多尺度解译木质纤维生物质天然抗降解屏障
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维生物质细胞壁微观结构复杂性及主要组分(纤维素、半纤维素以及木质素)分布不均一性构成了生物质细胞壁主要的天然抗降解屏障(Natural Biomass Recalcitrance)。为了提高生物质转化效率,降低转化成本,选择经济、高效、环保的预处理方法非常重要,它能有效地打破细胞壁抗降解屏障,增加酶对生物质多糖的可及性。本研究利用显微光谱技术阐明了木质纤维生物质发育过程中组分积累过程,同时结合显微及显微光谱技术在多尺度下解译了木质纤维生物质细胞壁组分微区分布及超微结构特点,在以上研究基础上在细胞水平探索了化学预处理过程中生物质细胞壁微观结构变化及组分溶解规律。主要结论如下:
     1.毛白杨(Populus tomentosd)形成层发育过程中木质部纤维细胞碳水化合物的积累先于木质素;而木质素的积累开始于细胞角隅区;相比于前一年的晚材纤维细胞,新形成的纤维细胞次生壁中纤维素浓度低于前一年的晚材纤维细胞,而木质素的浓度呈相反趋势
     2.黑杨(Populus nigra)纤维细胞壁分为:胞间层(ML)、初生壁(P)以及次生壁(次生壁外层S1,次生壁中层S2和次生壁内层S3),且各形态区域中木质素分布具有明显不均一性。除此之外,在S2层中出现电子密度较低的条纹状区域,这些区域表明纤维素微纤丝取向的空间取向差异
     3.黑杨(Populus nigra)受拉木(TW)纤维细胞出现额外的凝胶层(GL),且这一层具有较高纤维素浓度及痕量木质素;相比于对应木(OW)次生壁(Sw), TW的GL层中具有更为丰富的空隙结构;另外,TW纤维细胞Sw以及GL中负的拉曼特征峰(1097cm-1)位移表明TW形成过程中这两层产生了永久的拉伸形变
     4.连翘(Forsythis suspensa)形态学和解剖学的特点表明其具有替代传统林产品原料的潜在价值。其细胞壁木质素分布不均一性不仅存在于不同细胞间,也存在于同一细胞不同形态区域内。半定量的扫描电子显微镜结合能谱(SEM-EDXA)分析结果表明细胞角隅胞间层(CCML).复合胞间层(CML)、次生壁S2层的木质素浓度比为1.3:1.1:1
     5.红瑞木(Cornus alba)茎部组织细胞中木质素和纤维素在不同细胞同一形态区域以及同一细胞不同形态区域的分布呈现明显的不均一性;木质素生物合成的前驱物质松伯醇和松柏醛(Lignin-CAA)汇聚于富含纤维素的次生壁中。另外,研究发现纤维细胞间的纹孔膜区域富含木质素及少量的纤维素及果胶类物质
     6.芒草(Miscanthus sinensis)节间组织厚壁纤维细胞(Sf)的分层特点具有明显的区域性;节间组织初生木质部导管(Pxv)和次生木质部导管(Mxv)次生壁的分层Sf简单;节间组织Pxv由微纤丝无序排列的初生壁(P)以及微纤丝水平排列且环状增厚的次生壁(Sw)组成
     7.芒草(Miscanthus sinensis)节间组织中木质素主要聚集在后生木质部导管(Mxv)、表皮细胞(Epi)、厚壁纤维细胞(Sf)次生壁及胞间层区域(ML);而对羟基肉桂酸主要存在于Sf次生壁、薄壁细胞(Par)、Mxv以及ML;在亚细胞水平对羟基肉桂酸浓度与木质素浓度存在明显伴生关系
     8.离子液体1-乙基-3-甲基咪唑醋酸盐([Emim][OAc])预处理造成了虎皮松(Pinus bungeana Zucc.)对应木(OW)管胞次生壁明显的润胀,而应压木(CW)管胞润胀不明显;在oW管胞中,离子液体主要经细胞腔渗透到次生壁的内侧,进而扩散到次生壁临近复合胞间层的区域中。相比而言,离子液体在CW管胞中较难渗透;预处理后oW次生壁临近复合胞间层的区域中,碳水化合物、纤维素和木质素的变化程度大于其他形态区域,而CW管胞组分几乎没有变化
Lignocellulosic plant cell walls are composed of crystalline cellulose nanofibrils embedded in an amorphous matrix of cross-linked lignin and hemicelluloses that impedes enzyme and microbial accessibility. The complex cell wall micro-structure and heterogeneous distribution of cell wall components are believed to be the natural biomass recalcitrance. In order to increase overall process efficiency and reduce costs, pretreatment of biomass is necessary to improve the accessibility of biomass polysaccharides to enzymatic hydrolysis. While various pretreatments have been employed, a detailed cellular level understanding of the pretreatment process is lacking due in part to complexity of the biomass composition and structure as well as interference from traditional processing chemicals that sometimes alter the material under study. In the present work, microscopic and microspectroscopic techniques were used to investigate cell wall micro-structural and topochemical information at cellular and sub-cellular. The conclusions obtained were as follows:
     In the developing xylem tissue of Populus tomentosa, prior to fiber lignification, the cellulosic polysaccharides have been deposited. The fiber lignification started from cell corner middle lamella (CCML), and then extends into secondary wall (Sw), The lignification level for the newly formed fiber Sw was higher than that of the previous latewood fiber.
     TEM images exhibited that the Populus nigra fiber wall was typically differentiated into three layers:middle lamella (ML), primary wall (P) and secondary wall (S1, S2and S3), and the staining intensities represented differing lignin concentrations. The striated appearance in the fiber S2indicated the orientation of cellulose microfibirls.
