硫对水稻苗期吸收累积镉的影响及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫(S)素是植物必需营养元素之一。人类活动极大地扰动了陆地生态系统S循环,导致土壤-植物系统S呈明显时空变异性。我国水稻土S过量、不足并存。近年来,在矿区和经济发达地区,水稻土受重金属镉(Cd)污染较普遍,对稻米食品安全形成威胁。因此,研究和调控水稻对Cd的吸收过程,控制Cd通过食物链传递危及人类健康具有重要的现实意义。本研究在研发了水稻根表胶膜浸提体系和元素测定新方法的基础上,以水稻为研究对象,采用土-砂联合培养方法结合扫描电镜技术,研究了硫和镉对水稻根表微观结构、根际胶膜、水稻镉吸收的影响及其交互作用。主要试验结果如下:
     研发的抗坏血酸-柠檬酸钠-乙酸钠根表胶膜元素浸提剂(ACA)对胶膜元素的浸提率高于传统浸提剂DCB,能测定包含S、铁、锰、磷、重金属等元素,为进一步开展S对水稻根胶膜形成及其生态环境效应研究奠定了方法学基础。
     在硫丰富土壤上施硫(过量硫胁迫)对水稻根表微观结构、根表胶膜具有一定影响,影响程度与硫形态、硫水平有关。硫酸盐施用有减少水稻根表铁浓度趋势,而元素硫则相反。硫胁迫和镉污染对水稻吸收镉具有显著交互作用。硫对水稻吸收镉影响与硫形态、硫水平、镉胁迫程度有关。施硫酸盐和元素硫均导致水稻地上部镉浓度下降,元素硫施用减少镉污染土壤中水稻根镉浓度,硫酸盐施用却增加镉污染土壤中水稻根镉浓度。
     硫形态不同,对水稻幼苗镉吸收影响机理不同。无论是施元素硫还是施硫酸根硫,由于铁膜-Cd所占水稻吸收镉的比例较大,铁膜都是阻止水稻吸收和转运Cd的重要机制。元素硫没有改变Cd在水稻幼苗不同部位的分布,而硫酸根硫明显改变了Cd在水稻幼苗不同部位的分布。随硫酸根硫施用量增加,水稻苗期根Cd含量显著增加,说明根组织在硫酸根含量较多情况下,其阻止水稻吸收镉和向地上部转运的作用逐渐增强,成为阻止镉进入水稻可食部位的另一主要机制。
     施硫、施镉对铁膜在水稻幼苗根表不同部位的形成、结构、厚度都有明显的影响,但对整个根系来说,施硫、施镉对根膜铁锰浓度的影响差异不大。根表铁膜形成是在根表皮细胞壁外成层堆积,没有发生向根表皮细胞内的渗透。
     硫对水稻镉吸收影响机理应与硫对水稻根胶膜、硫对镉在土壤活性等因素的影响有关。本文研究结果证实硫能减少镉污染土壤中水稻对镉的吸收,其对于减少尾矿区的高硫高镉水稻土中镉向食物链传递具有重要的理论和实践意义。
Sulfur (S) is one of the essential elements for plant growth. Human activities, such as fossil fuel consumption, fertilization, irrigation of wastewater containing S, have greatly perturbed the S cycle in terrestrial ecosystem and resulted in spatial variability of S in soil-plant system. The excessive S was observed in paddy soil at acid rain area, and/or irrigation fields of wastewater containing S, while S deficiency also occurred in some area of China. It was reported that paddy soils have been contaminated by cadmium (Cd) in many mining and developed areas. It becomes more and more urgent to understand the mechanism of Cd uptake and accumulation in rice to control its harm to human health through food chain. In the present study, an effective method for the extraction and element analysis of the iron plaque on the root surface of rice was developed, and pot experiments were conducted to study the effect of S supply on the formation of iron plaque on the rice root surface, microstructure, and Cd uptake by rice. The major results were reported as follows.
     An effective extraction solution (ACA: ascorbic-citrate-acetic) for the extraction and elemental analysis of iron plaque from the root surface of rice was developed. It has a higher extracting efficiency of Fe, Mn, P than DCB. Moreover, S concentration in the solution could be simultaneously determined together with Fe, Mn, P and other heavy elements. It is the basis of investigating the effect of S on iron plaque formation and their ecological effects.
