133-177
    237. TATARA E., MATERNA K., SCHAADT A., et al. Cloud point extraction of directyellow[J]. Environmental Science&Technology,2005,39:3110-3115
    238. Purkait M.K., DasGupta S., and De S. Performance of TX-100and TX-114for theseparation of chrysoidine dye using cloud point extraction[J]. Journal of HazardousMaterials,2006,137(2):827-35
    239. Pourreza N. and Elhami S. Removal of malachite green from water samples by cloudpoint extraction using Triton X-100as non-ionic surfactant[J]. EnvironmentalChemistry Letters,2008,8(1):53-57
    240. Wang Z., Extractive whole cell biotransformation in cloud point system, in Non-IonicSurfactants[M]. New York: Nova Science Publishers2010:83-136.
    241. López-Montilla J.C., Pandey S., Shah D.O., et al. Removal of non-ionic organicpollutants from water via liquid–liquid extraction[J]. Water Research,2005,39(9):1907-1913
    242. Wang Z., Liang R., Xu J.-H., et al. A Closed Concept of Extractive Whole CellMicrobial Transformation of Benzaldehyde into l-Phenylacetylcarbinol bySaccharomyces cerevisiae in Novel Polyethylene-Glycol-Induced Cloud-PointSystem[J]. Applied Biochemistry and Biotechnology,2010,160(6):1865-1877
    243. Wang Z., Xu J.-H., Zhang W., et al. Cloud point of nonionic surfactant Triton X-45inaqueous solution[J]. Colloids and Surfaces B: Biointerfaces,2008,61(1):118-122
    244. Mukherjee P., Padhan S.K., Dash S., et al. Clouding behaviour in surfactant systems[J].Advances in Colloid and Interface Science,2011,162(1-2):59-79
    245. Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications,2ndEdition[M]. New York: John Wiley&Sons Inc.,1999.
    246. Xue Y., Qian C., Wang Z., et al. Investigation of extractive microbial transformation innonionic surfactant micelle aqueous solution using response surface methodology[J].Applied Microbiology and Biotechnology,2009,85(3):517-524
    247. Chen C.H., Chang C.F., and Liu S.M. Partial degradation mechanisms of malachitegreen and methyl violet B by Shewanella decolorationis NTOU1under anaerobicconditions[J]. Journal of Hazardous Materials,2010,177(1-3):281-289
    248. Wang Z.L., Guo Y.J., Bao D., et al. Direct extraction of phenylacetic acid fromimmobilised enzymatic hydrolysis of penicillin G with cloud point extraction[J].Journal of Chemical Technology and Biotechnology,2006,81(4):560-565
    249. Wang Z.L. The potential of cloud point system as a novel two-phase partitioningsystem for biotransformation[J]. Applied Microbiology and Biotechnology,2007,75(1):1-10
    250. Jiang J.S., Vane L.M., and Sikdar S.K. Recovery of VOCs from surfactant solutions bypervaporation[J]. Journal of Membrane Science,1997,136(1-2):233-247
    251. Terstappen G.C., Geerts A.J., and Kula M.R. The use of detergent-based aqueoustwo-phase systems for the isolation of extracellular proteins: purification of a lipasefrom Pseudomonas cepacia[J]. Biotechnology and Applied Biochemistry,1992,16(3):228-235
    252. Terstappen G.C. and Kula M.R. Selective Extraction and Quantitation ofPolyoxyethylene Detergents and Its Application in Protein Determination[J].Analytical Letters,1990,23(12):2175-2193
    253. Bai Z., He Y., Young N.P., et al. A thermoreversible micellization-Transfer-Demicellization shuttle between water and an ionic liquid[J]. Macromolecules,2008,41(18):6615-6617
    254. Huddleston J.G., Willauer H.D., Swatloski R.P., et al. Room temperature ionic liquidsas novel media for 'clean' liquid-liquid extraction[J]. Chemical Communications,1998(16):1765-1766
    255. Huang m.-h., Ma x.-g., and Huang b. Application of Ionic Liquids to Separation andAnalysis of Environmental Pollutants[J]. Physical Testing and Chemical Analysis PartB: Chemical Analysis,2007,43(11):981-985
    256. Vijayaraghavan R., Vedaraman N., Surianarayanan M., et al. Extraction and recoveryof azo dyes into an ionic liquid[J]. Talanta,2006,69(5):1059-1062
    257. Clausse M., Peyrelasse J., Heil J., et al. Bicontinuous structure zones inmicroemulsions[J]. Nature,1981,293(5834):636-638
    258. Yan F. and Texter J. Surfactant ionic liquid-based microemulsions forpolymerization[J]. Chemical communications (Cambridge, England),2006(25):2696-8
    259. Dasgupta A., Das D., Mitra R., et al. Surfactant tail length-dependent lipase activityprofile in cationic water-in-oil microemulsions[J]. Journal of Colloid and InterfaceScience,2005,289(2):566-573
    260.朱文庆,许磊,马瑾,等。粒径可控纳米CeO2的微乳液法合成[J]。物理化学学报,2010,26(05):1284-1290
    261.戈磊,张宪华。微乳液法合成新型可见光催化剂BiVO4及光催化性能研究[J]。无机材料学报,2009,24(03):453-456
    262.孙翼飞,巩宗强,苏振成,等。应用表面活性剂-生物柴油微乳液去除污染土壤中多环芳烃[J]。环境工程学报,2012,6(06):2023-2028
    263. Ueno K., Tokuda H., and Watanabe M. Ionicity in ionic liquids: Correlation with ionicstructure and physicochemical properties[J]. Physical Chemistry Chemical Physics,2010,12(8):1649-1658
    264. Blanchard L.A. and Brennecke J.F. Recovery of organic products from ionic liquidsusing supercritical carbon dioxide[J]. Industrial&Engineering Chemistry Research,2001,40(1):287-292
    265. Blanchard L.A., Hancu D., Beckman E.J., et al. Green processing using ionic liquidsand CO2[J]. Nature,1999,399(6731):28-29
    266. Lateef H., Grimes S., Kewcharoenwong P., et al. Separation and recovery of celluloseand lignin using ionic liquids: a process for recovery from paper-based waste[J].Journal of Chemical Technology and Biotechnology,2009,84(12):1818-1827
    267. Ma J. and Hong X. Application of ionic liquids in organic pollutants control[J].Journal of Environmental Management,2012,99:104-9
    268. Scurto A.M., Aki S.N.V.K., and Brennecke J.F. Carbon dioxide induced separation ofionic liquids and water[J]. Chemical Communications,2003(5):572-573
    269. Visser A.E., Swatloski R.P., and Rogers R.D. pH-dependent partitioning in roomtemperature ionic liquids: Provides a link to traditional solvent extraction behavior[J].Green Chemistry,2000,2(1):1-4
    270. Zhao D., Liu R., Wang J., et al. Photochemical Oxidation Ionic Liquid ExtractionCoupling Technique in Deep Desulphurization of Light Oil[J]. Energy&Fuels,2008,22(2):1100-1103
    271. Li C.P., Xin B.P., Xu W.G., et al. Study on the extraction of dyes into aroom-temperature ionic liquid and their mechanisms[J]. Journal of ChemicalTechnology and Biotechnology,2007,82(2):196-204