茶多酚对茶树铅生物有效性的调控作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是茶叶生产和贸易大国,茶产业在国民经济和国际贸易中一直占有重要地位。近年来,我国茶产业发展虽然非常稳健,但茶叶的安全质量问题仍然是其发展的瓶颈之一,其中茶叶铅污染问题一直颇受关注。铅是众所周知的生理性和神经性毒物,几乎对人体所有重要的器官和系统均会产生不良影响。因此,开展茶叶铅污染研究对于我国茶产业可持续发展和消费者身体健康具有十分重要的意义。
     茶多酚(Tea polyphenols, TP)作为茶树(Camellia sinensis L.)体内天然的金属有机配体,其调控重金属有效性的环境功能值得深入研究。因此,本研究首先对不同品种茶树的铅积累特性及其与茶多酚的关系进行调查评价,然后以实验室土培和水培模拟试验为主要手段,系统探讨了茶多酚对茶树铅生物有效性的调控作用及其机制。取得的主要研究结果如下:
     (1)明确了不同品种茶树的铅积累特性及其影响因素,发现茶树组织和土壤中的茶多酚含量与茶树铅积累量具有密切关系。茶树不同品种、不同组织间的铅含量存在明显差异。土壤pH值、有机质含量、铅的化学形态和叶片铅吸附能力是影响不同品种茶树铅积累特性差异的重要因子。不同品种茶树老叶、老根和根区土壤之间的茶多酚含量存在明显差异。根区土壤多酚含量与土壤pH值、有机质含量、铅的化学形态和叶片铅吸附能力的相关关系显著。茶树组织茶多酚含量与叶片铅吸附能力、茶树体内铅含量存在显著的相关关系。
     (2)茶多酚处理对茶树的铅毒害和吸收积累具有明显的调控作用。低浓度铅对茶树的生长发育、光合作用和生物量积累有一定的促进作用,高浓度则产生抑制作用。随着铅污染浓度的增加,茶树体内的铅含量升高,但不同器官的分布规律变化不大。茶多酚处理后,铅污染茶树的生长发育状况明显改善,生物量积累增加。低浓度下,茶多酚能降低铅在茶树体内各组织中的积累,高浓度下,茶多酚提高了根系对铅的吸收积累,而减少了叶片的铅含量。
     (3)铅污染下,细胞整体结构发生了显著变化,结构不完整,大量细胞器消失,叶绿体、细胞核、线粒体等细胞器结构受到明显损伤。胞间连丝结构发生明显改变,大量内质网消失。细胞壁有大量云雾状黑色沉淀,沉淀颗粒细密均匀,在细胞壁角隅地带密度较大。茶多酚处理后,茶树叶片、根尖细胞的整体结构受损状况明显好转,叶绿体、线粒体等细胞器整体结构接近正常状态,特别值得关注的是,在细胞壁、胞间连丝、细胞核、内质网等处发现了大量块状或颗粒状黑色沉淀,与单一铅污染处理沉淀形态明显不同。
     (4)茶多酚对土壤理化性质具有明显的调控作用,从而对土壤铅的生物有效性产生影响。茶多酚添加到土壤后,土壤pH值降低,多酚和有机质含量提高,土壤矿物物相有所改变,表现为晶型更为完整,特别是大量铁锰氧化物与茶多酚发生氧化还原反应,土壤铅的化学形态发生了明显转化,低浓度下有效态比例提高,而高浓度下有效态比例降低。土壤铅的化学结合形态由占较大比例的磷酸铅向茶多酚-铅结合形态转化。茶树干物质积累、体内铅积累与茶多酚导致的土壤理化性质和铅生物有效性变化关系密切。
     (5)茶多酚对茶树体内铅的微区分布和形态转化具有明显的影响。铅处理下,茶树根尖细胞的铅主要沉积在细胞壁,组织水平上主要分布于叶片的海绵组织和下表皮,根尖的表皮、内皮层和中柱鞘等处。茶多酚处理后,铅则主要沉积在根尖细胞的液泡中,组织水平上铅在叶片上下表皮的分布明显高于叶肉组织,铅在叶脉纵向和根尖不同组织的分布也发生了明显变化。微区分布的重新分配避免了铅对重要细胞和组织的直接伤害,这可能是茶多酚降低铅毒害的重要机制之一
     傅立叶变换红外光谱研究表明,茶树根、叶组织的特征官能团具有多样性,主要包括羟基、羧基、氨基、酰胺基、甲基、羰基和醚基等。在铅的吸收积累与解毒中,茶树组织中羟基、酰胺基、羰基等起到了重要作用,特别是添加茶多酚之后,明显提高了这些官能团的含量,从而提高了茶树对铅的解毒能力。
     Pb处理下,茶树根中Pb的主要结合形态为Pb-茶多酚、氯化铅、Pb-茶氨酸、Pb-富啡酸和磷酸铅等。茶多酚处理后,茶多酚与Pb的结合形态比例大大提高,说明茶多酚在调控茶树体内Pb的分子形态方面具有重要作用。
China is a tea production and trading power and tea industry has played an important role in the national economy and international trade. In recent years, the issue of tea quality safety has become one of the bottlenecks of tea industry development in China, in which lead contamination of tea has been attracted attentions widely. Lead (Pb) is a physiological and neurological toxin affecting almost every important organ and system in the human body. Therefore, it is very important to study on lead pollution in tea for sustainable development of Chinese tea industry and health of consumers.