     Compared to Populus nigra opposite wood (OW), the tension wood (TW) fiber displayed an additional gelatinous layer (GL) with higher cellulose and less lignin. Meanwhile, the cellulose enriched GL in TW had much more abundant porosity than that of OW. Moreover, the microfibrils in the TW fiber S2and GL were stretched during TW formation and the microfibrils still keep the tensional deformation even after the fibers are transversally cut.
     Anatomical observations indicated that Forsythia suspensa was diffuse-porous wood. Helical thickenings and alternate intervessel pits were present on vessel cell wall. Confocal images (488nm) revealed a high level of lignin autofluorescence in the cell corner middle lamella (CCML), with lower levels of fluorescence in the compound middle lamella (CML) and S2region. The results from SEM-EDXA demonstrated that lignin concentration ratio in different regions of fibre wall was1.3(CCML):1.1(CML):1(S2).
     The inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers was observed in Cornus Alba. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber ceJl wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall (Sw) where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose and pectin was visualized in the pit membrane (PM) areas between fibers.
     A great degree of inhomogeneity in the layering structure of Miscanthus sinensis sclerenchymatic fiber (Sf) secondary wall (Sw) was visualized, while the Sw of xylem vessel can not clearly be divided into sub-layers. Moreover, we proposed an architectural model of protoxylem vessel (Pxv) composed of two layers:an outermost Pw composed of a meshwork of Mfs, and inner Sw containing regularly parallel Mfs.
     In herbaceous biomass Miscanthus sinensis lignin mainly accumulated within the secondary wall of epidermis, metaxylem vessel, sclrenchyma fiber (Sf) and middle lamella (ML). And higher concentration of hydroxycinnamic acids (HCA) was located at the secondary wall of Sf, parenchyma (Par), metaxylem vessel (Mxv) and ML. Moreover, a clear accompanied trend between lignin and HCA distribution within morphologically distinct cell wall layers of Sf and Par was observed.
     During ionic liquids ([Emim][OAc]) pretreatment of Pinus bungeana Zucc. opposite wood (OW), swelling occurred primarily in the secondary wall (Sw) adjacent to compound middle lamella (CML) and the ILs had little effect on the Sw adjacent to cell corner middle lamella (CCML). The time series of lignin Raman images showed that lignin decreased significantly from the Sw adjacent to Cml in OW while for the Sw of the CW tracheids there was no significant change of the lignin signal intensity within the same pretreatment time. Moreover, after washing with distilled water (80℃) OW tracheids displayed obvious decrease in lignin, carbohydrates and cellulose concentration.
引文
Abud, Y., Costa, L.T., Bud, Y, De Souza, W., Sannt'Anna, C. (2013). Revealing the microfibrillar arrangement of the cell wall surface and the macromolecular effects of thermochemical pretreatment in sugarcane by atomic force microscopy. Ind. Crops Prod.51:62-69.
    Abdul Khalil, H.P.S., Ireana Yusra, A.F., Bhat, A.H., Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind. Crops Prod.31 (1),113-121.
    Agarwal, U.P. (2006). Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224 (5), 1141-1153.
    Agarwal, U.P. and Atalla, R.H. (1986). In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P. Planta 169 (3),325-332.
    Agarwal, U.P. and McSweeny, J.D. (1997). Photoyellowing of thermomechanical pulps:looking beyond alpha-carbonyl and ethylenic groups as the initiating structures. J. Wood Chem. Technol. 17(4),1-26.
    Agarwal, U.P. and Ralph, S.A. (1997). FT-Raman spectroscopy of wood:identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce(Picea mariana). Appl. Spectrosc.51 (11),1648-1655.
    Agarwal, U.P. and Ralph, S.A. (2008). Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy. Holzforschung 62 (6),667-675.
    Agarwal, U.P., McSweeny, J.D., Ralph, S.A. (2011). FT-Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J. Wood Chem. Technol.31 (4),324-344.
    Alonso, D.M., Wettstein, S.G., Bond, J.Q., Root, T.W., Dumesic, J.A. (2011). Production of biofuels from cellulose and corn stover using alkylphenol solvents. ChemSusChem 4 (8),1078-1081.
    Anagnost, S.E., Mark,R.E., Hanna, R.B. (2000). Utilization of soft-rot cavity orientation for the determination of microfibril angle. Part I. Wood Fiber Sci.32 (1),81-87.
    Atalla, R.H. and Agarwal, U.P. (1986). Recording Raman spectra from plant cell walls. J. Raman Spectrosc.17 (2),229-231.
    Barnett, J.R and Bonham, V.A. (2004). Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev.79 (2),461-472.
    Baucher, M., Bernard-Vailhe, M.A., Chabbert, B., Besle, J.M., Opsomer, C., Van Montagu, M., Botterman, J. (1999). Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the impact on lignin composition and digestibility. Plant Mol. Biol.39 (3),437-447.
    Baucher, M., Monties, B., Montagu, M.V., Boerjan, W. (1998). Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci.17 (2),125-197.
    Belmokhttar, N., Habrant, A., Ferreira, N.L., Chabbert, B. (2013). Changes in phenolics distribution after chemical pretreatment and enzymatic conversion of Miscanthus × giganteus internode. Bioenerg. Res.6(2),506-518.
    Bjurhager, I., Olsson, A.M., Zhang, B., Gerber, L., Kumar, M., Berglund, L.A., Burgert, I., Sundberg, B., Salmen, L. (2010). Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11 (9),2359-2365.
