超积累东南景天(Sedum alfredii Hance)对重金属(Zn/Cd/Pb)的解毒机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物对重金属的超积累作用是当今国际研究热点和难点,深入研究超积累植物体内重金属稳态作用机制,无论对发展植物营养新理论,还是对超积累植物在污染环境修复中的实际应用均有重要意义。东南景天(Sedum alfredii Hance)是我国原生的锌镉超积累及铅富集植物,其对这三种重金属都具有很强的耐性和积累能力,是应用于污染土壤绿色植物修复技术的一种良好潜在材料。
     本文在综述超积累植物对重金属的解毒机理及其相关研究方法的基础上,以超积累植物体内重金属的区隔和螯合作用为研究中心,深入探讨了锌、镉和铅在东南景天体内的分布特征与赋存形态。综合运用同步辐射X射线荧光光谱(SR-XRF)、激光刻蚀-电感耦合等离子体质谱(LA-ICP-MS)等高通量金属组学研究技术,结合高分辨率的荧光探针显微技术,原位分析了锌镉铅在东南景天体内组织水平、细胞水平以及亚细胞水平上的分配特点,明确各类组织/细胞对重金属的区隔化在植物体耐受高浓度有毒重金属中所起的重要作用;同时,利用X射线吸收光谱(XAS)、微区X射线吸收光谱(μ-XAS)和高效液相色谱(HPLC)等技术,重点研究了重金属在植物组织中的赋存形态及其时空变化特点,探讨植物体内各类有机化合物对重金属的螯合作用及其对植物体耐受与积累重金属的可能影响,以期进一步揭示超积累特异植物对重金属的积累机理,为其在植物修复技术改良与优化中的应用提供科学依据,也为其在锌元素的生物强化中的潜在应用提供一定的理论参考。
     本研究取得的主要研究结果如下:
     1.采用水培实验,研究比较了镉对两种生态型东南景天根伸长量、活性氧自由基(ROS)、脂质过氧化、原生质膜完整性及谷胱甘肽代谢的影响。试验结果表明,镉对非超积累生态型东南景天(NHE)的根尖伸长表现出明显的抑制作用,而对超积累生态型(HE)无明显影响,低镉处理甚至在一定程度上促进了其根系的伸长。随着镉处理浓度的增加,NHE根尖的质膜受损与脂质过氧化程度也随之加深,根部也可检测到明显的活性氧自由基积累,但在HE的根部则无上述现象。镉处理诱导下,HE根尖中谷胱甘肽(GSH)和非蛋白巯基化合物(NPT)含量显著增加,氧化型谷胱甘肽(GSSH)含量却明显下降,但镉对NHE无类似影响。由此可见,与NHE相比,HE能通过一系列的耐性机制抵制介质中的高镉胁迫,从而维持其根系的正常生理功能。
     2.超积累植物东南景天中,锌(Zn)在茎中含量最高,叶次之,根最低。利用同步辐射X射线荧光(SR-XRF)分析技术结合荧光探针染色技术,对其茎叶中锌的分布特征进行原位分析,发现锌主要集中在茎叶的表皮层,维管组织次之。随着锌处理时间延长,茎叶表皮中锌含量迅速升高,且增幅较大,而叶肉细胞和维管束中的锌含量则趋向于饱和。由此可见,表皮层可能是超积累东南景天重要的锌贮存库之一,进一步研究表明茎表皮的蜡质层是锌大量积累的场所。然而,叶片、皮层等薄壁细胞,尤其是液泡,对锌的区隔作用亦不容小视,其一,薄壁细胞占植物体的总容量较大;其二,超积累生态型茎叶中这些组织的锌含量要远远高于非超积累生态型相应部位。
     3.镉(Cd)在超积累植物东南景天的分布特点与锌有所差异,其在叶中最高,茎次之,根最低。利用激光刻蚀-电感耦合等离子体质谱(LA-ICP-MS)分析技术,对茎叶中镉的分布特征进行原位分析。发现镉在叶片的主脉中最高,叶片边缘较低。通过微区分析发现,镉在叶脉和栅栏组织中较高,而下表皮中分布较少,运用荧光探针显微技术,发现其大量贮存于液泡中。在植物茎中,镉主要集中分布于髓和皮层等薄壁组织细胞中,在维管组织与表皮分布很少。可见,镉的主要区隔场所为以薄壁细胞组成的皮层、髓和叶肉组织中,且大部分储存于液泡内。此外,比较发现镉与锌的分布有较大区别,而与钙的分布特征极为类同,推测钙镉之间可能存在着相似的运输与存储机制。
     4.铅(Pb)的分配特点与锌镉大为不同,其大量滞留在根中,茎叶中含量较低,但在富集型东南景天中含量仍显著高于非富集生态型。利用同步辐射X射线荧光光谱(XRF)对其茎叶中的分布特征进行原位分析,发现在茎叶横切面中,铅主要积累在叶脉等维管组织中,其次则是表皮,而叶肉组织和皮层组织中铅含量很低。在植物茎部,90%以上的铅集中累积于维管组织(尤其是木质部)内。对维管束部位的精细扫描发现铅呈块状分散分布。木质部的主要组成成分为细胞壁,由此可推,细胞壁可能是铅在富集植物东南景天的重要区隔场所。
     5.利用同步辐射X射线吸收光谱(XAS)技术和高效液相色谱(HPLC)分别测定Zn胁迫下两种生态型东南景天不同组织和木质部汁液中有机酸组成与锌的形态特征。研究结果显示:两种生态型东南景天不同组织中Zn配位都是以Zn-O/N为主,但不同生态型之间以及同种生态型不同部位之间配位数和键长都有所差异。超积累生态型木质部汁液中锌的含量是非超积累生态型的6-9倍,而且在超积累生态型的木质部汁液中检测到大量的柠檬酸,且随锌处理增加而显著增加,但非超积累生态型木质部汁液中柠檬酸含量变化不明显。在超积累生态型东南景天的木质部汁液中存在着Zn-O/N配位,未发现Zn-S配位。对样品谱进行主成分分析发现,锌处理后,超积累生态型木质部汁液中Zn主要以Zn2+和锌-柠檬酸形态存在。上述结果表明,两种生态型东南景天体内锌可能与含氧的羧基或者羟基类配体相结合,而柠檬酸参与了东南景天锌的木质部运输过程,超积累生态型东南景天中锌-柠檬酸的运输可能是重要积累机理之一。
     6.采用高效液相色谱(HPLC)和同步辐射X射线吸收光谱(XAS)技术分别测定镉胁迫下超积累生态型东南景天中有机酸组成和镉的形态变化特征。研究结果显示:超积累生态型东南景天地上部检测到大量的苹果酸,其次为琥珀酸和柠檬酸,草酸的含量相对较低,而且地上部苹果酸含量随Cd处理浓度的增加而升高。在超积累生态型东南景天根的第一壳层中存在着Cd-S和Cd-O/N两种配位形式,第二壳层以Cd-C配位。而在叶片和茎则未发现Cd-S配位,第一配位层均以CdO/N和Cd/O为主,第二配位层则以Cd-C配位。上述结果结合镉的微区分布结果表明,在叶片中Cd可能主要存在于液泡,而液泡含有大量的苹果酸,通过与镉结合以达到解毒的目的,而并非是含硫的巯基化合物在起作用;但在根部,则有部分含巯基化合物参与镉的解毒过程。
     7.利用同步辐射X射线吸收光谱(XAS)对富集型东南景天体内铅的赋存形态进行研究。结果表明,铅在两种生态型东南景天中主要的化学形态与先前的研究结果一致,是一种铅-细胞壁复合物。但在富集型东南景天的茎和叶中,有相当比例的铅与巯基基团(GSH)相结合的。利用Micro-XANES法对组织切片进行研究的结果进一步证实,铅在表皮和髓中以铅-细胞壁及铅-胶质复合物的形式存在,而在维管束中有较高比例的Pb-GSH复合物存在,这表明铅可能是以Pb-GSH复合物的形式在植物体内运输的。然而在EDTA-Pb处理下,植物体内铅的形态有所改变,尽管细胞壁结合态的铅还是占主导地位,但Pb-EDTA结合态铅的比重明显增高,说明植物体内铅的形态并非一成不变,而可能随着外界环境中的变化而有所改变。
Heavy metal pollution is a widespread and important environmental concern. Various in situ and ex situ cleanup technologies have been employed, of these methods, phytoremediation is promising due to its low implementation costs and significant environmental benefits. Hyperaccumulator and accumulator species, which efficiently tolerate and accumulate heavy metals from the soil into shoots, have great promise in phytoremediation of contaminated environments. Understanding the mechanisms of metal tolerance and accumulation will provide insight into the identification and management of these hyperaccumulating species. Sedum alfredii Hance (Crassulaceae) is the recently identified Zn/Cd co-hyperaccumulator native to Pb/Zn rich regions of China. This species exhibits a strong ability to both tolerate and accumulate considerable amounts of Pb. A better understanding of the biological mechanism involved in heavy metal accumulation in this species would help to improve its practical application. The aim of this study was to obtain fundamental information on heavy metals accumulation and tolerance mechanisms in S. alfredii, by investigation of the metal localization and ligand abundance using several techniques. The main results include:
     1. Short-term responses of roots of the Cd hyperaccumulating ecotype (HE) S. alfredii to Cd exposure were compared with its non-hyperaccumulating ecotype (NHE). Marked root elongation inhibition was observed in roots of NHE in response to Cd exposure, while such inhibition was much slighter in HE, and stimulation of root elongation was observed with 10μM Cd treatment. The loss of plasma membrane integrity and lipid peroxidation in roots tips of NHE increased significantly with Cd treatments, whereas these effects of Cd was only pronounced at 400μM in HE root tips. A strong dose-dependent accumulation of reactive oxygen species (ROS) with increasing Cd was noted in the NHE root tips, but not in roots of the HE plants. In response to Cd exposure, GSH increased in the HE root tips but tended to decrease in those of NHE. A dose-dependent decrease in GSSG and an increase in NPT caused by Cd were marked in root tips of HE, but were not seen in the NHE plants. These results suggested that in contrast to the NHE, the HE S. alfredii tolerates high Cd in the environment and maintains root function through the differential expression in a number of hypertolerance mechanisms including altered glutathione metabolism, reduced ROS accumulation and hence prevent lipid peroxidation, loss of plasma integrity, and inhibition of root elongation.