     Tea polyphenols (TP) are the main compounds and natural metal organic ligands in tea plant. It is worthwhile to make a further research on tea polyphenols'environment function to regulate the availability of heavy metals. Therefore, in this work the relationship between TP and accumulation characteristics of lead in different varieties of tea plant was investigated and assessed firstly, and then the pot soil experiment and solution culture experiment were carried out to study regulation mechanisms of TP on the bioavailability of lead in tea plant. The main results obtained are as follows:
     (1) It was made clear for characteristics of lead accumulation in different varieties of tea plant and its influencing factors and found that TP content in the soil and tea plant was closely related to lead accumulation amount in tea plant. There were significantly differences among the lead content in different varieties, the same as lead content in different organs. Soil pH, organic matter content, chemical species of lead and lead adsorption capacity of leaf were important factors affecting lead accumulation difference in different varieties of tea plant. There was significant difference between TP content in old leaves/old roots and that in the soil of root zone for different varieties of tea plant. Polyphenol content in the soil of root zone had significant correlation with soil pH, organic matter content, chemical species of lead, and lead adsorption capacity of leaf. The content of TP in tea plant was also significantly related to lead adsorption capacity of tea leaf and lead content in tea plants.
     (2) TP had obviously regulative effect on the uptake, accumulation, and detoxification of lead in tea plant. Under low concentration of lead, growth and development, photosynthesis, and biomass production of tea plant were promoted in a certain level, but inhibited under high concentrations. With the increase of the concentration of lead, the lead content in tea plant increased, but there was little change of lead distribution in the different organs of tea plant. With TP treatment, the growth and development condition of tea plant was significantly improved and biomass production increased although under lead pollution. Under low concentration of TP, the accumulation amount of lead in tea plant was reduced, but uptake amount of lead by roots was increased and the lead content of leaves was reduced with high concentrations of TP.
     (3) Under lead stress, some disturbances in ultrastructure of drganelles were found. The overall structures of cells were significantly changed and not complete, a large number of organelles even disappeared. The structures of chloroplast, nucleus, mitochondria and other organelles were markedly damaged. Plasmodesmata structure was changed significantly, a mass of endoplasmic reticulum disappeared. Abundant cloudy black depositions were found in cell wall. It was worth mentioning that the deposition particles were fine and well-distributed, mainly in the cell wall corners. After TP treatment, the overall structure of tea leaf, root tip cells damaged by lead stress had been taken a significant turn for the better. The overall-structure-condition of the chloroplast, mitochondrion was nearly same as normal state. And it was a remarkable phenomenon that block or granular black depositions were found in the cell wall, plasmodesmata, nucleus, endoplasmic reticulum, which were distinctly different from depositions under only lead stress treatment. (4) TP played an obviously regulative role on soil physical and chemical properties, and thus it had an effect on the lead bioavailability of soil. After TP was added to the soil, the soil pH values decreased, the contents of polyphenols and organic matter increased. The soil mineral phase was changed which showed a more complete crystal, and particularly redox reaction occurred between Fe-Mn oxides and polyphenols. The chemical species of lead in soil had been significantly transformed, the proportion of availability species of lead increased under low concentration of lead, but decreased under high concentrations. Chemical bound species of lead in soil had been transformed from the large proportion of lead phosphate to the combined species of TP-lead. Dry matter production and lead accumulation of tea plants was closely correlative to the changes of soil physical and chemical properties, and bioavailability of lead caused by TP treatment. (5) TP had a significant effect on the micro-area distribution and transformation of lead in tea plant. Under only lead treatment, lead was deposited mainly in the cell wall of root tip cells, while on the tissue level lead was mainly deposited in the spongy tissue and lower epidermis of leaves, and epidermis, endodermis and pericycle of root tips etc. After TP treatment, lead was deposited mainly in the vacuole of root tips, and on the tissue level the content of lead in the upper and lower epidermis of leaf was significantly higher than that in mesophyll tissue. The distribution of lead in the vertical vein of leaf and different tissues of the root tips was changed obviously. Direct damage of the important cells and tissues were avoided by the re-distribution of micro-area distribution of lead in tea plant, which may be one of the important mechanisms of TP to reduce lead toxicity for tea plant.
     Fourier transform infrared spectroscopy studies showed that tea roots and leaves had diverse functional groups, including hydroxyl, carboxyl, amino, amide, methyl, carbonyl, and ether group, etc. Functional groups in tea plant tissues like hydroxyl, amide, carbonyl, etc. played an important role in the absorption, accumulation, and detoxification of lead in tea plants. Especially after adding TP the content of these functional groups significantly increased, which accordingly inhibited the toxicity of lead.
     Under only lead treatment, combined species of the lead in root of tea plant were mostly Pb-TP, chloride, lead, Pb-theanine, Pb-fulvic acid and phosphoric acid lead, etc. After TP treatment, the ratio of binding species of Pb-TP greatly increased, which showed that TP had an important role in the regulation of the lead molecular species in tea plant.
引文
[1]Sharma VK, Bhattacharya A, Kumar A, et al. Health benefits of tea consumption. Tropical Journal of Pharmaceutical Research,2007,6 (3):785-792.
    [2]Pharn-Huy LAN, He H, Phamhuy C. Green tea and health:An overview. Journal of Food Agriculture & Environment,2008,6 (1):6-13.