    Bland, D.E., Foster, R.C., Logan, A.F. (1971). The mechanism of permanganate and osmium tetroxide fixation and the distribution of the lignin in the cell wall of Pinus radiata. Holzforschung 25 (5), 137-143.
    Boerjan, W., Ralph, J., Baucher, M. (2003). Lignin biosynthesis. Annu. Rev. Plant Biol.54 (1),519-546.
    Bowling, A.J., and Vaughn, K.C. (2008). Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. Am. J. Bot.95 (6),655-663.
    Bradshaw, T.C., Alizadeh, H., Teymouri, F., Balan, V., Dale, B.E. (2007). Ammonia fiber expansion pretreatment and enzymatic hydrolysis on two different growth stages of reed canarygrass. Appl. Biochem. Biotech.137-140(1-12),395-405.
    Brandt, A., Grasvik, J., Hallett, J.P., Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem.15 (3),550-583.
    Brennan, M., McLean, J.P., Altaner, C.M., Ralph, J., Harris, P.J. (2012). Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata. Cellulose 19 (4),1385-1404.
    Brunecky, R., Vinzant, T.B., Porter, S.E., Donohoe, B.S., Johnson, D.K., Himmel, M.E. (2009). Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnol. Bioeng. 102(6),1537-1543.
    Calheiros, R., Machado, N.F.L., Fiuza, S.M., Gaspar, A., Garrido, J., Mihazes, N., Borges, F., Marques, M.P.M. (2008). Antioxidant phenolic esters with potential anticancer activity:a Raman spectroscopy study. J. Raman Spectrosc.39 (1),95-107.
    Carnachan, S.M. and Harris P.J. (2000). Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem. Syst. Ecol.28 (9),865-879.
    Chaffey, N., Barlow, P., Sundberg, B. (2002). Understanding the role of the cytoskeleton in wood formation in angiosperm trees:hybrid aspen (Populus tremula × P. tremuloides) as the model species. Tree physiol.22 (4),239-249.
    Chandel, A.K., Antunes, F.F.A., Anjos, V, Bell, M.J.V., Rodrigues, L.N., Singh, O.V., Rosa, C.A., Pagnocca, F.C., da Silva, S.S. (2013). Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 6 (1),4-18.
    Chang, S.S., Clair, B., Ruelle, J., Beauchene, J., Di Renzo, F., Quignard, F., Zhao, G.J., Yamamoto, H., Gril, J. (2009). Mesoporosity as a new parameter for understanding tension stress generation in trees. J. Exp. Bot.60 (11),3023-3030.
    Cho, C.H., Lee, K.H., Kim, J.S., Kim, Y.S. (2008). Micromorphological characteristics of bamboo (Phyllostachys pubescens) degraded by the brown rot fungus(Gloeophyllum trabeum). J.wood Sci. 54 (3),261-265.
    Choat, B., Brodie, T.W., Cobb, A.R., Zwieniecki, M.A., Holbrook, N.M. (2006). Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. Am. J. Bot.93 (7), 993-1000.
    Choat, B., Cobb, A.R., Jansen, S. (2008). Structure and function of bordered pits:new discoveries and impacts on whole-plant hydraulic function. New Phytol.177 (3),608-625.
    Chu, L.Q., Masyuko, R., Sweedler, J.V., Bohn, P.W. (2010). Base-induced delignification of miscanthus x giganteus studied by three-dimensional confocal raman imaging. Bioresour. Technol. 101 (13),4919-4925.
    Chundawat, S.P.S., Donohoe, B.S., da Costa Sousa, L., Elder, T, Agarwal, U.P., Lu, F.C., Ralph, J., Himmel, M.E., Balan, V, Dale, B.E. (2011). Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energ. Environ. Sci.4 (3),973-984.
    Clair, B. and Thibaut, B. (2001). Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J.22(2),121-131.
    Clair, B., Almeras, T., Pilate, G., Jullien, D., Sugiyama, J., Riekel, C. (2011). Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol. 155(1),562-570.
    Coletta, V.C., Rezende, C.A., da Conceicao, F.R., Polikarpov, I., Guimaraes, F.E.G. (2013). Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. Biotechnol. Biofuels 69 (1),43-53.
    Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Bio.6 (11),850-861.
    Dadwell, H.E and Wardrop, A.B. (1955). The structure and properties of tension wood. Holzforschung 9 (4),97-104.
    Davies, R.J., Eichhorn, S.J., Riekel, C, Young, R.J. (2004). Crystal lattice deformation in single poly(p-phenylene benzobisoxazole) fibres. Polymer 45 (22),7693-7704.
    De Micco, V. and Aronne, G. (2007). Anatomical features, monomer lignin composition and accumulation of phenolics in 1-year-old branches of the Mediterranean Cistus ladanifer L. Bot. J. Linn. Soc.155 (3),361-371.
    DeMartini, J.D., Pattathil, S., Avci, U., Szekalski, K., Mazumder, K., Hahn, M.G., Wyman, C.E. (2011). Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energ. Environ. Sci.4 (10),4332-4339.
    Ding, S.Y., Liu, Y.S., Zeng, Y., Himmel, M.E., Baker, J.O., Bayer, E.A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?. Science 338 (6110),1055-1060.
    Donaldson, L.A., Singh, A.P., Yoshinaga, A., Takabe, K. (1999). Lignin distribution in mild compression wood of Pinus radiata. Can. J. Bot.77 (1),41-50.
    Donaldson, L.A and Knox, J.P. (2012). Localization of cell wall polysaccharides in normal and compression wood of radiata pine:Relationships with lignification and microfibril orientation. Plant physiol.158 (2),642-653.