     2. The characteristics of in vivo Zn distribution in stems and leaves of the HE and NHE S. alfredii were investigated by synchrotron radiation X-ray fluorescence analysis, together with a Zn probe. Preferential Zn accumulation in leaf and stem epidermis was observed in both ecotypes, but to a much greater extent for HE. Epidermal Zn increased largely in leaf and stem of HE as exposure time prolonged, while Zn saturation occurred relatively early in its leaf mesophyll cells and stem vascular bundles. A second peak of Zn enrichment in stem and leaf vascular systems was shown in both ecotypes. However, the proportion of Zn accumulated in stem vascular bundles relative to other tissues was much greater for HE than for NHE. Leaf and stem distribution patterns of P and S in the HE were very like that for Zn, while the Ca distribution pattern was the reverse of that for Zn. No such relationship was observed in NHE. Our study mainly, suggested that epidermal layers serve as large storage sites for the excess Zn in the hyperaccumulator HE S. alfredii:
     3. The spatial information of Cd distribution within the leaf of HE S. alfredii was obtained by LA-ICP-MS together with XRF. The results showed that Cd was preferentially distributed in the veins of the whole leaf, whereas the content of the element in the leaf edge is relatively low. The localization of Zn appears to be the reverse of that for Cd. By analysis of the leaf cross-section using XRF, it is found that Cd was largely localized in the vascular bundles and upper epidermis, whereas its content in the lower epidermis is lower. Zinc was extremely concentrated in the epidermis, indicating a very different sequestration of the two elements within the leaf of HE S. alfredii.
     4. To investigate the spatial distribution of Pb in the accumulator plant, micro scanning XRF mapping was performed on both Accumulating ecotype (AE) and Non-accumulating ecotype (NAE) S. alfredii. The leaf cross-section image of AE revealed that Pb was accumulated mainly in the leaf veins, with a second peak in the epidermis. Much lower content of Pb was found in either spongy or palisade mesophyll cells. An almost exclusive localization and accumulation of Pb within vascular bundles was noted in the AE stem. Distribution patterns of S in both leaf and stsem cross-sections were quite similar to that of Pb, and a significant positive correlation between the XRF intensities of Pb and S was observed, whereas no such correlation were observed NAE plants. Besides, addition of EDTA in the culture solution did not change the preferential distribution of Pb in the vascular bundles, although the intensity of Pb was much lower, as compared with those with Pb alone.
     5. Zinc speciation in the different tissue and xylem sap of HE and NHE S. alfredii were determined by EXAFS and HPLC. The results showed that the majority of Zn in all tissues was coordinated with oxygen or nitrogen ligands both two S. alfredii ecotypes. After 24 h exposure to 100μM Zn, Zn speciation in the xylem sap of HE occurred in three forms, including Zn2+, Zn-Ctrate and Zn-Malate, of 55.87%,42.31% and 6.07%,respectively. Analysis of organic acids in the xylem sap of the plants with Zn treatments supported the possible role of citrate in Zn speciation. Abundant Citrate occurred constitutively, and increased by Zn exposure in the xylem sap of both ecotypes of S. alfredii. These results suggested that Zn-Citrate complex might play an important role in Zn hyperaccumulation of HE S. alfredii.
     6. Cadmium speciation and organic acid concentration in the different tissue of HE S. alfredii were determined by using EXAFS and HPLC, respectively. The results showed that the majority of organic acids in the leaf was malate, and malate concentration in the shoot was affected by increasing Cd concentration in the solution, suggesting that malate synthesis is induced by Cd. In root, Cd was coordinated by O/N and S ligands in the first shell, which indicates strong ligands are required for metal detoxification. In young leaf and mature leaf, Cd was coordinated by O/N and O in the fisrt shell and by carbon ligands in the seconds shell.
     7. In vivo speciation of Pb in tissues of the accumulator plant, was investigated using powder-and micro-X-ray absorption near edge structure (XANES) spectroscopy. The dominant chemical form of Pb in tissues of both accumulating (AE) and non-accumulating ecotype (NAE) S. alfredii was similar to previously defined Pb-cell wall compounds, though a much higher percentage of the Pb in the stem and leaf of AE appeared to be associated with SH-groups (GSH). Micro-XANES analysis of tissue cross sections further verified that Pb in the epidermis and pith were indicative of Pb-cell wall and Pb-pectin complexes, whereas Pb within vascular bundles was predominantly Pb-GSH complex, suggesting that this species may transport Pb via a Pb-GSH complex. By application of EDTA, the complexation of Pb-EDTA was detected in the plant samples, indicating the speciation of Pb within the plants may also change due to the environment circumstance.
引文
A. G. L. Assunao, P. Da Costa Martins, S. De Folter, R. Vooijs, H. Schat, M. G. M. Aarts.2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator thlaspi caerulescens. Plant, Cell& Environment 24:217-226.
    AI Agely A, Sylvia DM, Ma LQ.2005. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern(Pteris vittata.). Journal of Environmental Quality 34:2181-2186.
    Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG 2003. Uptake and reduction of Cr(Ⅵ) to Cr(Ⅲ) by mesquite (Prosopis spp.):Chromate-plant interaction in hydroponics and solid media studied using XAS. Environmental Science & Technology 37:1859-1864.
    Aravind P, Prasad MN.2005. Modulation of Cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43: 107-116.
    Arora A, Sairam RK, Srivastava GC.2002. Oxidative stress and antioxidative system in plants. Current Science82:1227-1238.
    Asemaneh T, Ghaderian SM, Crawford SA, Marshall AT, Baker AJM.2006. Cellular and subeellular compartmentation of Ni in the eurasian serpentine plants Alyssum bracteatum, Alyssum murale (brassicaceae) and cleome heratensis (capparaceae). Planta 225:193-202.
    Audet P, Charest C.2007. Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution 147:231-237.
    Axelsen KB, Palmgren MG 2001. Inventory of the superfamily of p-type ion pumps in Arabidopsis. Plant Physiology 126:696-706.
    Baker AJM, McGrath SP, Reeves RD, Smith JAC.2000. Metal hyperaccumulator plants:A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation of Contaminated Soil and Water:85-107.
    Baker AJM, Reeves RD, Hajar ASM.1994. Heavy metal accumulation and tolerance in british populations of the metallophyte Thlaspi caerulescens j. And c. Presl (Brassicaceae). New Phytologist 127:61-68.
    Basic N, Salamin N, Keller C, Galland N, Besnard G.2006. Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochemical Systematics and Ecology 34: 667-677.
    Becher M, Talke IN, Krall L, Kramer U.2004. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal 37:251-268.
    Bernal M, McGrath S.1994. Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale andraphanus sativus. Plant and Soil 166:83-92.
    Bernal MP, McGrath SP, Miller AJ, Baker AJM.1994. Comparsion of the chemical changes in the rhizosphere of the nicker hyperaccumulator alyssum murale with the non-accumulator Raphanus sativus. Plant and Soil 164:251-259.
    Bert V, Bonnin I, Saumitou-Laprade P, Laguerie Pd, Petit D.2002. Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist 155:47-57.
    Bert V, Macnair MR, Laguerie Pd, Saumitou-Laprade P, Petit D.2000. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri(brassicaceae). New Phytologist 146:225-233.
    Bialkowski K, Bialkowska A, Kasprzak KS.1999. Cadmium (Ⅱ), unlike nickel (Ⅱ), inhibits 8-oxo-dgtpase activity and increases 8-oxo-dg level in DNA of the rat testis, a target organ for Cadmium (Ⅱ) carcinogenesis. Carcinogenesis 20:1621-1624.
    Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT.2004. Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (lindley) f. Muell. Plant Cell and Environment 27:705-716.
    Bisova K, Hendrychova J, Cepak V, Zachleder V.2003. Cell growth and division processes are differentially sensitive to Cadmium in scenedesmus quadricauda. Folia Microbiologica 48:805-816.
    Boominathan R, Doran PM.2003. Cadmium tolerance and antioxidative defenses in hairy roots of the Cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering 83:158-167.
    Boominathan R, Doran PM.2003. Organic acid complexation, heavy metal distribution and the effect of atpase inhibition in hairy roots of hyperaccumulator plant species. Journal of Biotechnology 101: 131-146.
    Broadley MR, White PJ, Hammond JP, Zelko I, Lux A.2007. Zinc in plants. New Phytologist 173:677-702.
    Brooks R 1998. Geobotany and hyperaccumulators. In:B. R. R ed. Plants that hyperaccumulate heavy metals. New York:CAB International,55-94.
    Brooks RR, Lee J, Reeves RD, Jaffre T.1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7:49-57.
    Brown SL, Chaney RL, Angle JS, Baker AJM.1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. Journal Environmental Quality 23: 1151-1157.
    Brzoska MM, Moniuszko-Jakoniuk J.2001. Interactions between cadmium and zinc in the organism. Food and Chemical Toxicology 39:967-980.
    Buchko GW, Hess NJ, Kennedy MA.2000. Cadmium mutagenicity and human nucleotide excision repair protein xpa:Cd, EXASF and H-1/N-15-NMR spectroscopic studies on the zinc(Ⅱ) and cadmium (Ⅱ)-associated minimal DNA-binding domain (m98-f219). Carcinogenesis 21:1051-1057.
    Burzynski M.1987. The influence of lead and cadmium on the absorption and distribution of potassium, calcium magnesium and iron in cucumber seedlings. Acta Physiologiae Plantarum 9:229-238.
    Cakmak I, Welch RM, Hart J, Norvell WA, Ozturk L, Kochian LV.2000. Uptake and retranslocation of leaf-applied cadmium (Cd109) in diploid, tetraploid and hexaploid wheats. Journal of Experimental Botany 51:221-226.
    Callahan D, Baker A, Kolev S, Wedd A.2006. Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry 11:2-12.
    Carlsson L. Lundholm CE.1996. Characterisation of the effects of cadmium on the release of calcium and on the activity of some enzymes from neonatal mouse calvaria in culture. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology 115:251-256.
    Carmona A, Deves G, Ortega R.2008. Quantitative micro-analysis of metal ions in subcellular compartments of cultured dopaminergic cells by combination of three ion beam techniques. Analytical and Bioanalytical Chemistry 390:1585-1594.
    Cataldo DA, Garland TR, Wildung RE.1983. Cadmium uptake kinetics in intact soybean plants. Plant Physiology 73:844-848.
    Cataldo DA, McFadden KM, Garland TR, Wildung RE.1988. Organic constituents and complexation of nickel(Ⅱ),iron(Ⅲ), cadmium(Ⅱ), and plutonium(Ⅳ) in soybean xylem exudates. Plant Physiology 86:734-739.
    Chan DY, Hale BA.2004. Differential accumulation of Cd in durum wheat cultivars:Uptake and retranslocation as sources of variation. Journal of Experimental Botany 55:2571-2579.
    Chaney RL, Angle JS, Mclntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM.2005. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences 60: 190-198.
    Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM.1997. Phytoremediation of soil metals. Current Opinion in Biotechnology 8:279-284.
    Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS.2004. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17:549-553.
    Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E.1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean(phaseolus vulgaris). Plant Science 111:139-147.
    Chen YX, He YF, Yang Y, Yu YL, Zheng SJ, Tian GM, Luo YM, Wong MH.2003. Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere 50:781-787.
    Cho UH, Sohn JY.2004. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and lipid peroxidation in Arabidopsis thaliana. Journal of Plant Biology 47:262-269.
    Cieslinski G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM.1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil 203:109-117.
    Clarke ND, Berg JM.1998. Zinc fingers in Caenorhabditis elegans:Finding families and probing pathways. Science 282:2018-2022.
    Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI.1998. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences of the United States of America 95:12043-12048.
    Clemens S, Palmgren MG, Kramer U.2002. A long way ahead:Understanding and engineering plant metal accumulation. Trends in Plant Science 7:309-315.
    Clemens S.2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie88:1707-1719.
    Cobbett C, Goldsbrough P.2002. Phytochelatins and metallothioneins:Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53:159-182.
    Cobbett CS.2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123: 825-832.
    Cobbett CS.2001. Heavy metal detoxification in plants:Phytochelatin biosynthesis and function.lubmb Life 51:183-188.
    Cohen CK, Fox TC, Garvin DF, Kochian LV.1998. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology 116:1063-1072.
    Connolly EL, Fett JP, Guerinot ML.2002. Expression of the irtl metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347-1357.
    Cosio C, DeSantis L, Frey B, Diallo S, Keller C.2005. Distribution of cadmium in leaves of Thlaspi caerulescens. Journal of Experimental Botany 56:765-775.