     Differences of sulfur supply on micro structure of root surface, iron plaque from the root surface of rice were determined in dependence on sulfur form, sulfur levels. Supply of sulfate-S tended to decrease concentration of Fe in iron plaque from the root surface of rice, otherwise it’s opposite for elemental S. There were significant interaction between S stress and Cd pollution to Cd uptake by rice. Significantly differences of sulfur supply on Cd uptake by rice seedlings were demonstrated in dependence on sulfur form, sulfur level, Cd levels. Supply of sulfate and/or elemental sulfur resulted in a decrease of Cd in shoot of rice cultivated in Cd stressed soil; supply of elemental sulfur decreased Cd in roots of rice seedlings cultivated in Cd stressed soils, but supply of sulfate increased Cd in roots of rice seedlings cultivated in Cd stressed soils. Supply of sulfate and elemental sulfur < 30 mg S·kg-1 increased concentrations of Cd in shoots of rice seedlings cultivated in low Cd soils, but excessive sulfur supply resulted in decrease of Cd in shoots of rice seedlings cultivated in low Cd soils.
     The effect mechanisms of Cd uptake by rice seedling are different under different sulfur forms. The iron plaque is an important barrier to prevent the uptake and transportation of Cd from rice because of a large proportion of plaque-Cd in total Cd uptake by rice whatever to supply elemental sulfur or sulfate. Element S doesn’t change the distribution of Cd in rice seedlings, otherwise sulfate changes the distribution significantly. The root Cd of rice seedling increased with the increasing of sulfate supply, showing that under the condition of more sulfate, the effect of the root tissue to prevent the Cd uptake into rice and Cd transportation to shoots increased gradually, and it is another important mechanism to prevent Cd to enter into edible parts.
     The supply of sulfur and Cd had significant effects on the formation, structure and thickness of iron plaque in different parts of root surface of rice seedling, but there were no significant differences to the concentration of Fe and Mn of plaque for total root. The formation of iron plaque was to accumulate stratified out of the cytoderms on the surface of root, but not to penetrate into the cells on the surface of root.
     Effect of S on Cd uptake into rice could be related to S induced activity of Cd in soil, S induced transformation of iron plaque formation in the root surface. Therefore, S supply could effectively reduce Cd accumulation in rice exposed to Cd contaminated soils.
     The mechanism of sulfur to affect Cd uptake was related to the effects of sulfur on iron plaque and Cd activities of soil. The present research demonstrated that sulfur could decrease the Cd uptake by rice in soils contaminated by Cd, which had important theoretical and practical meaning to decrease the Cd transportation from paddy soil with high level of sulfur and Cd in mining area to food chains.
引文
[1] Dahmani-Muller H, Oort F V, Gelie B, et al. Strategies of heavy metal smelter[J]. Environmental Pollution, 2000, 109: 231-238 .
    [2] Liu H J, Zhang J L, Zhang F S. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture[J]. Environmental and Experimental Botany, 2007, 59: 314-320.
    [3] Prince W S P M, Senthil K P, Doberschutz K D, et al. Cadmium toxicity in mulberry plants with special reference to the nutritional quality of leaves[J]. Journal of Plant Nutrition, 2002, 25: 689-700.
    [4] Pinto A P, Mota A M, Varennes A, et al. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants[J]. Science of the Total Environment, 2004, 326: 239-247.
    [5] Watanabe T, Zhang Z W, Qu J B, et al. Urban–rural comparison on cadmium exposure among general populations in Shandong Province, China[J]. Science of the Total Environment, 1998, 217: 1-8.
    [6] Kobayashi E, Okubo Y, Suwazono Y, et al. Association between total cadmium intake calculated from the cadmium concentration in household rice and mortality among inhabitants of the cadmium-polluted Jinzu Riverbasin of Japan[J]. Toxil. Lett., 2002, 129: 85-91.
    [7] Liu J G, Li K Q, Xu J K, et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes[J]. Field Crops Res., 2003, 83: 271-281.