    Donaldson, L.A and Ryan, K.G (1987). A comparison of relative lignin concentration as determined by interference microscopy and bromination/EDXA. Wood Sci. Technol.21 (4),303-309.
    Donaldson, L.A and Xu, P. (2005). Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19 (6),644-653.
    Donaldson, L.A. (2001). Lignification and lignin topochemistry-an ultrastructural view. Phytochemistry 57 (6),859-873.
    Donaldson, L.A. (2008). Microfibril angle:measurement, variation and relationships. IAWA J.29 (4), 345-386.
    Donaldson, L.A. and Lausberg, M.J.F. (1998). Comparison of conventional transmitted light and confocal microscopy for measuring wood cell dimensions by image analysis. IAWA J.19 (3), 321-336.
    Donaldson, L.A., Hague, J., Snell, R. (2001). Lignin distribution in coppice poplar, linseed and wheat straw. Holzforschung 55 (4),379-385.
    Donohoe, B.S., Decker, S.R., Tucker, M.P., Himmel, M.E., Vinzant, T.B. (2008). Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng.101 (5),913-925.
    Edwards, H.GM., Farwell, D.W., Webster, D. (1997). FT-Raman microscopy of untreated natural plant fibers. Spectrochim. Acta Part A 53 (13),2383-2392.
    Eriksson, I., Lidbrandt, O., Westermark, U. (1988). Lignin distribution in birch (Betula verrucosa) as determined by mercurization with SEM-and TEM-EDXA. Wood Sci. Technol.22 (3),251-257.
    Eronen, P., Osterberg, M., Jaskelainen, A.S. (2009). Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16 (2),167-178.
    Evans, C.L. and Xie, X.S. (2008). Coherent anti-stokes Raman scattering microscopy:Chemical imaging for biology and medicine. Annu. Rev. Anal. Chem.1 (1),883-909.
    Evert, R.F. Sclerenchyma, in:Esau's plant anatomy, John Wiley & Sons., New Jersey,2006, pp. 191-194.
    Feild, T.S., Lee, D.W., Holbrook, N.M. (2001). Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol.127 (2),566-574.
    Fergus, B.J. and Goring, D.A.I. (1970). The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung 24 (4),118-124.
    Fergus, B.J. and Goring, D.A.I. (1970). The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24 (4),113-117.
    Fergus, B.J., Procter, A.R., Scott, J.A.N., Goring, D.A.I. (1969). The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci. Technol.3 (2),117-138.
    Foston, M., Hubbell, C.A., Samuel, R., Jung, S., Fan, H., Ding, S.Y., Zeng, Y.N., Jawdy, S., Davis, M., Sykes, R., Gjersing, E., Tuskan, G.A., Kalluri, U., Ragauskas, A.J. (2011). Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energ. Environ. Sci.4(12),4962-4971.
    Fromm, J., Rockel, B., Lautner, S., Windeisen, E., Wanner, G (2003). Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J. Struct. Biol.143 (1),77-84.
    Fujita, M., Saiki, H., Harada, H. (1974). Electron microscopy of microtubules and cellulose microfibirils in secondary wall formation of poplar tension wood fibers. Mokuzai Gakkaishi 20 (4), 147-156.
    Gierlinger, N. and Schwanninger, M. (2007). The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy 21 (2),69-89.
    Gierlinger, N. and Schwanninger, M. (2006). Chemical image of poplar wood cell walls by confocal Raman microscopy. Plant Physiol.140 (4),1246-1254.
    Gierlinger, N., GoSwami, L., Schmidt, M., Burgert, I., Coutand, C., Rogge, T., Schwanninger, M. (2008). In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromolecules 9 (8),2194-2201.
    Gierlinger, N., Luss, S., Konig, C, Konnerth, J., Eder, M, Fratzl, P. (2010). Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J. Exp. Bot.61 (2),587-595.
    Gierlinger, N., Schwanninger, M., Reinecke, A., Burgert, I. (2006). Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7 (7), 2077-2081.
    Gomez, L.D., Steele-King, C.G, McQueen-Mason, S.J. (2008). Sustainable liquid biofuels from biomass:the writing's on the walls. New Phytol.178 (3),473-485.
    Gorshkova, T.A., Salnikov, V.V., Pogodina, N.M., Chemikosova, S.B., Yablokova, E.V., Ulanov, A.V., Ageeva, M.V., van Dam, J.E.G, Lozovaya, V.V. (2000). Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann. Bot.85 (4),477-486.
    GoSwami, L., Dunlop, J.W.C., Jungnikl, K., Eder, M., Gierlinger, N., Coutand, C., Jeronimidis, G., Fratzl, P., Burgert, I. (2008). Stress generation in the tension wood of poplar is based on the lateral Swelling power of the G-layer. Plant J.56 (4),531-538.
    Grabber, J.H., Ralph, J., Lapierre, C.,Barriere, Y. (2004). Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C. R. Biol.327 (5),455-465.
    Gritsch, C.S. and Murphy, R.J. (2005). Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper. Ann. Bot.95 (4),619-629.
    Gritsch, C.S., Kleist G, Murphy,R.J. (2004). Developmental changes in cell wall structure of phloem fibres of the Bamboo Dendrocalamus asper. Ann. Bot.94 (4),497-505.
    Grunwald, C., Ruel, K., Schmitt, U. (2002) Differentiation of xylem cells in rolC transgenic aspen trees-a study of secondary cell wall development. Ann. Forest Sci.59 (5-6),679-685.
    Gupta R., Khasa Y.P., Kuhad, R.C. (2011). Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohyd. Polym.84 (3),1103-1109.