    Cosio C, Martinoia E, Keller C.2004. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiology 134:716-725.
    Cosio C, Vollenweider P, Keller C.2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis) Ii. Macrolocalization and phytotoxic effects of cadmium. Environmental and Experimental Botany 58:64-74.
    Costa G, Morel JL.1993. Cadmium uptake by lupinus albus l.:Cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition 16:1921-1929.
    Cotter-Howells JD, Champness PE, Charnock JM.1999. Mineralogy of pb-p grains in the roots of Agrostis capillaris l-by ATEM and EXAFS. Mineralogical Magazine 63:777-789.
    Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N.2007. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri co-localizes with HMA4, a gene encoding a heavy metal atpase. Plant Physiology 144:1052-1065.
    Craciun AR, Courbot M, Bourgis F, Salis P, Saumitou-Laprade P, Verbruggen N.2006. Comparative Cdna-aflp analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp petraea. Journal of Experimental Botqny 57:2967-2983.
    Crist RH, Martin JR, Crist DR.2002. Heavy metal uptake by lignin:Comparison of biotic ligand models with an ion-exchange process. Environmental Science & Technology36:1485-1490.
    Cunningham SD, Ow DW.1996. Promises and prospects of phytoremediation. Plant Physiology 110: 715-719.
    Dahmani-Muller H, van Oort F, Gelie B, Balabane M.2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 109:231-238.
    Dakora FD, Phillips DA.2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245:35-47.
    Dalla Vecchia F, Rocca NL, Moro I, De Faveri S, Andreoli C, Rascio N.2005. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Science 168:329-338.
    Das P, Samantaray S, Rout GR.1997. Studies on cadmium toxicity in plants:A review. Environmental Pollution 98:29-36.
    David-Assael O, Berezin I, Shoshani-Knaani N, Saul H, Mizrachy-Dagri T, Chen JX, Brook E, Shaul O. 2006. AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. Functional Plant Biology 33:661-672.
    de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL.2004. Cadmium uptake and translocation in tumbleweed(Salsola kali), a potential Cd-hyperaccumulator desert plant species:ICP/OES and XAS studies. Chemosphere 55:1159-1168.
    de Souza MP, Lytle CM, Mulholland MM, Otte ML, Terry N.2000. Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiology 122: 1281-1288.
    de Souza MP, Pickering IJ, Walla M, Terry N.2002. Selenium assimilation and volatilization from selenocyanate-treated indian mustard and muskgrass. Plant Physiology 128:625-633.
    di Toppi LS, Gabbrielli R.1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41:105-130.
    Dixit V, Pandey V, Shyam R.2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum Cv. Azad) Journal of Experimental Botany 52:1101-1109.
    do Nascimento CWA, Amarasiriwardena D, Xing BS.2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution 140:114-123.
    Douchkov D, Gryczka C, Stephan UW, Hell R, Baumlein H.2005. Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell and Environment 28:365-374.
    Durrett TP, Gassmann W, Rogers EE.2007. The frd3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology 144:197-205.
    Ebbs S, Lau I, Ahner B, Kochian L.2002. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes (j. And c. Presl). Planta 214:635-640.
    Ebbs SD, Kochian LV.1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea).Environmental Science & Technology 32:802-806.
    Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV.1997. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality 26:1424-1430.
    Ebbs SD, Zambrano MC, Spiller SM, Newville M.2009. Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens. New Phytologist 181:626-636.
    Eide D, Broderius M, Fett J, Guerinot ML.1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America 93:5624-5628.
    Elbaz B, Shoshani-Knaani N, David-Assael O, Mizrachy-Dagri T, Mizrahi K, Saul H, Brook E, Berezin I, Shaul O.2006. High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of ahmhx, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger. Plant Cell and Environment 29:1179-1190.
    Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE.2006. A novel arsenate reductase from the arsenic hyperaccumulating Fern pteris vittata. Plant Physiology 141:1544-1554.
    Ernst W 1975. Physiology of heavy metal resistance in plants.In T. C. Hutchinson, S. Epstein, A. L. Page, J. Van LoonT. Davey. Proceedings of an international conference on Heavy Metals in Environ. Toronto: CEP Consultants 121-136.
    Florijn PJ, Nelemans JA, van Beusichem ML.1992. The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in Lettuce varieties. Journal of Plant Nutrition 15:2405-2416.
    Foley RC, Singh KB.1994. Isolation of a vicia-faba metallothionein-like gene-expression in foliar trichomes. Plant Molecular Biology 26:435-444.
    Foyer CH, Noctor G.2005. Oxidant and antioxidant signalling in plants:A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environment 28:1056-1071.
    Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE.2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176-2191.
    Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH.2006. Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants astragalus bisulcatus and Stanleya pinnata. Plant Physiology 142:124-134.
    Frey B, Keller C, Zierold K, Schulin R.2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell and Environment 23:675-687.
    Fukuda N, Hokura A, Kitajima N, Terada Y, Saito H, Abe T, Nakai I.2008. Micro x-ray fluorescence imaging and micro x-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp gemmifera, using high-energy synchrotron radiation. Journal of Analytical Atomic Spectrometry 23:1068-1075.
    Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C.2008. Atmrp6/atabcc6, an atp-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. Bmc Plant Biology 8.
    Gallego SM, Benavides MP, Tomaro ML.1996. Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Science 111:151-159.
    Garcia-Hernandez M, Murphy A, Taiz L.1998. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiology 118:387-397.
    Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ. 2002. Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Letters 2:397-401.
    Gardea-Torresdey JL, Peralta-Videa JR, de la Rosa G, Parsons JG.2005. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews 249:1797-1810.
    Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Cano-Aguilera I, Furenlid LR, Renner MW. 2000. Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass:X-ray absorption spectroscopy, ph, and temperature dependence. Environmental Science & Technology 34:4392-4396.
    Gil J, Moral R.1995. Effects of cadmium on physiological and nutritional aspects of tomato plant. I. Chlorophyll (a and b) and carotenoids. Fresenius Environ. Bull.4:430-435.
    Gong JM, Lee DA, Schroeder JI. 2003. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 100: 10118-10123.
    Goujon T, Minic Z, El Amrani A, Lerouxel O, Aletti E, Lapierre C, Joseleau JP, Jouanin L.2003. AtBXl1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant Journal 33:677-690.
    Gutierrez-Alcala G, Gotor C, Meyer AJ, Fricker M, Vega JM, Romero LC.2000. Glutathione biosynthesis in Arabidopsis trichome cells. Proceedings of the National Academy of Sciences of the United States of America 91:11108-11113.
    Hall JL.2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53:1-11.
    Han F, Shan XQ, Zhang SZ, Wen B, Owens G.2006. Enhanced cadmium accumulation in maize roots-the impact of organic acids. Plant and Soil 289:355-368.
    Hanikenne M, Kramer U, Demoulin V, Baurain D.2005. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiology 137:428-446.
    Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U.2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMAA. Nature 453:391-U344.
    Hansel CM, Fendorf S, Sutton S, Newville M.2001. Characterization of fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science & Technology 35:3863-3868.
    Hart JJ, Welch RM, Norvell WA, Kochian LV.2002. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiologia Plantarum 116:73-78.
    Hart JJ. Welch RM, Norvell WA, Sullivan LA, Kochian LV.1998. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol.116: 1413-1420.
    Hartley-Whitaker J, Ainsworth G, Meharg AA.2001. Copper-and arsenate-induced oxidative stress in Holcus lanatus. Clones with differential sensitivity. Plant Cell and Environment 24:713-722.
    Hassinen VH, Tervahauta AI, Halimaa P, Plessl M, Peraniemi S, Schat H, Aarts MGM, Servomaa K, Karenlampi SO.2007. Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225:977-989.