    [3]Zhu YX, Huang H, Tu YY. A review of recent studies in China on the possible beneficial health effects of tea. International Journal of Food Science and Technology,2006,41 (4):333-340.
    [4]无.2008年世界茶叶产量略减出口增长.茶叶世界,2009(7):14.
    [5]陈宗懋,阮建云,蔡典雄,等.茶树生态系中的立体污染链与阻控.中国农业科学,2007,40(5):948-958.
    [6]亚杰.卫生部抽检显示:铅含量超标是茶叶不合格主要原因.江苏食品与发酵,2004(1):37-37.
    [7]Han WY, Zhao FJ, Shi YZ, et al. Scale and causes of lead contamination in Chinese tea EnvironmentalPollution,2006,139(1):125-132.
    [8]金崇伟,郑绍建.茶叶的铅污染问题及铅污染的来源.广东微量元素科学,2004,11(3):12-16.
    [9]韩文炎,韩国柱,蔡雪雄.茶叶铅含量现状及其控制技术研究进展.中国茶叶,2008(3):16-17.
    [10]农业部茶叶质量监督检测中心.农业部茶叶质量监督检测中心举行浙江茶叶质量检测通报会.2008.4,引自:http://zjcxw.zjnw.gov.cn/cyyw/jrsd/2008/02/01/2008020100002.shtml.
    [11]Qin F, Chen W. Lead and copper levels in tea samples marketed in Beijing, China. Bulletin of Environmental Contamination and Toxicology,2007,78 (2):128-31.
    [12]央视《每周质量报告》.碧螺春易容“秘方”.中国质量万里行,2005(7):60.
    [13]汤茶琴,张定,黎星辉.茶树及成品茶叶中铅的研究进展.福建茶叶,2006(2):15-18.
    [14]余世建.日本的茶粉及其制品的发展.中国茶叶加工,1998(3):42-43.
    [15]鲁成银,尹军峰,刘翔,等.茶叶质量安全与HACCP.北京:中国农业科学技术出版社,2008.
    [16]潘根生.茶树生物学.北京:中国农业出版社,1995.
    [17]《中国茶树品种志》编写委员会.中国茶树品种志.上海:上海科学技术出版社,2001.
    [18]宛晓春.茶叶生物化学(第三版).北京:中国农业出版社,2003.
    [19]杨美燕.茶多酚静脉注射剂高效液相色谱和分光光度分析研究[硕士学位论文].大连:大连理工大学,2004.
    [20]杨贤强,王岳飞,陈留记.茶多酚化学.上海:上海科学技术出版社,2004.
    [21]石碧,狄莹.植物多酚(第一版).北京:科学出版社,2000.
    [22]Silbergeld EK. Preventing lead poisoning in children. Annual Review of Public Health,1997,18: 187-210.
    [23]Silbergeld EK, Waalkes M, Rice JM. Lead as a carcinogen:Experimental evidence and mechanisms of action. American Journal of Industrial Medicine,2000,38 (3):316-323.
    [24]Needleman H. Lead poisoning. Annual Review of Medicine,2004,55:209-222.
    [25]Heard MJ, Chamberlain AC, Sherlock JC. Uptake of lead by humans and effect of minerals and food. Science of the Total Environment,1983,30:245-253.
    [26]夏令伟.火焰原子吸收法测定茶叶中铅、镉、铜、锌.分析化学,1981(4):41-47.
    [27]Norman DM, Dixon EJ. Distribution of lead and other metals in tea leaves, dust and liquors. Journal of the Science of Food and Agriculture,1977,28 (2):215-224.
    [28]Seenivasan S, Manikandan N, Muraleedharan NN, et al. Heavy metal content of black teas from south India. Food Control,2008,19 (8):746-749.
    [29]Nookabkaew S, Rangkadilok N, Satayavivad J. Determination of trace elements in herbal tea products and their infusions consumed in Thailand. Journal of Agricultural and Food Chemistry,2006,54 (18): 6939-6944.
    [30]Salahinejad M, Aflaki F. Toxic and Essential Mineral Elements Content of Black Tea Leaves and Their Tea Infusions Consumed in Iran. Biological Trace Element Research,2010,134 (1):109-117.
    [31]Zazouli MA, Bandpei AM, Maleki A, et al. Determination of Cadmium and Lead Contents in Black Tea and Tea Liquor from Iran. Asian Journal of Chemistry,2010,22 (2):1387-1393.
    [32]Zazouli MA, Bandpei AM, Shorkzadeh M, et al. Cadmium and Lead content in Iranian consumed tea (Camellia sinensis) and in differently prepared tea infusions. Toxicology Letters,2008,180 (Supplement 1):S208-S208.
    [33]Yaylali-Abanuz G, Tuysuz N. Heavy metal contamination of soils and tea plants in the eastern Black Sea region, NE Turkey. Environmental Earth Sciences,2009,59 (1):131-144.
    [34]Colak H, Soylak M, Turkoglu O. Determination of trace metal content of various herbal and fruit teas produced and marketed in Turkey. Trace Elements and Electrolytes,2005,22 (3):192-195.
    [35]Ozcan M. Determination of mineral contents of Turkish herbal tea (Salvia aucheri var. canescens) at different infusion periods. Journal of Medicinal Food,2005,8 (1):110-112.