    Hallac, B.B., Ray, M., Murphy, R.J., Ragauskas, A.J. (2010). Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose. Biotechnol. Bioeng.107 (5),795-801.
    Hanley, S.J., Giasson, J., Revol, J.F., Gray, D.G. (1992). Atomic force microscopy of cellulose microfibrils:Comparison with transmission electron microscopy. Polymer 33 (21),4639-4642.
    Hanley, S.J., Revol, J.F., Godbout, L., Gray, D.G (1997). Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4 (3),209-220.
    Hanninen, T., Kontturi, E., Vuorinen, T. (2011). Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Phytochemistry 72 (14),1889-1895.
    Hansen, M.A.T., Kristensen, J.B., Felby, C., J(?)rgensen, H. (2011). Pretreatment and enzymatic hydrolysis of wheat straw(Triticum aestivum L.)-the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour. Technol.102 (3),2804-2811.
    Hansen, M.A.T., Hidayat, B.T., Mogensen, K.K. (2013). Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment. Biotechnol. Biofuel.6,54-68.
    Harris, P.J. and Hartley, R.D. (1980). Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol.8 (2),153-160.
    He, L.F and Terashima, N. (2005). Formation and structure of lignin in monocotyledons Ⅳ. Deposition process and structural diversity of the lignin in the cell wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy. Holzforschung 45 (3),191-198.
    Hendriks, A.T.W.M and Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol.100 (1),10-18.
    Higuchi, T., Ito, Y., Shimada, M., Kawamura, L. (1967). Chemical properties of milled wood lignin of grasses. Phytochemistry 6 (11),1551-1556.
    Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D. (2007). Biomass recalcitrance:Engineering plants and enzymes for biofuels production. Science 315 (5813),804-807.
    Himmel, M.E., Balan, V., Dale, B.E. (2011). Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energ. Environ. Sci.4 (3),973-984.
    Hinterstoisser, B., Akerholm, M., Salmen, L. (2003). Load distribution in native cellulose, Biomacromolecules 4 (5),1232-1237.
    Hoffmann,G. C. and Timell,T. E. (1972) Polysaccharides in ray cells of normal wood of red pine (Pinus resinosa). Tappi,55:733-736.
    Horn, R.A and Setterholm, V.C.(1990). Fiber morphology and new crops, in:Janick, J., Simon, J.E. (Eds.), Advances in New Crops. Timber Press., Portland, OR, pp.270-275.
    Hu, F., Jung, S., Ragauskas,A. (2012). Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol.117,7-12.
    Jansen, S., Choat, B., Pletsers, A. (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am. J. Bot.96 (2),409-419.
    Jones, L., Ennos, A.R., Turner, S.R. (2001). Cloning and characterization of irregular xylem4 (irx4):A severely lignin deficient mutant of Arabidopsis. Plant J,26 (2),205-216.
    Karam, G.N. (2005). Biomechanical model of the xylem vessels in vascular plants, Annal. Bot.95, 1179-1186.
    Kataoka, Y., Saiki, H., Fujita, M. (1992). Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids. Mokuzai Gakkaishi 38 (4),327-335.
    Khristova, P., Bentcheva, S., Karar, I.(1998). Soda-AQ pulp blends from kenaf and sunflower stalks. Bioresour. Technol.66 (2),99-103.
    Kim, J.S., Lee, K.H., Cho, C.H., Koch, G., Kim, Y.S. (2008). Micromorphological characteristics and lignin distribution in bamboo(Phyllostachys pubescens) degraded by the white rot fungus Lentinus edodes. Holzforschung 62 (4),481-487.
    Klinke, H.B., Ahring, B.K., Schmidt, A.S., Thomsen, A.B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol.82 (1),15-26.
    Knauf, M. and Moniruzzaman, M. (2004). Lignocellulosic biomass processing:a perspective. Int. Sugar J.106(1263),147-150.
    Knebel, W. and Schnepf, E. (1991). Confocal laser scanning microscopy of fluorescently stained wood cells:a new method for three-dimensional imaging of xylem elements. Trees 5 (1),1-4.
    Konnerth, J., Gierlinger, N., Keckes, J., Gindl, W. (2009). Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle. J. Mater. Sci.44 (16),4399-4406.
    Kosan, B., Michels, C., Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1),59-66.
    Kristensen, J.B., Thygesen, L.G., Felby, C., Jorgensen, H., Elder, T. (2008). Cell wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels 1 (5),1-9.
    Lee, S.H., Doherty, TV., Linhardt, R.J., Dordick, J.S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng.102 (5),1368-1376.
    Lichtenegger, H., Reiterer, A., Stanzl-Tschegg, S.E., Fratzl, P. (1999). Variation of cellulose microfibril angles in softwoods and hardwoods-A possible strategy of mechanical optimization. J. Struct. Biol. 128 (3),257-269.
    Likon, M. and Perdih, A. (1994). Lignocellulose delignification with organic solvents. Acta Chim. Slov. 41 (3),353-374.
    Liu, C. and Wyman, C.E. (2003). The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind. Eng. Chem. Res.42 (21),5409-5416.
    Liyama, K., Lam, T.B.T., Stone, B.A. (1994). Covalent cross-links in the cell wall. Plant physiol.104 (2),315-320.
    Lucas, M., Macdonald, B.A., Wagner, G.L., Joyce, S.A., Rector, K.D. (2010). Ionic Liquid pretreatment of poplar wood at room temperature:Swelling and incorporation of nanoparticles. ACS Appl. Mater. Inter.2 (8),2198-2205.