    [8] Obata H, Umebayashi M. Effects of cadmium on mineral nutrient concentration in plants differing in tolerance for cadmium[J]. J. Plant Nutr., 1997, 20: 97-105.
    [9] McLaughlin M J, Parker D R., Clarke J M. Metals and micronutrients-food safety issues[J]. Field Crops Res., 1999, 60: 143-163.
    [10] Syers J K, Skinner R J, Curtin D. Soil and fertilizer sulphur in UK agriculture. Proc Fertilizer Society No. 379, The Fertilizer Society, Peterborough, 1987.
    [11] Duke S H, Reisenauer H M. Roles and requirements of sulfur in plant nutrition. In: Tabatabai MA (ed) Sulfur in agriculture, Agron Mongor, ASA, CSSA, SSA, Madison, WI, 1986. pp. 123-68.
    [12] Anjum N A. Effect of abiotic stresses on growth and yield of Brassica campestris L. and [Vigna radiata (L.) Wilczek] under different sulfur regimes[D]. Jamia Hamdard, New Delhi, 2006.
    [13] Saito K. Regulation of sulfate transport and synthesis of sulfur-containing amino acids[J]. Current Opinion in Plant Biology, 2000, 3(3): 188-195.
    [14] Droux M. Sulfur assimilation and the role of sulphur in plant metabolism: a survey[J]. Photosynth Res., 2004, 79: 331-348.
    [15] Noji M, Saito K. Sulfur amino acids: biosynthesis of cysteine and methionine[M]. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, 2003, pp. 135-144.
    [16] Tausz M, Gullner G, Komives T, et al. The role of thiols in plant adaptation to environmental stress[M]. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, 2003, pp. 221-244.
    [17] Saito K. Biosynthesis of cysteine[M]. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology, Marcel Dekker Inc, New York, 1999, pp. 267-291.
    [18]常团结,朱祯.植物金属硫蛋白研究进展(二)植物MT基因的表达特征及其功能.生物技术通报, 2002, 5: 1-5, 9.
    [19] Garcia-Hernandez M, Murphy A, Taiz L. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol., 1998, 118: 387-397.
    [20] Buchanan-Wollaston V, Ainsworth C. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Molecular Biology, 1997, 33: 821-834.
    [21]刘芷宇.利用电子探针对植物根际和根内营养元素微区分布的探讨[J].植物生理学报, 1988, 14(1): 23-28.
    [22] Chino M. Application of electronprobe X-ray microanalysis to the localization of chemical elements with and around rice roots grown in soil under submerged condition[J]. Japan Agric. Res. Quart., 1977, 11(3): 129-135.
    [23]陈怀满,郑春荣.第四章,镉.土壤一植物系统中的重金属污染[M].科学出版社,北京1996, pp 71-125.
    [24] Craig P J. Organometallic compounds in the environment: Principle and reaction[M]. Harlaw, Essex. 1986, pp 368.
    [25] Bogs J, Bourbouloux A, Cagnac O, et al. Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure[J]. Plant, Cell and Enviroment, 2003, 26: 1703-1711.
    [26] Nussbaum S. Regulation of assimilatory sulfate reduction by cadmium in Zea mays L[J]. Plant Physiol., 1988, 88: 1407-1410.
    [27] Liao V H, Dong J, Freedman J H. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans: A new gene that contributes to the resistance to cadmium toxicity. J Biol Chem., 2002, 277(44): 42049-42059.
    [28] Heiss S, Wachter A, Bogs J, Cobbett C, et al. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure[J]. J Exp Bot., 2003, 54 (389): 1833-1839.
    [29] Tschuschke S, Schmitt-Wrede H P, Greven H, et al. Cadmium resistance conferred to yeast by a non-metallothionein-encoding gene of the earthworm Enchytraeus. J Biol Chem., 2002, 277(7): 5120-5125.
    [30]李庆逵.中国水稻土[M].北京:科学出版社, 1992.
    [31]胡正义,徐成凯.第十章,土壤中的硫与环境质量[M].陈怀满等主编.土壤中化学物质的行为与环境质量.北京:科学出版社, 2002.