    [36]Yemane M, Chandravanshi BS, Wondimu T. Levels of essential and non-essential metals in leaves of the tea plant(Camellia sinensis L.) and soil of Wushwush farms, Ethiopia. Food Chemistry,2008,107 (3):1236-1243.
    [37]Ashraf W, Mian AA. Levels of selected heavy metals in black tea varieties consumed in saudi arabia. Bulletin of Environmental Contamination and Toxicology,2008,81 (1):101-104.
    [38]Harb S. Measurement of the radioactivity of 238U,226Ra,210Pb,228Th,232Th,228Ra,137Cs and 40K in tea using gamma-spectrometry. Journal of Radioanalytical and Nuclear Chemistry,2007,274:63-66.
    [39]Lasheen YF, Awwad NS, El-Khalafawy A, et al. Annual effective dose and concentration levels of heavy metals in different types of tea in Egypt. International Journal of Physical Sciences,2008,3 (5): 112-119.
    [40]Hussain I, Khan F, Iqbal Y, et al. Investigation of heavy metals in commercial tea brands. Journal of the Chemical Society of Pakistan,2006,28 (3):246-251.
    [41]Soomro MT, Zahir E, Mohiuddin S, et al. Quantitative assessment of metals in local brands of tea in Pakistan. Pakistan Journal of Biological Sciences,2008,11 (2):285-9.
    [42]Peric-Grujic AA, Pocajt VV, Ristic MD. Determination of heavy metal concentrations in tea samples taken from belgrade market, Serbia Hemijska Industrija,2009,63 (5):433-436.
    [43]Ramakrishna RS, Palmakumbura S, Chatt A. Varietal variation and correlation of trace-metal levels with catechins and caffeine in Sri-lanka tea Journal of the Science of Food and Agriculture,1987,38 (4):331-339.
    [44]Souad C, Farida Z, Nadra L, et al. Trace element level in infant hair and diet, and in the local environment of the Moroccan city of Marrakech. Science of the Total Environment,2006,370 (2-3): 337-342.
    [45]Gajewska R, Nabrzyski M, Ganowiak Z, et al. Amounts of selected minerals in green and black teas. Rocz Panstw Zakl Hig,2000,51 (3):251-8.
    [46]Moreda-Pineiro A, Fisher A, Hill SJ. The classification of tea according to region of origin using pattern recognition techniques and trace metal data Journal of Food Composition and Analysis,2003,16 (2): 195-211.
    [47]丁力,范必威.茶叶中的铅污染问题.广东微量元素科学,2005,12(6):6-11.
    [48]Shen FM, Chen HW. Element composition of tea leaves and tea infusions and its impact on health. Bulletin of Environmental Contamination and Toxicology,2008,80 (3):300-304.
    [49]Han WY, Shi YZ, Ma LF, et al. Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O. Kuntze). Chemosphere,2007,66 (1):84-90.
    [50]张寿宝,包文权.汽车尾气中的铅对茶园污染的研究.江苏环境科技,2000,13(3):1-2.
    [51]胡勤海,王凯雄,占启范.茶叶中多种元素测定与茶叶污染剖析.环境污染与防治,1993,15(3):28-29,41.48.
    [52]Dash K, Manjusha R, Thangavel S, et al. U V photolysis-assisted digestion of tea (Camellia sinensis)and tulsi (Ocimum sanctum) and their infusions:Comparison of available trace elements. Atomic Spectroscopy,2008,29 (2):56-62.
    [53]Gezgin S, Ozcan MM, Atalay E. Determination of minerals extracted from several commercial teas (Camellia sinensis) to hot water (Infusion). Journal of Medicinal Food,2006,9(1):123-127.
    [54]Natesan S, Ranganathan V. Content of various elements in different parts of the tea plant and in infusions of black tea from Southern India Journal of the Science of Food and Agriculture,1990,51(1): 125-139.
    [55]Ozcan MM, Unver A, Ucar T, et al. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chemistry,2008,106:1120-1127.
    [56]Sekulic B, Martinis M, Peharec Z. Trace heavy metals (Zn, Cu, Pb and Cd) in medicinal plants. Periodicum Biologorum,2004,106 (4):437-441.
    [57]Ravichandran R, Parthiban R. Macro and micro nutrient contents in black tea and their solubilities in tea infusion. Journal of Food Science and Technology-Mysore,1998,35 (4):361-364.
    [58]Wang CF, Ke CH, Yang JY. Determination of trace-elements in drinking tea by various analytical techniques. Journal of Radioanalytical and Nuclear Chemistry-Articles,1993,173 (1):195-203.
    [59]齐大荃,杨毅,李阳,等.茶汤中微量元素含量的多变量样本图分析法——脸谱图.北京大学学报(自然科学版),1992,28(2):134-142.
    [60]Jalbani N, Kazi TG, Arain BM, et al. Evaluation of total contents of Al, As, Ca, Cd, Fe, K, Mg, Ni, Pb, Zn and their fractions leached to the infusions of different tea samples. A multivariate study. Chemical Speciation and Bioavailability,2007,19 (4):163-173.
    [61]Cairns WRL, Hill SJ, Ebdon L. Directly coupled high performance liquid chromatography--inductively coupled plasma-mass spectrometry for the determination of organometallic species in tea Microchemical Journal,1996,54 (2):88-110.
    [62]Kolayll S, Ocak M, Kucuk M, et al. Does caffeine bind to metal ions? Food Chemistry,2004,84 (3): 383-388.