    Lucas, M., Wagner, G.L., Nishiyama, Y, Hanson, L., Samayam, I.P., Schall, C.A., Langan, P., Rector, K.D. (2011). Reversible Swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour. Technol.102 (6),4518-4523.
    Lucas, M., Hanson, S.K., Wagner, GL. (2012).Evidence for room temperature delignification of wood
    using hydrogen peroxide and manganese acetate as a catalyst. Bioresour. Technol.119,174-180.
    Lybeer, B. and Koch, G. (2005). A topochemical and semiquantitative study of the lignification during ageing of bamboo culms(Phyllostachys viridiglaucescens). IAWA J.26 (1),99-109.
    Lybeer, B., Koch, G, Van Acker, J., Goetghebeur, P. (2006). Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra. Ann. Bot.97 (4),529-539.
    Lygin, A.V., Upton, J., Dohleman, F.G., Juvik, J., Zabotina, O.A., Widholm, J.M., Lozovaya, V.V. (2011). Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop-Miscanthus. GCB Bioenergy 3 (4),333-345.
    Ma, J.F., Ji, Z., Zhou, X., Zhang, Z., Xu, F. (2013). Transmission electron microscopy, fluorescence microscopy, and confocal Raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall. Microsco. Microanal.19,243-253.
    Maximov, N.A. (1931). The physiological significance of the xeromorphic structure of plants. J. Ecol. 19 (2),273-282.
    Migne, C., Prensier, G., Utille, J.P., Angibeaud, P., Cornu, A., Grenet, E. (1998). Immunocytochemical localisation of para-coumaric acid and feruloyl-arabinose in the cell walls of maize stem. J. Sci. FoodAgr.78(3),373-381.
    Michael J S, Sridhar V, Stephen R D, Melvin P T, Michael E H, Todd B V. Biotechnol. Prog.,2007,23: 1333-1339.
    Mott, L., Groom, L., Shaler, S. (2002). Mechanical properties of individual southern pine fibers. Part II. Comparison of earlywood and latewood fibers with respect to tree height and juvenility. Wood and Fiber Sci.34,221-237.
    Musha, Y. and Goring, D.A.I. (1975). Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci. Technol.9 (1),45-58.
    Nakashima, J., Mizuno, T, Takabe, K., Fujita, M., Saiki, H. (1997). Direct visualization of lignifying secondary wall thickenings in Zinnia elegans cells in culture. Plant Cell Physiol.38 (7),818-827.
    Niklas, K. and Paolillo, D. (1997). The role of the epidermis as a stiffening agent in tulipa (liliaceae) stems. Am. J. Bot.84 (6),735-744.
    Nishikubo, N., Awano, T, Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T.T., Hayashi, T, Sundberg, B., Mellerowicz, E.J. (2007). Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar-A glimpse into the mechanism of the balancing act of trees. Plant Cell Physio.48 (6),843-855.
    Ogbonnaya, C.I., Roy-Macauley, H., Nwalozie, M.C., Annerose, D.J.M. (1997). Physical and histochemical properties of kenaf(Hibiscus cannabinus L.) grown under water deficit on a sandy soil. Ind. Crops Prod.7 (1),9-18.
    Ohgren, K., Bura, R., Saddle, J., Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol.98 (13),2503-2510.
    Panagiotou, G. and Olsson, L. (2007). Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng.96 (2),250-258.
    ParameSwaran, N. and Liese, W. (1976). On the fine structure of bamboo fibers. Wood Sci. Technol.10 (4),231-246.
    Parham, R.A. and Cote Jr, W.A. (1971). Distribution of lignin in normal and compression wood of Pinus taeda L. Wood Sci. Technol.5 (1),49-62.
    Peng, F. and Westermark, U. (1997). Distribution of conifer alcohol and coniferaldehyde groups in the cell wall of spruce fibres. Holzforschung 51 (6),531-536.
    Pilate, G., Chabbert, B., Cathala, B., Yoshinaga, A., Leple, J.C., Laurans,, Lapierre, C., Ruel, K. (2004). Lignification and tension wood. C. R. Biol.327 (9),889-901.
    Piot, O., Autran, J.C., Manfait, M. (2000). Spatial distribution of protein and phenolic constituents in wheat grain as probed by confocal Raman microspectroscopy. J. Cereal Sci.32 (1),57-71.
    Plomion, C., Leprovost, G., Stokes, A. (2001) Wood formation in trees. Plant Physiol.127 (4), 1513-1523.
    Prislan, P., Koch, G., Schmitt, U., Gricar, J., Cufar, K. (2012) Cellular and topochemical characteristics of secondary changes in bark tissues of beech(Fagus sylvatica). Holzforschung 66 (1),131-138.
    Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick Jr, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science 311 (5760),484-489.
    Ralph, J., Hatfield, R.D., Quideau, S., Helm, R.F., Grabber, J.H., Jung, H.J.G. (1994). Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc.116 (21), 9448-9456.
    Ram, M.S., Dowell, F.E., Seitz, L.M. (2003). FT-Raman spectra of unsoaked and NaOH-soaked wheat kernels, bran, and ferulic acid. Cereal Chem.80 (2),188-192.
    Reiterer, A., Lichtenegger, H., Tschegg, S., Fratzl, P. (1999). Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos. Mag. A 79 (9),2173-2184.
    Remsing, R.C., Swatloski, R.P., Rogers, R.D., Moyna, G. (2006). Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride:a 13C and 35/37Cl NMR relaxation study on model systems. Chem. Commun.0(12),1271-1273.
    Richter, S., Mussig, J., Gierlinger, N. (2011). Functional plant cell wall design revealed by the Raman imaging approach. Planta 233 (4),763-772.