    Haydon MJ, Cobbett CS.2007. Transporters of ligands for essential metal ions in plants. New Phytologist 174: 499-506.
    Hernandez-Allica J, Garbisu C, Becerril JM, Barrutia O, Garcia-Plazaola JI, Zhao FJ, Mcgrath SP. 2006. Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell and Environment 29:1422-1429.
    Himelblau E, Amasino RM.2000. Delivering copper within plant cells. Current Opinion in Plant Biology 3: 205-210.
    Hirschi K.2001. Vacuolar H+/Ca2+ transport:Who's directing the traffic? Trends in Plant Science 6:100-104.
    Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ.2000. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiology 124: 125-133.
    Hokura A, Omuma R, Terada Y, Kitajima N, Abe T, Saito H, Yoshida S, Nakai I.2006a. Arsenic distribution and speciation in an arsenic hyperaccumulator fern by X-ray spectrometry utilizing a synchrotron radiation source. Journal of Analytical Atomic Spectrometry 21:321-328.
    Hokura A, Onuma R, Kitajima N, Terada Y, Saito H, Abe T, Yoshida S, Nakai I.2006b.2-D X-ray fluorescence imaging of cadmium hyperaccumulating plants by using high-energy synchrotron radiation x-ray microbeam. Chemistry Letters 35:1246-1247.
    Huang YY, Lu JX, He RG, Zhao LM, Wang ZG, He W, Zhang YX.2001. Study of human bone tumor slice by srxrf microprobe. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 467:1301-1304.
    Huang ZC, Chen TB, Lei M, Hu TD, Huang QF.2004. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator. Science in China Series C-Life Sciences 47:124-129.
    Hunder G, Javdani J, Elsenhans B, Schumann K.2001. Cd-109 accumulation in the calcified parts of rat bones. Toxicology 159:1-10.
    Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS. 2004. P-type atpase heavy metal transporters with roles in essential zinc homeostasis in arabidopsis. Plant Cell 16:1327-1339.
    Isaure MP, Fayard B, Saffet G, Pairis S, Bourguignon J.2006. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta Part B-Atomic Spectroscopy 61:1242-1252.
    Isaure MP, Laboudigue A, Manceau A, Sarret G, Tiffreau C, Trocellier P, Lamble G, Hazemann JL, Chateigner D.2002. Quantitative Zn speciation in a contaminated dredged sediment by mu-PIXE, mu-SRXRF, EXAFS spectroscopy and principal component analysis. Geochimica Et Cosmochimica Acta 66:1549-1567.
    Islam MM, Hoque A, Okuma E, Nasrin M, Banu A, Shimoishi Y, Nakamura Y, Murata Y.2009. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology 166:1587-1597.
    Jaffre T, Brooks RR, Lee J, Reeves RD.1976. Sebertia-acuminata-hyper-accumulator of nickel from new-caledonia. Science 193:579-580.
    Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S, Martinoia E, Bovet L.2008. Atosal, a member of the ABC1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiology 147:719-731.
    Jones D, Darah P, Kochian L.1996. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil 180:57-66.
    Jones DL, Edwards AC, Donachie K, Darrah PR.1994. Role of proteinaceous amino-acids released in root exudates in nutrient acquisition from the rhizosphere. Plant and Soil 158:183-192.
    Jurkiewicz A, Orlowska E, Anielska T, Godzik B, Turnau K.2004. The influence of mycorrhiza and edta application on heavy metal uptake by different maize varieties. Acta Biologica Cracoviensia Series Botanica 46:7-18.
    Kahle H.1993. Response of roots of trees to heavy-metals. Environmental and Experimental Botany 33: 99-119.
    Kazantzis G.1984. Mutagenic and carcinogenic effects of cadmium. Toxicological and Environmental Chemistry 8:267-278.
    Keller C, Diallo S, Cosio C, Basic N, Galland N.2006. Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Functional Plant Biology33:673-684.
    Kelley C, Mielke RE, Dimaquibo D, Curtis AJ, Dewitt JG 1999. Adsorption of Eu(III) onto roots of water hyacinth. Environmental Science & Technology 33:1439-1443.
    Kelly RA, Andrews JC, DeWitt JG 2002. An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture. Microchemical Journal 71: 231-245.
    Kerkeb L, Kramer U.2003. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiology 131:716-724.
    Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML.2006. Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VJT1. Science 314: 1295-1298.
    Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, MarcuS MA,. Jacquet T.2006. Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, exafs spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica Et Cosmochimica Acta 70: 2163-2190.
    Knight B, Zhao FJ, McGrath SP, Shen ZG 1997. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil 197:71-78.
    Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M.2004. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant and Cell Physiology 45:1749-1758.
    Kochian LV, Pence NS, Letham DLD, Pineros MA, Magalhaes JV, Hoekenga OA, Garvin DF.2002. Mechanisms of metal resistance in plants:Aluminum and heavy metals. Plant and Soil 247:109-119.
    Korbas M, Blechinger SR, Krone PH, Pickering IJ, George GN.2008. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proceedings of the National Academy of Sciences of the United States of America 105:12108-12112.
    Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ.2007. Enhancing tonoplast Cd/H+ antiport activity increases Cd, Zn, and mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum 1. Planta 226:1379-1387.
    Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB.1999. The irtl protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology 40:37-44.
    Kozi Asada.1992. Ascorbate peroxidase——a hydrogen peroxide-scavenging enzyme in plants. Physiologia Plantarum 85:235-241.
    Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC.1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635-638.
    Kramer U, Grime GW, Smith JAC, Hawes CR, Baker AJM.1997. Micro-pixe as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 130:346-350.
    Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE.2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol.122:1343-1354.
    Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE.2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiology 122:1343-1353.
    Kramer U, Talke IN, Hanikenne M.2007. Transition metal transport. Febs Letters 581:2263-2272.
    Krishnamurti GSR, Cieslinski G, Huang PM, Van Rees KCJ.1997a. Kinetics of cadmium release from soils as influenced by organic acids:Implication in cadmium availability. J Environ Qual 26:271-277.
    Krishnamurti GSR, Cieslinski G, Huang PM, VanRees KCJ.1997b. Kinetics of cadmium release from soils as influenced by organic acids:Implication in cadmium availability. Journal of Environmental Quality 26:271-277.
    Krishnamurti GSR, Huang PM, Vanrees KCJ, Kozak LM, Rostad HPW.1995. Speciation of particulate-bound cadmium of soils and its bioavailability. Analyst 120:659-665.
    Krzestowska M, Lenartowska M, Jozwiak K, Samardakiewicz S, Bilskie H, Wozny A.2007. Lead in the cell wall thickenings of funaria hygrometrica protonemata exposed to this metal-a microanalysis studies. Acta Physiologiae Plantarum 29:S128-S128.
    Kupper H, Gotz B, Mijovilovich A, Kupper FC, Meyer-Klaucke W.2009. Complexation and toxicity of copper in higher plants. Ⅰ. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology 151:702-714.
    Kiipper H, Lombi E, Zhao FJ, McGrath SP.2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75-84.
    Kupper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP.2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany 52:2291-2300.
    Kiipper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH.2004. Tissue-and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiology 134:748-757.
    Kupper H, Zhao FJ, McGrath SP.1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 119:305-311.
    Lasat MM, Baker AJM, Kochian LV.1996. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of thlaspi. Plant Physiology 112:1715-1722.
    Lasat MM, Baker AJM, Kochian LV.1998. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiology 118:875-883.
    Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV.2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 51:71-79.
    Lavid N, Schwartz A, Yarden O, Tel-Or E.2001. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212: 323-331.
    Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Martinoia E, Lee Y.2003. Functional expression of a bacteral heavy metal transporter in Arabidopsis enhances resistance to and decrease uptake of heavy metals. Plant Physiology 133:589-596.
    Lee J, Reeves RD, Brooks RR, Jaffre T.1978. Relation between nickel and citric-acid in some nickel-accumulating plants. Phytochemistry 17:1033-1035.
    Lei M, Chen TB, Huang ZC, Wang YD, Huang YY.2008. Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola principis h. De boiss.:An application of SRXRF microprobe. Chemosphere 72:1491-1496.
    Li LT, Kaplan J.1998. Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. Journal of Biological Chemistry 273:22181-22187.
    Li TQ, Yang XE, Yang JY, He ZL.2006. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii hance. Pedosphere 16:616-623.
    Li WG, Ye ZH, Wong MH.2007. Effects of bacteria an enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. Journal of Experimental Botany 58:4173-4182.
    Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA.1997. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae:FCF1-catalyzed transport of bis(glutathionato)cadmium. Proceedings of the National Academy of Sciences of the United States of America 94:42-47.
    Liang YC, Hua HX, Zhu YG, Zhang J, Cheng CM, Romheld V.2006. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist 172:63-72.
    Lindberg S, Landberg T, Greger M.2004. A new method to detect cadmium uptake in protoplasts. Planta 219:526-532.
    Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP.2002. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 128:1359-1367.
    Lombi E, Zhao FJ, Dunham SJ, McGrath SP.2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist 145:11-20.
    Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP.2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist 156:195-203.
    Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA.2001. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist 149:53-60.
    Long XX, Yang XE, Ye ZQ, Ni WZ, Shi WY.2002. Differences of uptake and accumulation of zinc in four species of Sedum. Acta Botanica Sinica 44:152-157.
    Lopez-Bucio J, Nieto-Jacobo MF, Ramirez-Rodriguez V, Herrera-Estrella L.2000. Organic acid metabolism in plants:From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science 160:1-13.
    Lu LL, Tian SK, Yang XE, Li TQ, He ZL.2009. Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. Journal of Plant Physiology 166:579-587.
    Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL.2008. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. Journal of Experimental Botany 59: 3203-3213.
    Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N.1998. Reduction of Cr(VI) to Cr(III) by wetland plants:Potential for in. situ heavy metal detoxification. Environmental Science & Technology 32:3087-3093.
    Ma JF, Hiradate S, Matsumoto H.1998. High aluminum resistance in buckwheat-ii. Oxalic acid detoxifies aluminum internally. Plant Physiology 117:753-759.
    Ma JF, Hiradate S.2000. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum moench). Planta 211:355-360.
    Ma JF, Ryan PR, Delhaize E.2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6:273-278.
    Ma JF, Ueno D, Zhao FJ, McGrath SP.2005. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731-736.
    Ma JF, Zheng SJ, Matsumoto H, Hiradate S.1997. Detoxifying aluminium with buckwheat. Nature 390: 569-570.
    Maathuis FJM, Sanders D.1999. Plasma membrane transport in context-making sense out of complexity. Current Opinion in Plant Biology 2:236-243.
    Macnair MR, Summers JE, Pooni HS, Berglund LA, Cape JN, Groves RH.1998. Plants that hyperaccumulate heavy metals. Annals of Botany 82:267-271.
    Macnair MR.2002. Within and between population genetic variation for zinc accumulation in arabidopsis halleri. New Phytologist 155:59-66.
    Malinowski ER.1977. Determination of number of factors and experimental error in a data matrix. Analytical Chemistry 49:612-617.
    Maria Greger, Sylvia Lindberg.1986. Effects of Cd2+ and edta on young beans (beta vulgaris.) i. Cd2+ uptake and sugar accumulation. Physiologia Plantarum 66:69-74.
    Marmiroli M, Antonioli G, Maestri E, Marmiroli N.2005. Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of pb:An X-ray spectroscopy-based analysis. Environmental Pollution 134:217-227.
    Marschner H.1995. Mineral nutrition of higher plants. San Diego.CA:Academic press.
    Maser P, Gierth M, Schroeder JI.2002. Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil 241:43-54.
    Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology 126:1646-1667.
    Mathys W.1977. Role of malate, oxalate, and mustard oil glucosides in evolution of zinc resistance in herbage plants. Physiologia Plantarum 40:130-136.
    Matsumoto S, Ikeda Y, Suzuki H, Ogai M, Miyoshi N.2000. Nox storage reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Applied Catalysis B-Environmental 25: 115-124.
    McGrath SP, Shen ZG, Zhao FJ.1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil 188: 153-159.
    McGrath SP, Zhao FJ, Lombi E.2002. Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, Vol75 15:1-56.
    McGrath SP, Zhao FJ.2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277-282.
    McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL.2005. Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environmental Science & Technology 39:2210-2218.
    Memon AR, Yatazawa M.1982. Chemical nature of manganese in the leaves of manganese accumulator plants. Soil Science and Plant Nutrition 28:401-412.
    Mendoza-Cozatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI.2008. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant Journal 54:249-259.
    Mendoza-Cozatl DG, Moreno-Sanchez R.2005. Cd2+ transport and storage in the chloroplast of Euglena gracilis. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1706:88-97.
    Menon A, Yatazawa M.1984. Nature of manganese complexes in manganese accumulator plant. Acanthopanax sciadophylloides 7:961-974.
    Mesjasz-Przybylowicz J, Przybylowicz WJ, Prozesky VM, Pineda CA.1997. Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 130:368-373.
    Meychik NR, Yermakov IP.2001. Ion exchange properties of plant root cell walls. Plant and Soil 234: 181-193.
    Mills RF, Francini A, da Rocha PSCF, Baccarini PJ, Aylett M, Krijger GC, Williams LE.2005. The plant P-1B-type atpase atHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. Febs Letters 579:783-791.
    Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK.2003. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiology 132:1989-1997.
    Moral R, Gomez I, Pedreno JN, Mataix J.1994. Effects of cadmium on nutrient distribution, yield, and growth of tomato grown in soilless culture. Journal of Plant Nutrition 17:953-962.
    Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P.2009. AtHMA3, a P-1B-ATPase allowing Cd/Zn/co/pb vacuolar storage in Arabidopsis. Plant Physiology 149:894-904.
    Muschitz A, Faugeron C, Morvan H.2009. Response of cultured tomato cells subjected to excess zinc:Role of cell wall in zinc compartmentation. Acta Physiologiae Plantarum 31:1197-1204.
    Naftel SJ, Martin RR, Sham TK, Macfie SM, Jones KW.2001. Micro-synchrotron X-ray fluorescence of cadmium-challenged corn roots. Journal of Electron Spectroscopy and Related Phenomena 119: 235-239.
    Nascimento CWA, Amarasiriwardena D, Xing BS.2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution 140:114-123.
    Nedelkoska TV, Doran PM.2000. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnology and Bioengineering 67:607-615.
    Nies DH, Silver S.1995. Ion efflux systems involved in bacterial metal resistances. Journal of Industrial Microbiology and Biotechnology 14:186-199.
    Nigam R, Srivastava S, Prakash S, Srivastava MM.2000. Effect of organic acids on the availability of cadmium in wheat. Chemical Speciation and Bioavailability 12:125-132.
    Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH.1998. Glutathione:Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany 49:623-647.
    Noctor G, Foyer CH.1998. Ascorbate and glutathione:Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49:249-279.
    Nordstrom D, May H.1996. Aqueous equilibrium data for mononuclear aluminum species. The environmental chemistry of aluminum 2:39-80.
    Ortiz DF, Kreppel L, Speiser DM, Scheel G, Mcdonald G, Ow DW.1992. Heavy-metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. Embo Journal 11: 3491-3499.