    [63]Cao H, Qiao L, Zhang H, et al. Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Science of the Total Environment,2010,408 (14):2777-84.
    [64]Wibowo AAE, Herber RFM, Das HA, et al. Levels of metals in hair of young children as an indicator of environmental pollution. Environmental Research,1986,40 (2):346-356.
    [65]彭萍,杨水平,李品武,等.植茶对土壤环境效应分析研究.茶叶科学,2007,27(3):265-270.
    [66]韩文炎,韩国柱,蔡雪雄.茶叶铅含量现状及其控制技术研究进展(续).中国茶叶,2008(4):8-10.
    [67]张寿宝,赵秀华.茶园土壤中重金属污染的研究.环境科技(辽宁),1995,15(5):31-34.
    [68]Vulcano IRC, Silveira JN, Alvarez-Leite EM. Lead and cadmium levels in tea traded in the metropolitan area of Belo Horizonte. Revista Brasileira De Ciencias Farmaceuticas,2008,44 (3):425-431.
    [69]李仪,章明奎.杭州西郊茶园土壤重金属的积累特点与来源分析.广东微量元素科学,2010,17(2):18-25.
    [70]Cheng JL, Shi Z, Zhu YW. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. Journal of Environmental Sciences-China,2007,19 (1):50-54.
    [71]Jie-liang C, Zhou S, You-Wei Z. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China J Environ Sci (China),2007,19 (1):50-4.
    [72]Cheng JL, Shi Z, Li Y, et al. Assessing environmental quality of agricultural soils using GIS and multivariate analysis in Zhejiang province, China Environmental Informatics, Proceedings,2005, 427-434.
    [73]Zhou LQ, Shi Z, Zhu YW. Assessment and mapping of heavy metals pollution in tea plantation soil of zhejiang province based on GIS. Computer and Computing Technologies in Agriculture Ii, Vol 1,2009, 293:69-78.
    [74]石元值,马立峰,韩文炎,等.浙江省茶园中铅元素含量现状研究.茶叶科学,2003,23(2):163-166.
    [75]孙威江,罗星火,陈志雄,等.福建名优绿茶产地土壤环境质量现状评价.福建农业大学学报,1998,27(2):45-49.
    [76]孙威江.福建乌龙茶产地环境质量监测与评价.茶叶科学,1999,19(2):104-109.
    [77]Zhou SL, Liao FQ, Wu SH, et al. Heavy metals contents in soil profiles of typical agricultural lands in Yixing, Jiangsu Province, China. Chinese Science Bulletin,2008,53:177-187.
    [78]周生路,廖富强,吴绍华,等.宜兴典型农用地土壤剖面重金属元素含量研究.科学通报,2008,53(S1):153-161.
    [79]宗良纲,周俊,罗敏,等.江苏茶园土壤环境质量现状分析.中国生态农业学报,2006,14(4): 61-64.
    [80]徐昌旭,苏全平,李建国,等.江西耕地土壤重金属含量与污染状况评价.全国耕地土壤污染监测与评价技术研讨会.2006.中国内蒙古海拉尔.
    [81]王翠珍,周广柱,杨锋杰.江西省德兴铜矿酸性水污染区几种植物中重金属的分布特征研究.山东科技大学学报(自然科学版),2008, 27(5):85-89.
    [82]郭海彦,周卫军,张杨珠,等.长沙“百里茶廊”茶园土壤重金属含量及环境质量特征.环境科学,2008,29(8):2320-2326.
    [83]Hu XY, Chen DL. Heavy metals content in tea and associated production soils in Eastern Hubei, China Water-Rock Interaction, Vols 1 and 2, Proceedings,2007,871-874.
    [84]王红娟,龚自明,高士伟,等.湖北省典型茶园土壤重金属污染状况及评价.中国茶叶,2009(2):30-31.
    [85]谭和平,陈能武,黄苹,等.四川茶区土壤重金属元素背景值及其评价.西南农业学报,2005,18(6):747-751.
    [86]刘小文,高熹,高晓余,等.云南主要茶区土壤重金属的监测与污染评价.安徽农业科学,2008,36(33):14727-14728,14819.
    [87]周玉婵,李明顺.广西两茶园土壤-茶叶-茶汤系统重金属污染及其转移特征.农业环境科学学报,2008,27(6):2151-2157.
    [88]李张伟.粤东凤凰茶主产区土壤重金属元素背景值及其评价.江苏农业科学,2009(5):276-278.
    [89]梁玉清,刘平,程炯,等.粤东北典型山地茶园土壤质量评价——以梅州市雁南飞茶田为例.广东农业科学,2009(6):65-68.
    [90]邢淑婕,刘开华.信阳四个主要产茶基地土壤重金属背景状况.中国茶叶,2007(5):20-21.
    [91]孙良顺,申金龙,郭勇全,等.陕南茶叶及其产地土壤中微量元素含量的测定.广东微量元素科学,2008,15(12):57-60.
    [92]高瑞凤,王政,孙宁波,等.青岛市茶园土壤肥力及环境质量现状分析.青岛农业大学学报(自然科学版),2008,25(1):43-47.
    [93]胡维军,陈建美,赵明,等.崂山区茶园土壤重金属含量与安全质量评价.山东农业科学,2009(5):85-86,92.
    [94]刘光德,李其林,黄昀.三峡库区面源污染现状与对策研究.长江流域资源与环境,2003,12(5):462-466.