    Roder, T., Koch, G., Sixta, H. (2004). Application of confocal Raman spectroscopy for the topochemical distribution of lignin and cellulose in plant cell walls of beech wood (Fagus sylvatica L.) compared to UV microspectrophotometry. Holzforschung 58 (5),480-482.
    Rubin, E.M. (2008). Genomics of cellulosic biofuels. Nature 454 (7206),841-845.
    Ruelle, J., Yoshida, M., Clair, B., Thibaut, B. (2007). Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees 21 (3),345-355.
    Saar, B.G., Zeng, Y., Freudiger, C.W., Liu, Y.S., Himmel, M.E., Xie, X.S., Ding, S.Y. (2010). Label-free, real-time monitoring of biomass processing with simulated Raman scattering microscopy. Angew. Chem. Int. Ed.49 (32),5476-5479.
    Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem.40 (12),3693-3700.
    Saikia, C.N., GoSwami, T., Ali, F. (1997). Evaluation of pulp and paper making characteristics of certain fast growing plants. Wood Sci. Technol.31 (6),467-475.
    Saka, S. and Goring, D.A.I. (1988). The distribution of lignin in white birch wood as determined by bromination with TEM-EDXA. Holzforschung 42 (3),149-153.
    Saka, S., Whiting, P., Fukazawa, K., Goring, D.A.I. (1982). Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA. Wood Sci. Techno].16 (4),269-277.
    Sannigrahi, P., Kim, D.H., Jung, S., Ragauskas, A. (2011). Pseudo-lignin and pretreatment chemistry. Energ. Environ. Sci.4 (4),1306-1310.
    Schmid, R. and Machado, R.D. (1968). Pit membranes in hardwoods-Fine structure and development. Protoplasma 66 (1-2),185-204.
    Schmidt, M., Schwartzberg, A.M., Carroll, A., Chaibang, A., Adams, P.D., Schuck, P.J. (2010). Raman imaging of cell wall polymers in Arabidopsis thaliana. Biochem. Biophys. Res. Commun.395 (4), 521-523.
    Schmidt, M., Schwartzberg, A.M., Perera, P.N., Weber-Bargioni, A., Carroll, A., Sarkar, P., Bosnega, E., Urban, J.J., Song, J., Balakshin, M.Y., Capanema, E.A., Auer, M., Adams, P.D., Chiang, V.I., Schuck, P. (2009). Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarp. Planta 230 (3),589-597.
    Schurz, J. (1999). A bright future for cellulose. Prog. Polym. Sci.24 (4),481-483.
    Scott, J.A.N., Procter, A.R., Fergus, B.J., Goring, D.A.I. (1969). The application of ultraviolet microscopy to the distribution of lignin in wood description and validity of the technique. Wood Sci. Technol.3(1),73-92.
    Scurfield, G (1973). Reaction wood:Its structure and function Lignification may generate the force active in restoring the trunks of leaning trees to the vertical. Science 179 (4074),647-655.
    Selig, M.J., Viamajala, S., Decker, S.R., Tucker, M.P., Himmel, M.E., Vinzant, T.B. (2007). Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Progr.23 (6),1333-1339.
    Sell, J and Zimmermann, T. (1998). The fine structure of the cell wall of hardwoods on transverse-fracture surfaces. Eur. J. Wood Wood Prod.56 (5),365-366.
    Senft, J.F. and Bendtsen, B.A. (1985). Measuring microfibrillar angles using light microscopy. Wood Fiber Sci.17 (4),564-567.
    Shields, L.M. (1950). Leaf xeromorphy as related to physiological and structural influences. Bot. Rev. 16 (8),399-447.
    Singh, A., Daniel, G., Nilsson, T. (2002). Ultrastructure of the S2 layer in relation to lignin distribution in Pinus radiata tracheids. J.Wood Sci.48 (2),95-98.
    Singh, A.P., Kim, Y.S., Chung, G.C., Park, B.D., Wong, A.H.H. (2003). TEM examination of surface characteristics of rubberwood(Hevea brasiliensis) HTMP fibers. Holzforschung 57 (6),579-584.
    Singh, S., Simmons, B.A., Vogel, K.P. (2009). Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of Switchgrass. Biotechnol. Bioeng.104 (1),68-75.
    Siqueira, G, Milagres, A.M.F., Carvalho, W, Koch, G, Ferraz, A. (2011). Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol. Biofuels 4 (1),7-16.
    Stevanic, J.S. and Salme, L. (2009). Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63 (5),497-503.
    Sturcova, A., Davies, GR., Eichhorn, S.J. (2005). Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6 (2),1055-1061.
    Sun, L., Li, C.L., Xue, Z.J., Simmons, B.A., Singh, S. (2013). Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. RSC Adv.3 (6),2017-2027.
    Sun, R.C. and Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem.9 (2),85-93.
    Sun,Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production:A review. Bioresour. Technol.83 (1),1-11.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D. (2002). Dissolution of cellose with ionic liquids. J. Am. Chem. Soc.124 (18),4974-4975.
    Takabe, K., Fujita, M, Harada, H., Saiki, H. (1986). Lignifications process in Cryptomeria (Cryptomeria japonica D. Don) tracheid:Electron microscopic observation of lignin skeleton of differentiating xylem. Res. Bull. Coll. Exp. For. Hokkaido Univ.43 (3),783-788.
    Takayama, M., Johjima, T., Yamanaka, T., Wariishi, H., Tanaka, H. (1997). Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim. Acta A 53 (10),1621-1628.