    [32] Messick D L, Morris R. J, Gabryszewshi J M. Sulfur in crop production and sulfur demand in the future[M]. In: Hu, S. N. (Eds), Proceedings of The International Symposium on the Role of Sulfur, Magnesium and Micronutrients in Balanced Plant Nutrition. Cheng-Du Scientific and Technological University Press, Cheng-Du, China, 1993, pp.1-9
    [33] Wang T J, Hu Z Y, Xie M, et al. Atmospheric sulfur deposition onto different ecosystems over China[J]. Environmental Geochemistry and Health, 2004, 26: 169-177.
    [34] Wang T J, Yang H M, Cao L J, et al. Atmospheric sulfur deposition on farmland in east China. Pedosphere, 2005, 15(1): 120-128.
    [35] Wainwright M. Sulphur Oxidation in Soils[J]. Adv. Agro., 1984, 37: 373-378.
    [36] Murase J, Kimura M. Anaerobic reoxidation of Mn2+, Fe2+, S0 and S2- in submerged paddy soil[J]. Biol. Fertil. Soils, 1997, 25: 302-306.
    [37] Otero XL. Bioaccumulation of heavy metals in Thionic Fluvisols by a marine polychaete: The role of metal sulfides[J]. JEQ, 2000, 29: 1133-1141.
    [38]小山雄生,小川吉雄,真弓洋一.第11部门环境保全[J].日本土壤肥料杂志(部门别进步总特集号), 1989, 60: 597-605.
    [39]孙汉中.红壤类土壤含镉量对水稻生态的影响及其临界含量的探讨[M].见夏增禄主编,土壤环境容量研究.北京:气象出版社, 1986.
    [40]廖敏,谢正苗,黄昌勇.镉在红壤中的吸附特征[J].浙江农业大学学报, 1998, 24(2): 199-202.
    [41] Boekhold A E, Temminghoff E J M, Vander Z, et al. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil[J]. J. Soil Sci., 1993, 44: 85-96.
    [42] Alina K P, Henryk P. Trace Elements in Soil and Plants[M]. CRC Press: Boca Raton, Florida, USA, 2001, pp. 286-366.
    [43]黄益宗,朱永官.森林生态系统镉污染研究进展[J].生态学报, 2004 , 24(1): 101-108.
    [44]熊礼明.土壤溶液中镉的化学形态及化学平衡研究[J].环境科学学报, 1993, 2: 26-32.
    [45]费宇红,曹树堂,张光辉等.镉在土壤中吸附与沉淀的特征与界限[J].地球学报, 1998, 19(4): 409-414.
    [46]林琦,郑春荣,陈怀满.根际环境中镉的形态转化[J].土壤学报, 1998, 35(4): 461-467.
    [47] Chen C C, Dickson J B, Turner F T. Iron Coating on Rice Roots: Morphology and Models of Development[J]. Soil Sci, Soc. Amer. J., 1980, 44: 1113-1119.
    [48] Crowder A A, Coltman D W. Formation ofM anganese oxide plaque on rice roots in solution culture under varying pH and manganese (Mn2+ ) concentration conditions[J]. J. P lant Nutri., 1993, 16 (4) : 589-599.
    [49] Ye Z H, Cheung K C, Wong M H. Copper Uptake in Typha latifolia as Affected by Iron and Manganese Plaque on the Root Surface[J]. Canadian Journal of Botany, 2001, 79: 314-320
    [50] Bacha R E, Hossner L R. Characteristics of coatings formed on rice roots as affected by iron and manganese additions[J]. Soil Sci. Soc. Am. J., 1977, 41: 931-935
    [51] St-Cyr L , Crowder A A. Manganese and copper in the root plaque of Phragmites australis (Cav. ) Trin. ex Steudel[J]. Soil Sci., 1990, 149(4): 191-198.
    [52] Emerson D, Weiss J V, Megonigal J P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants[J]. Appl. Environ. M icrobiol., 1999, 65 (6): 2758-2761.
    [53] King G M, Garey M A. Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes. Appl. Environ. Microbiol., 1999, 65 (10): 4393-4398.
    [54] Crowder A A, Macfic S M. Seasonal deposition of ferric hydroxide plaque on roots of wetland plant[J]. Can. J. Bot., 1986, 64: 2120-2124.