    [95]李云,张进忠,童华荣.重庆市某茶园土壤和茶叶中重金属的监测与污染评价.中国农学通报,2007,23(7):519-524.
    [96]石元值,马立峰,韩文炎,等.铅在茶树中的吸收累积特性.中国农业科学,2003,36(11):1272-1278.
    [97]Jin CW, Zheng SJ, He YF, et al. Lead contamination in tea garden soils and factors affecting its bioavai lability. Chemosphere,2005,59 (8):1151-1159.
    [98]石元值,康孟利,马立锋,等.茶园土壤中铅形态的连续浸提测定方法研究.茶叶科学,2005,25
    浙江大学博士学位论文 参考文献(1):23-29.
    [99]朱江,周俊,徐宗学,等.茶园土壤中铅形态分布与茶叶中铅质量分数关系的研究.北京师范大学学报(自然科学版),2009,45(Z1):559-563.
    [100]郦逸根,路远发.西湖茶园茶叶铅污染铅同位素示踪.物探与化探,2008,32(2):180-185.
    [101]宗良纲,周俊,罗敏,等.模拟酸雨对茶园土壤中铅的溶出及形态转化的影响.土壤通报,2005,36(5):57-61.
    [102]Zhang MK, Zhou C, Huang CY. Relationship between extractable metals in acid soils and metals taken up by tea plants. Communications in Soil Science and Plant Analysis,2006,37 (3-4):347-361.
    [103]章明奎,方利平,张履勤.酸化和有机质积累对茶园土壤铅生物有效性的影响.茶叶科学,2005,25(3):159-164.
    [104]石棉芹,丁瑞兴.尿素和茶树落叶对土壤的酸化作用.茶叶科学,1999,19(1):7-12.
    [105]曹丹,张倩,肖峻,等.江苏省典型茶园土壤酸化速率定位研究.茶叶科学,2009,29(6):443-448.
    [106]张翠香,孙威江.土壤因素对茶叶Pb含量的影响.福建茶叶,2005(3):11-12.
    [107]Zhang MK, Fang LP. Tea plantation-induced activation of soil heavy metals. Communications in Soil Science and Plant Analysis,2007,38(11-12):1467-1478.
    [108]陈中官,金崇伟.茶叶铅污染来源的研究进展.广东微量元素科学,2006,13(6):7-10.
    [109]Tjell JC, Hovmand MF, Mosbaek H. Atmospheric lead pollution of grass grown in a background area in Denmark. Nature,1979,280 (5721):425-426.
    [110]Zhao FJ, Adams ML, Dumont C, et al. Factors affecting the concentrations of lead in British wheat and barley grain. Environmental Pollution,2004,131 (3):461-468.
    [111]Jin CW, He YF, Zhang K, et al. Lead contamination in tea leaves and non-edaphic factors affecting it. Chemosphere,2005,61 (5):726-732.
    [112]甘宗祁,王林云,董百成,等.茶叶铅污染及控制措施研究.中国食品卫生杂志,2001,13(2):37-38.
    [113]吴永刚,姜志林,罗强.公路边茶园土壤与茶树中重金属的积累与分布.南京林业大学学报(自然科学版),2002,26(4):39-42.
    [114]章明奎,黄昌勇.公路附近茶园土壤中铅和镉的化学形态.茶叶科学,2004,24(2):109-114.
    [115]路远发,杨红梅,周国华,等.杭州市土壤铅污染的铅同位素示踪研究.第四纪研究,2005,25(3):355-362.
    [116]宣以巍,陆海霞,励建荣.杭州市茶园空气重金属污染的调查与研究.食品研究与开发,2009,30(9):173-177.
    [117]韩文炎,梁月荣,杨亚军,等.加工过程对茶叶铅和铜污染的影响.茶叶科学,2006,26(2):95-101.
    [118]潘文毅.乌龙茶初制加工对茶叶铅污染的研究报告.福建茶叶,2002(3):9-10.
    [119]张翠香.乌龙茶初制各工序对茶叶中Pb含量的影响.福建茶叶,2006(3):21-23.
    [120]石元值,韩文炎,马立峰,等.龙井茶中重金属元素Pb含量的影响因子探究.农业环境科学学报,2004,23(5):899-903.
    [121]李晓林.铅、铬对茶树生长的影响及其在茶树体内的吸收累积特性研究[硕士学位论文].雅安:四川农业大学,2008.
    [122]康孟利.铅在茶树体内累积分布及其对茶树生育、生理影响的研究[硕士学位论文].杭州:浙江大学,2004.
    [123]兰海霞,夏建国.川西蒙山茶树中铅、镉元素的吸收累积特性.农业环境科学学报,2008,27(3):1077-1083.
    [124]钟蓉,董启庆,庄晚芳.茶树花粉固体培养法监测环境污染物的初步研究.农业环境科学学报,1993,12(6):263-266,280.
    [125]冯德建,唐茜,叶善蓉,等.Pb2+、Cd2+、Ni2+复合污染对茶树的影响研究.四川农业大学学报,2009,27(2):184-188.
    [126]唐茜,李晓林,朱新钰,等.铅、铬胁迫对茶树生育的影响研究.西南农业学报,2008,21(1):156-162.
    [127]骆耀平,康孟利,任明兴.铅污染对茶树生育及相关保护酶活性的影响.茶叶,2004,30(4):213-216.