    Takei, T., Kato, N., Iijima, T., Higaki, M. (1995). Raman spectroscopic analysis of wood and bamboo lignin. Mokuzai Gakkaishi 41 (2),229-236.
    Tetard, L., Passian, A., Farahi, R.H., Kalluri, U.C., Davison, B.H., Thundat, T. (2010). Spectroscopy and atomic force microscopy of biomass. Ultramicroscopy 110 (6),701-707.
    Tilman, D., Hill, J., Lehman, C. (2006). Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314 (5805),1598-1600.
    Tirumalai, V.C., Agarwal, U.P., Obst, J.R. (1996). Heterogeneity of lignin concentration in cell corner middle lamella of white birch and black spruce. Wood Sci. Technol.30 (2),99-104.
    Torr, K.M., Love, K.T., Cetinkol, O.P., Donaldson, L.A., George, A., Holmes, B.M., Simmons, B.A.(2012). The impact of ionic liquid pretreatment on the chemistry and enzymatic digestibility of Pinus radiata compression wood. Green Chem.14 (3),778-787.
    Tranquet, O., Saulnier, L., Utille, J.R, Ralph, J., Guillon, F. (2009). Monoclonal antibodies to p-coumarate. Phytochemistry 70 (11),1366-1373.
    Wang, X., Li, H., Cao, Y., Tang, Q. (2011). Cellulose extraction from wood chip in an ionic liquid (?)-allyl-3-methylimidazolium chloride (AmimCl). Bioresour. Technol.102 (17),7959-7965.
    Wang, X.Q., Ren, H.Q., Zhang, B., Fei, B.H.,Burgert, I. (2012). Cell wall structure and formation of maturing fibers of moso bamboo(Phyllostachys pubescens) increase buckling resistance. J. R. Soc. Interface 9 (70),988-996.
    Westermark, U., Lidbrandt, O., Eriksson, I. (1988). Lignin distribution in spruce (Picea abies) determined by mercurization with SEM-EDXA technique. Wood Sci. Technol.22(3),243-250.
    Whiting, P. and Goring, D.A.I. (1983). The composition of carbohydrates in the middle lamella and secondary wall of tracheids from black spruce wood. Can. J. Chem.61 (3),506-508.
    Wightman, R., Turner, S.R. (2008). The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J.54,794-805.
    Wi, S.G., Singh, A.P., Lee, K.H., Kim, Y.S. (2005). The pattern of distribution of pectin, peroxidase and lignin in the middle lamella of secondary xylem fibers in alfalfa{Medicago sativd). Ann. Bot.95 (5),863-868.
    Wiley, J.H. and Atalla, R.H. (1987). Band assignment in the Raman spectra of celluloses. Carbohydr. Res.160(15),113-129.
    Wool, R.P. (1975). Mechanisms of frequency shifting in the infrared spectrum of stressed polymer. J. Polym. Sci.13 (9),1795-1808.
    Xu, F., Sun, R.C., Lu, Q., Jones, GL. (2006). Comparative study of anatomy and lignin distribution in normal and tension wood of Salix gordejecii. Wood Sci. Technol.40 (5),358-370.
    Xu, F., Zhong, X.C., Sun, R.C., Lu, Q. (2006). Anatomy, ultrastructure and lignin distribution in cell wall of Caragana Korshinskii. Ind. Crops. Prod.24 (2),186-193.
    Xu, P., Liu, H., Donaldson, L.A., Zhang, Y. (2011). Mechanical performance and cellulose microfibrils in wood with high S2 microfibril angles. J. Mater. Sci.46 (2),534-540.
    Yamamoto, H. (2004). Role of the gelatinous layer on the origin of the physical properties of the tension wood. J. Wood Sci.50 (3),197-208.
    Yoshida, M., Fujiwara, D., Tsuji, Y, Fukushima, K., Nakamura, T., Okuyama, T. (2005). Ultraviolet microspectrophotometric investigation of the distribution of lignin in Prumus jamasakura differentiated on a three-dimensional clinostat. J. Wood Sci.51 (5),448-454.
    Yoshida, M., Ohta, H., Yamamoto, H., Okuyama, T. (2002). Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees 16 (7),457-464.
    Yoshinaga, A., Fujita, M., Saiki, H. (1992). Relationships between cell evolution and lignin structural varieties in oak xylem evaluated by microscopic spectrophotometry with separated cell walls. Mokuzai Gakkaishi 38 (7),629-637.
    Yu, H., Liu, R., Shen, D., Wu, Z.H., Huang, Y. (2008). Arrangement of cellulose microfibrils in the wheat straw cell wall. Carbohyd. Polym.72 (1),122-127.
    Yu, H., Liu, R.G., Shen, D.W., Jiang, Y, Huang, Y. (2005). Study on morphology and orientation of cellulose in the vascular bundle of wheat straw. Polymer 46 (15),5689-5694.
    Yu, H.B., Guo, GN., Zhang, X.Y., Yan, K.L., Xu, C.Y. (2009). The effect of biological pretreatment with the selective white-rot fungus Echinodontiun taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour. Technol.100 (21),5170-5175.
    Zhang, M.M., Chen, G.J., Kumar, R., Xu, B.Q. (2013). Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging. Biotechnol. Biofuels 6 (1),147-157.
    Zhang, X.B., Zhang, L.H., Liu, D.H. (2012). Biomass recalcitrance. Part I:The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocelluloses. Biofuel Bioprod. Bior. 6 (4),465-482.
    Zhang, Y.H.P., Ding, S.Y., Mielenz, J.R., Cui, J.B., Elander, R.T., Laser, M., Lynd, L.R. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng.97 (2), 214-223.