    [55] Armstrong W. Oxygen diffusion from the roots of some British bog plants[J]. Nature, 1964, 204: 801-802.
    [56] Ando T, Yashda S, Nishiyama I. Nature of oxidizing power of rice roots. Plant Soil, 1983, 72: 57-71.
    [57] Taylor G J, Crowder A A, Rodden R. Formation and morphology of an iron plaque on the roots of Typha Latifolia L. grown in solution culture[J]. Am. J. Bot., 1984, 71: 666-675.
    [58] Batty L C, Baker A J M, W heeler B D, et al. The effect of pH and plaque on the up take of Cu and Mn in Phragm ites australis (Cav. ) Trinex[J]. Steudel. Ann. Bot., 2000, 86: 647- 653.
    [59] He J Y, Zhu C, Ren Y F, et al. Genotypic variation in grain cadmium concentration of lowland rice[J]. Journal of plant nutrition and soil science, 2006, 169(5): 711-716.
    [60] Wang T G, Peverly J H. Oxidation states and fractionation of plaque iron on roots of common reeds[J]. Soil Sci. Soc. Am. J., 1996, 60: 323-329.
    [61] Wang T G, Peverly J H. Iron oxidation states on root surface of a wetland plant[J]. Soil Sci. S oc. A m. J., 1999, 63: 247-252.
    [62] Hansel C M, Fendorf S, Sutton S, et al. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol., 2001, 35(19): 3863-3868.
    [63] Taylor G J, Crowder A A. Uptake and accumulation of heavy metals by Typha latifolia L. in wetlands of Sudbury, Ontario region. Can. J. Bot., 1983: 61, 63-73.
    [64] Greipsson S. Effects of iron plaque on roots of rice on growth and metal concentration of seeds and plant tissues when cultivated in excess copper. Communication in Soil Science and Plant Analysis, 1994, 25: 2761-2769.
    [65] Hell R. Molecular physiology of plant sulfur metabolism. Planta, 1997, 202: 138-148.
    [66] Mulligan L M, Matlashewski G J, Scrable H J, et al. An important role for the p53 gene in ... Am. J. Pathol., 2001, 159(5): 1949-1956.
    [67] Greipsson, S, Crowder A A. Amelioration of copper and nickel toxicity by Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology, 1992, 35: 3863-3868.
    [68] Zhang X K, Zhang, F S, Mao, D R. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake by Fe-deficient rice. Plant and Soil, 1998, 202: 33-39.
    [69] Zhang Xike, Zhang Fusuo and Mao Daru. Effect of Iron Plaque outside Roots on Nutrient Uptake by Rice (Oryza sativaL.): Phosphorus Uptake. Plant and Soil, 1999, 209: 187-192.
    [70] Christensen K K, Sand-Jensen K. Precipitated iron andmanganese plaques restrict root uptake of phosphorus in Lobelia dortmanna. Can. J. B ot., 1998, 72: 2158-2163.
    [71] Greipsson S, Crowder A A. Amelio ration of copper and nickel toxicity by iron plaque on roo ts of rice (Ory zasativa). Can. J. Bot., 1992, 70: 824-830.
    [72] Greipsson, S. Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel. Journal of Plant Nutrition, 1995, 18(8): 1659-1665.
    [73] Otte M L, Dekkers M J , Rozema J, et al. Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation. Canadian Journal of Botany, 1991, 69: 2670-2677.
    [74] Ye Z H, Baker A J M, Wong M H, et al. Zinc, lead and cadmium accumulation and tolerance in Typhalatif olia as affected by iron plaque on the root surface. Aquat. Bot., 1998, 61: 55-67.
    [75] Ye Z H, Baker A J M, Wong M H, et al. Copper and nickel uptake, accumulation and tolerance in Typhalatif olia with and without iron plaque on the root surface. New Phytol., 1997, 136: 481-488.
    [76]张西科,尹君,刘文菊,等.根系氧化能力不同的水稻品种磷锌营养状况的研究.植物营养与肥料学报, 2002, 8 (4) : 54-57.