    [128]夏建国,兰海霞,吴德勇.铅胁迫对茶树生长及叶片生理指标的影响.农业环境科学学报,2010,29(1):43-48.
    [129]林海涛,史衍玺.铅、镉胁迫对茶树根系分泌有机酸的影响.山东农业科学,2005(2):32-34.
    [130]林海涛.茶树根际铅、镉的动态过程及其机理研究[硕士学位论文].泰安:山东农业大学,2005.
    [131]韩文炎.西湖龙井茶铅污染成因及治理技术研究[硕士学位论文].杭州:浙江大学,2006.
    [132]韩文炎,杨亚军,梁月荣,等.茶树体内铅的吸收累积特性研究.茶叶科学,2009,29(3):200-206.
    [133]李小兵.茶树铅累积分布规律初步研究.茶叶科学技术,2006(4):20-22.
    [134]周俊.茶园土壤酸化条件下铅在土壤—茶树系统中的行为研究[硕士学位论文].南京:南京农业大学,2005.
    [135]沙济琴,郑达贤.黄棪品种茶树不同器官中矿质元素的分布.茶叶科学,1996,16(2):141-146.
    [136]康孟利,骆耀平,石元值,等.茶树对铅的吸收与累积特性.茶叶,2004,30(2):88-91.
    [137]李云.茶叶中重金属的残留和累积过程研究[硕士学位论文].重庆:西南大学,2008.
    [138]黄华斌,庄峙厦,杨妙峰,等.铅在植物-环境体系中的吸收、分布和迁移规律的稳定同位素示踪法研究.环境化学,2009,28(6):889-892.
    [139]康孟利,薛旭初,骆耀平,等.茶树与土壤中铅的存在形态与分布.浙江农业科学,2006(3):280-282.
    [140]房江育,宛晓春.茶树叶片中铅的化学形态与分布规律.第四届海峡两岸茶业学术研讨会.2006.中国四川蒲江.
    [141]杨秀芳.现阶段我国质检机构测定茶叶铅含量能力状况分析.中国茶叶加工,2007(4):44-46.
    [142]侯芳.茶叶中重金属检测研究概述.洛阳理工学院学报(自然科学版),2010,20(1):14-17.
    [143]石元值,马立锋,韩文炎,等.第二讲:茶叶重金属元素检测中样品采集及其前处理.中国茶叶, 2008(1):6-7.
    [144]石元值,马立锋,韩文炎,等.第三讲:茶叶中重金属元素的原子吸收光谱测定法.中国茶叶,2008(2):17-19.
    [145]石元值,马立锋,韩文炎,等.第四讲:茶叶中重金属元素的原子发射光谱测定法.中国茶叶,2008(3):7-9.
    [146]石元值,马立锋,韩文炎,等.第五讲:茶叶中重金属元素的原子荧光光谱测定法.中国茶叶,2008(4):14-15.
    [147]石元值,王岳庆,马立锋,等.第六讲:茶叶中重金属元素的其他测定方法.中国茶叶,2008(5):8-9,39.
    [148]温晓菊,鲁成银,林荣溪,等.茶叶企业实施茶叶良好操作规范的效果验证.热带作物学报,2008,29(3):299-303.
    [149]苏新国,段俊.凤凰单枞乌龙茶重金属污染风险评估.食品科学,2008,29(7):375-377.
    [150]余小枫,徐建明,刘杏梅.茶叶产地环境评价及其信息系统构建研究.浙江大学学报(农业与生命科学版),2006,32(4):467-472.
    [151]韩文炎,阮建云,石元值,等.降低茶叶铅含量的土壤改良剂及方法:中国,CN101108967.2008-1-23.
    [152]王浩,章明奎.天然矿物对茶园土壤中铅的固定作用.茶叶科学,2008,28(2):129-134.
    [153]胡维军,连之新,刘学才,等.崂山风景区公路边林茶间作对茶鲜叶铅含量的影响.山东林业科技,2006(5):30-31.
    [154]薛建辉,费颖新.间作杉木对茶园土壤及茶树叶片重金属含量与分布的影响.生态与农村环境学报,2006,22(4):71-73,87.
    [155]邓文靖,周立祥.植物多酚物质原位钝化污染土壤重金属的研究--Ⅰ.对土壤Cu吸持与溶出的影响.环境科学学报,2003(4):458-462.
    [156]邓文靖,周立祥,占新华.植物多酚物质原位钝化污染土壤重金属的研究Ⅱ.对土壤Cu环境行为和生物活性的影响动态.环境科学学报,2003(5):608-613.
    [157]Chin L, Leung DWM, Taylor HH. Lead chelation to immobilised Symphytum officinale L. (comfrey) root tannins. Chemosphere,2009,76 (5):711-715.
    [158]Jin CW, Du ST, Zhang K, et al. Factors determining copper concentration in tea leaves produced at Yuyao County, China Food and Chemical Toxicology,2008,46 (6):2054-2061.
    [159]Ruan JY, Wong MH. Accumulation of fluoride and aluminium related to different varieties of tea plant Environ. Geochem. Hlth.,2001,23 (1):53-63.
    [160]国家环境保护总局.GB/T 15264-1994,环境空气铅的测定-火焰原子吸收分光光度法.北京:中国标准出版社,1994.
    [161]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2002.