    Ortiz DF, Ruscitti T, Mccue KF, Ow DW.1995. Transport of metal-binding peptides by hmtl, a fission yeast abc-type vacuolar membrane-protein. Journal of Biological Chemistry 270:4721-4728.
    Ortiz DF, StPierre MV, Abdulmessih A, Arias IM.1997. A yeast atp-binding cassette-type protein mediating ATP-dependent bile acid transport. Journal of Biological Chemistry 272:15358-15365.
    Palmgren MG, Clemens S, Williams LE, Kraemer U, Borg S, Schjorring JK, Sanders D.2008. Zinc biofortification of cereals:Problems and solutions. Trends in Plant Science 13:464-473.
    Persans MW, Nieman K, Salt DE.2001. Functional activity and role of cation-efflux family members in ni hyperaccumulation in Thlaspi goesingense. Proceedings of the National Academy of Sciences of the United States of America 98:9995-10000.
    Persans MW, Yan XG, Patnoe JMML, Kramer U, Salt DE.1999. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (halacsy). Plant Physiology 121: 1117-1126.
    Peuke AD, Rennenberg H.2005. Phytoremediation-molecular biology, requirements for application, environmental protection, public attention and feasibility. Embo Reports 6:497-501.
    Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE.2000a. Reduction and coordination of arsenic in Indian mustard. Plant Physiology 122:1171-1177.
    Pickering IJ, Prince RC, Salt DE, George GN.2000b. Quantitative, chemically specific imaging of selenium transformation in plants. Proceedings of the National Academy of Sciences of the United States of America 97:10717-10722.
    Pietrini F, Iannelli MA, Pasqualini S, Massacci A.2003. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (cav.) trin. Ex steudel. Plant Physiology 133:829-837.
    Pilon-Smits EAH, de Souza MP, Lytle CM, Shang C, Lugo T, Terry N.1998. Selenium volatilization and assimilation by Hybrid poplar (populus tremula x alba). Journal of Experimental Botany 49: 1889-1892.
    Pilon-Smits EAH, Zhu YL, Sears T, Terry N.2000. Overexpression of glutathione reductase in Brassica juncea:Effects on cadmium accumulation and tolerance. Physiologia Plantarum 110:455-460.
    Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ, Arenas J.2000. XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentata (creosote bush). Microchemical Journal 65:227-236.
    Prasad MNV, Hagemeyer J.1999. Heavy metal stress in plants:From molecules to ecosystems. Berlin: Springer.
    Punshon T, Guerinot ML, Lanzirotti A.2009. Using synchrotron x-ray fluorescence microprobes in the study of metal homeostasis in plants. Annals of Botany 103:665-672.
    Rauser WE.1995. Phytochelatins and related peptides-structure, biosynthesis, and function. Plant Physiology 109:1141-1149.
    Reeves R, Baker A 2000. Metal-accumulating plants. In:I. RaskinB. D. Ensley eds. Phytoremediation of toxic metals:Using plants to clean up the environment. New York:John Wiley,193-230.
    Riddle SG, Tran HH, Dewitt JG, Andrews JC.2002. Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by Water hyacinths. Environmental Science & Technology 36: 1965-1970.
    Robinson BH, Lombi E, Zhao FJ, McGrath SP.2003. Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytologist 158:279-285.
    Roosens N, Willems G, Saumitou-Laprade P.2008. Using arabidopsis to explore zinc tolerance and hyperaccumulation. Trends in Plant Science 13:208-215.
    Roosens NH, Bernard C, Leplae R, Verbruggen N.2004. Evidence for copper homeostasis function metallothionein of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. Febs Letters 577:9-16.
    Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH.1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339-347.
    Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I.1997. Metal accumulation by aquacultured seedlings of Indian mustard. Environmental Science & Technology 31:1636-1644.
    Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ.1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environmental Science & Technology 33:713-717.
    Salt DE, Prince RC, Pickering IJ, Raskin I.1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology 109:1427-1433.
    Salt DE, Prince RC, Pickering IJ.2002. Chemical speciation of accumulated metals in plants:Evidence from X-ray absorption spectroscopy. Microchemicol Journal 71:255-259.
    Salt DE, Rauser WE.1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology 107:1293-1301.
    Salt DE, Wagner GJ; 1993a. Cadmium transport across tonoplast of vesicles from oat roots. Plant Physiology 102:36-36.
    Salt DE, Wagner GJ.1993b. Cadmium transport across tonoplast of vesicles from oat roots-evidence for a Cd2+/H+ antiport activity. Journal of Biological Chemistry 268:12297-12302.
    Sanita di Toppi L, Gabbrielli R.1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41:105-130.
    Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A.2006. Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiology 141:1021-1034.
    Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ. 1998. Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by exafs spectroscopy. Environmental Science & Technology 32:1648-1655.
    Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse AS, Marcus MA, Manceau A. 2002. Forms of Zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiology 130: 1815-1826.
    Sarret G, Schroeder WH, Marcus MA, Geoffroy N, Manceau A.2003. Localization and speciation of Zn in mycorrhized roots by SRXRF and EXAFS. Journal De Physique Iv 107:1193-1196.
    Sarret G, Vangronsveld J, Manceau A, Musso M, D'Haen J, Menthonnex JJ, Hazemann JL.2001. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of edta. Environmental Science & Technology 35:2854-2859.
    Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frerot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P.2009. Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytologist 184:581-595.
    Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM.2002. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. Journal of Experimental Botany 53:2381-2392.
    Schaumloffel D, Ouerdane L, Bouyssiere B, Lobinski R.2003. Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by hplc and cze with icp ms and electrospray ms-ms detection. Journal of Analytical Atomic Spectrometry 18:120-127.
    Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A.2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiology 127:887-898.
    Sharma NC, Gardea-Torresdey JL, Parsons J, Sahi SV.2004. Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environmental Toxicology and Chemistry 23:2068-2073.
    Shaw BP, Sahu SK, Mishra RK 2004. Heavy metal induced oxidative damage in terrestrial plants. In:P. MNV ed. Heavy metal stress in plants? From biomolecules to ecosystems 2nd ed. New York: Springer-Verlag,84-126.
    Shen ZG, Zhao FJ, McGrath SP.1997. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell and Environment 20: 898-906.
    Shi JY, Chen YX, Huang YY, He W.2004. Srxrf microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron 35:557-564.
    Siedlecka A, BaszynAski T.1993. Inhibition of electron flow around photosystem i in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiologia Plantarum 87:199-202.
    Silver A, Koch SA, Millar M.1993. X-ray crystal-structures of a series of [m(ii)(sr)4]2-complexes (m=Mn, Fe, Co, Ni, Zn, Cd and hg) with s4 crystallographic symmetry. Inorganica Chimica Acta 205:9-14.
    Simm C, Clemens S.2003. Mechanisms of heavy metal tolerance in the fission yeast Schizosaccharomyces pombe. Yeast 20:S199-S199.
    Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS.2007. The use of the zinc-fluorophore, zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytologist 174:39-45.
    Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y.2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnology 21:914-919.
    Stephan UW, Scholz G.1993. Nicotianamine-mediator of transport of iron and heavy-metals in the phloem. Physiologia Plantarum 88:522-529.
    Sun Q, Ye ZH, Wang XR, Wong MH.2005. Increase of glutathione in mine population of Sedum alfredii:A Zn hyperaccumulator and pb accumulator. Phytochemistry 66:2549-2556.
    Sun Q, Ye ZH, Wang XR, Wong MH.2007. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. Journal of Plant Physiology 164:1489-1498.
    Sun RL, Zhou QX, Jin CX.2006. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum 1. As a newly found cadmium hyperaccumulator. Plant and Soil 285:125-134.
    Suzuki N.2005. Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant biotechnology 22:19-25
    Suzuki N, Koizumi N, Sano H.2001. Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant, Cell and Environment 24:1177-1188.
    Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL.2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist 175:641-654.
    Tatar E, Mihucz VG, Kmethy B, Zaray G, Fodor F.2000. Determination of organic acids and their role in nickel transport within cucumber plants. Microchemical Journal 67:73-81.
    Tiemann KJ, Gamez G, Dokken K, Parsons JG, Gardea-Torresdey JL.2002. Chemical modification and x-ray absorption studies for lead(Ⅱ) binding by Medicago sativa (alfalfa) biomass. Microchemical Journal 71:287-293.
    Tolra RP, Poschenrieder C, Barcelo J.1996. Zinc hyperaccumulation in Thlaspi caerulescens.2. Influence on organic acids. Journal of Plant Nutrition 19:1541-1550.
    Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP.2005. Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using Cd-113-nmr. Planta 221:928-936.
    Unyayar S, Celik A, Cekic FO, Gozel A.2006. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77-81.
    van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM.2008. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell and Environment 31:301-324.
    van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koornneef M, Aarts MGM.2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi-caerulescens. Plant Physiology 142:1127-1147.
    van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology 119:1047-1055.
    Vazquez MD, Poschenrieder C, Barcelo J, Baker AJM, Hatton P, Cope GH.1994. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi-caerulescens j and c presl. Botanica Acta 107:243-250.
    Verbruggen N, Hermans C, Schat H.2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181:759-776.
    Vogeli U, Freeman JW, Chappell J.1990. Purification and characterization of an inducible sesquiterpene cyclase from elicitor-treated tobacco cell-suspension cultures. Plant Physiology 93:182-187.
    Vogel-Mikus K, Regvar M, Mesjasz-Przybylowicz J, Przybylowicz WJ, Simcic J, Pelicon P, Budnar M. 2008. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytologist 179:712-721.
    Vollenweider P, Cosio C, Gunthardt-Goerg MS, Keller C.2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (salix viminalis 1.) part ii microlocalization and cellular effects of cadmium. Environmental and Experimental Botany 58:25-40.
    Walker DJ, Clemente R, Roig A, Bernal MP.2003. The effects of soil amendments on heavy metal bioavailability in two contaminated mediterranean soils. Environmental Pollution 122:303-312.
    Webb S, Gaillard J, Ma L, Tu C.2003. XAS speciation of arsenic in a hyper-accumulating fern. Environ. Set Technol 37:754-760.
    West M, Ellis AT, Kregsamer P, Potts PJ, Streli C, Vanhoof C, Wobrauschek P.2007. Atomic spectrometry update. X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry 22:1304-1332.
    Xiang CB, Oliver DJ.1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539-1550.
    Xu J, Yin HX, Li X.2009. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum. Plant Cell Reports 28:325-333.
    Yan XL, Chen TB, Liao XY, Huang ZC, Pan JR, Hu TD, Nie CJ, Xie H.2008. Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata. Environmental Science & Technology 42:1479-1484.
    Yang X, Feng Y, He ZL, Stoffella PJ.2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18:339-353.
    Yang X, Li TQ, Yang JC, He ZL, Lu LL, Meng FH.2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii hance. Planta 224:185-195.
    Yang X, Long XX, Ni WZ, Fu CX.2002. Sedum alfredii h:A new Zn hyperaccumulating plant first found in china. Chinese Science Bulletin 47:1634-1637.
    Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ.2006. Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii hance. Plant and Soil 284:109-119.
    Yang XE, Long XX, Ye HB,He ZL, Calvert DV, Stoffella PJ.2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii hance). Plant and Soil 259:181-189.
    Young LW, Westcott ND, Attenkofer K, Reaney MJT.2006. A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy. Journal of Synchrotron Radiation 13:304-313.
    Yun W, Pratt ST, Miller RM, Cai Z, Hunter DB, Jarstfer AG, Kemner KM, Lai B, Lee HR, Legnini DG, Rodrigues W, Smith CI.1998. X-ray imaging and microspectroscopy of plants and fungi. Journal of Synchrotron Radiation 5:1390-1395.
    Zenk MH.1996. Heavy metal detoxification in higher plants-a review. Gene 179:21-30.
    Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D.2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (kandelia candel and bruguiera gymnorrhiza). Chemosphere 67:44-50.
    Zhao FJ, Lombi E, Breedon T, McGrath SP.2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell and Environment 23:507-514.
    Zhao FJ, Shen ZG, McGrath SP.1998. Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescens. Plant Cell and Environment 21:108-114.
    Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP.2003. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytologist 159:403-410.
    Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N.1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiology 121:1169-1177.
    Zimmermann M, Xiao ZG, Cobbett CS, Wedd AG.2009. Metal specificities of Arabidopsis zinc and copper transport proteins match the relative, but not the absolute, affinities of their N-terminal domains. Chemical Communications:6364-6366.
    包良满.2009.大气颗粒物中的轻元素XANES和SPM研究.中国科学院.博士论文
    陈同斌,黄泽春,黄宇营,谢华,廖晓勇.2003.砷超富集植物中元素的微区分布及其与砷富集的关系.科学通报48:1163-1168.
    陈同斌,黄泽春,黄宇营,雷梅.2004.蜈蚣草羽叶中砷及植物必需营养元素的分布特点.中国科学:C辑34:304-309.
    储旺盛.2007. T-exafs研究过渡金属二硼化物的晶格动力学行为及其同位素效应.中国科学技术大学.博士论文
    吉昂,陶光仪,卓尚军2003. X—ray fluorescence spectrometry.In:北京:科学出版社.
    荆红梅,郑海雷,赵中秋,张春光.2001.植物对镉胁迫响应的研究进展.生态学报21:2125-2130.
    蒋诗平.2002.同步辐射讲座第三讲软X射线显微术.物理31.
    李廷强.2005.超积累植物东南景天(Sedum alfredii hance)对锌的活化、吸收及转运机制研究.浙江大学.博士论文
    李文学,陈同斌.2003.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报14:627-631.
    刘勇军.2007.东南景天(Sedum alfredii hance)种苗繁殖新技术及其对锌耐性和超积累能力的影响研究.浙江大学.硕士论文
    龙新宪.2002.东南景天(Sedum alfredii hance)对锌的耐性和超积累机制研究.浙江大学.博士论文
    马礼敦,杨福家.2005.同步辐射应用概论.上海:复旦大学出版社.
    麦振洪.2002.同步辐射讲座第四讲同步辐射光50年.物理31:670-675.
    吴自勤.2000.无标样X射线荧光(XRF)定量分析.北京同步辐射装置年报:161-162.
    王其武,刘文汉.1994.X射线吸收精细结构及其应用.科学出版社8:201.
    韦世强,孙治湖,潘志云,闫文盛,钟文杰,贺博,谢治,韦正.2007. XAFS在凝聚态物质研究中的应用.中国科学技术大学学报37:426-440.
    韦世强,谢亚宁.2002.第一讲同步辐射XAFS实验站及其应用.物理31:40-44.
    姚焜.2002.同步辐射讲座第二讲同步辐射X射线荧光及其在植物微量元素分析中的应用.物理31.
    张令翊,庄杰佳,赵夔,陈佳洱.2001.第四代光源.强激光与粒子束13:51-55.
    张军,束文圣.2006.植物对重金属镉的耐受机制.植物生理与分子生物学学报31:1-8.
    张祖德,胡振波,刘清亮.1996. EXAFS谱在生物无机化学中的应用.化学进展8:213-219.
    张茂林.2008.同步辐射在古陶瓷研究中的初步应用.中国科学技术大学.博士论文.
    杨居荣,蒋婉茹.1995.不同耐镉作物体内镉结合体的对比研究.作物学报21:605-611.