    [162]中国国家标准化管理委员会.GB/T 5009.12-2003,食品中铅的测定.北京:中国标准出版社,2003.
    [163]Tu C, Zheng CR, Chen HM. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere,2000(41):133-138.
    [164]中国国家标准化管理委员会.GB8313-2008,茶叶中茶多酚和儿茶素类含量的检测方法.北京:中国标准出版社,2008.
    [165]田芝娟,苏剑生.茶多酚与金属离子的相互作用及其生物学效应.中华临床医师杂志(电子版),2008(5):62-64.
    [166]李志南.茶多酚与Pb2+络合反应机理及其应用研究.贵州科学,1996(3):41-47.
    [167]黄化刚,李廷轩,杨肖娥,等.植物对铅胁迫的耐性及其解毒机制研究进展.应用生态学报,2009,20(3):696-704.
    [168]Sharma P, Dubey RS. Lead toxicity in plants. Brazilian Journal of Plant Physiology,2005,17:35-52.
    [169]Kraus TEC, Dahlgren RA, Zasoski RJ. Tannins in nutrient dynamics of forest ecosystems-a review. Plant and Soil,2003,256 (1):41-66.
    [170]Lavid N, Schwartz A, Lewinsohn E, et al. Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta,2001,214(2):189-195.
    [171]Kamachi H, Komori I, Tamura H, et al. Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. Journal of Plant Research,2005,118 (2):137-145.
    [172]Jung C, Maeder V, Funk F, et al. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant and Soil,2003,252 (2):301-312.
    [173]Ruso J, Zapata J, Hernandez M, et al. Toxic metals accumulation and total soluble phenolics in sunflower and tobacco plants. Minerva Biotecnologica,2001,13 (2):93-95.
    [174]房江育.植物抗铅机理进展.黄山学院学报,2008,10(3):55-58.
    [175]束际林,徐颖.茶树叶片显微及超微结构观察.中国茶叶,1990(6):18-19.
    [176]李名君,束际林.茶树特异细胞和细胞器的电子显微镜观察.中国茶叶,1983,5(5):18.
    [177]严学成.适制乌龙茶主要品种不同叶位叶片的超微结构.中国茶叶,1984,6(1):38.
    [178]严学成.龙井43根尖细胞电子显微镜下的结构.中国茶叶,1983,5(1):40.
    [179]严学成.不同品种茶的叶绿体超微结构的初步研究.植物学报,1980,22(4):397-398.
    [180]罗虹,刘鹏,谢忠雷,等.铝对茶树叶片显微结构的影响.浙江师范大学学报:自然科学版,2006,29(4):439-442.
    [181]苏金为,王湘平.镉诱导的茶树苗膜脂过氧化和细胞程序性死亡.植物生理与分子生物学学报,2002,28(4):292-298.
    [182]苏金为,王湘平.镉诱导的茶苗茎尖核酸代谢与细胞超微结构变化研究.中国生态农业学报,2005,13(2):87-90.
    [183]苏金为,王湘平.镉离子对茶叶光合机构及性能的影响.茶叶科学,2004,24(1):65-69.
    [184]吴伯千,梁月荣,潘根生.水培和土培茶树的显微及超微结构比较.浙江农业大学学报,1992,18(4):21-24.
    [185]简令成,王红.逆境植物生物学.北京:科学出版社,2009.
    [186]杨刚,伍钧,唐亚.铅胁迫下植物抗性机制的研究进展.生态学杂志,2005,24(12):1507-1512.
    [187]徐明飞,张永志,王钢军,等.铅对辣椒生长特性及其细胞组织超微结构的影响.中国农学通报,2008,24(3):369-373.
    [188]张永志,郑纪慈,徐明飞,等.铅对茄果类蔬菜生长特性及其细胞组织超微结构的影响.农业环境科学学报,2008,27(2):482-487.
    [189]李素芳,陈树尧,成浩.茶树阶段性返白现象的研究:叶绿体超微结构的变化.茶叶科学,1995,15(1):23-26.
    [190]陈英旭.土壤重金属的植物污染化学.北京:科学出版社,2008.
    [191]杨居荣,鲍子平,张素琴.镉、铅在植物细胞内的分布及其可溶性结合形态.中国环境科学,1993,13(4):263-268.
    [192]Jarvis MD, Leung DWM. Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp proliferus var. palmensis (H. Christ):an ultrastructural study. Plant Science,2001,161 (3):433-441.
    [193]Ksiazek M, Wozny A, Mlodzianowski F. Effect of Pb(NO3)2 on poplar tissue-culture and the ultrastructural-localization of lead in culture cells. Forest Ecology and Management,1984,8 (2): 95-105.
    [194]赖明志.茶籽子叶细胞中脂体,淀粉粒和蛋白体的形态结构电镜观察.茶叶科学,1996,16(1):43-46.
    [195]Krishnamurti GSR, Naidu R. Speciation and phytoavailability of cadmium in selected surface soils of South Australia Australian Journal of Soil Research,2000,38 (5):991-1004.
    [196]李学垣.土壤化学.北京:高等教育出版社,2001.
    [197]姜红艳,龚淑英.茶叶中铅含量现状及研究动态.茶叶,2004,30(4):210-212.
    [198]于明革,陈英旭.茶废弃物对溶液中重金属的生物吸附研究进展.应用生态学报,2010,21(2):505-513.
    [199]倪坤仪.仪器分析.南京:东南大学出版社,2003.