    [77] Yun W , Pratt S T, M iller R M , et al. X-ray imaging and microspectroscopy of plants and fungi. J. Synchrotron. Rad., 1998, 5: 1390-1395.
    [78] Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian Mustard. Plant Physiol., 2000, 122: 1171-1177.
    [79] Suzuki Y, Kelly S D, Kemner KM, et al. Nanometre-size products of uranium bio reduction. Nature, 2002, 419: 134.
    [80] Chen Z, Zhu Y G, Liu WJ, et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytologist, 2005, 165: 91-97.
    [81]刘敏超,李花粉,夏立江等.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响.生态学报, 2001, 21(4): 598-602.
    [82] Liu W J, Zhu Y G, Smith F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture. Journal of Experimental Botany, 2004, 55(403): 1707-1713.
    [83] Jackson M L. Soil Chemical Analysis. Prentice Hall Inc. Published by the author, University of Wisconsin, Madison, Wisconsin, 1956.
    [84] Taylor G T, Crowder A A. Use of DCB Technique for Extraction of Hydrous Iron Oxides from Roots of Wetland Plant. Amer. J. Bot., 1983, 70: 1254-1257.
    [85] Iretskaya S N, Chien S H. Comparison of cadmium uptake by five different food grain crops grown on three soils of varying pH. Communications in soil science and plant analysis, 1999, 30(3&4): 441-448.
    [86] Adams M L, Zhao F J, McGrath S P, et al. Predicting cadmium concentrations in wheat and barley grain using soil properties. Journal of Einviron. Qual., 2004, 33: 532-541.
    [87] Bingham F T, Sposito G, Strong J E. The effect of sulphate on the availability of cadmium. Soil Sci., 1986, 141: 172-177.
    [88] Li Y M, Channey L R, Schneiter A A. Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci., 1995, 35: 137–141.
    [89] Chen Zhen, Zhu Yong-Guan, Liu Wen-Ju, et al. Direct Evidence Showing the Effect of Root Surface Iron Plaque on Arsenite and Arsenate Uptake into Rice (Oryza sativa) Roots. New Phytologist, 2005, 165: 91-97.
    [90] Liang Y C, Wong J W C, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 2005, 58: 475-483.
    [91] Anjum N A, Umar S, Singh S, et al. Sulfur Assimilation and Cadmium Tolerance in Plants. In Khan N A, Singh S, Umar S Eds. Sulfur Assimilation and Abiotic Stress in Plants. Springer-Verlag Berlin Heidelberg, Germany, 2007.
    [92] Chen S, Sun L N, Sun T H, et al. Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system. Environ Geochem. Health, 2007, 29: 435-446.
    [93]衣纯真,傅桂平,张福锁.不同钾肥对水稻镉吸收和运移的影响[J].中国农业大学学报, 1996, 1(3): 66-70.
    [94] Mclauglin M J, Lambrechts R M, Smolders E, et al. Effects of sulfate on cadmium uptake by Swiss chare : II. Effects due to sulfate addition to soil. Plant and Soil, 1998, 202 (2): 217-222.
    [95] Nocito F F, Pirovano L, Cocucci M, et al. Cadmium induced sulfate uptake in maize roots. Plant Physiol. 2002,129: 1872-1879.
    [96] Zhao Z Q, Zhu Y G, Li H Y, et al. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). Environment International., 2003, 29: 973-978.
    [97] Kabata-Pendias A, Wiacek K. Excessive uptake of heavy metals by plants from contaminated soil. Soil Sci. Ann., 1985, 36(4): 33.
    [98] Kabata-Pendias A. Pendias H. Trance Elements in Soils and Plants. 3rd ed, CRC Press. Boca Roton, Florid, USA, 2001.
    [99]安志装,王校常,严蔚东等.镉硫交互处理对水稻吸收累积镉及其蛋白巯基含量的影响.土壤学报, 2004, 41(5), 728-733.
    [100] Sun XueMei, LuBo, Huang SiQi, et al. Coordinated expression of sulfate transporters and its relation with sulfur metabolites in Brassica napus exposed to cadmium. Botanical Studies, 2007, 48: 43-54.
    [101]刘敏超,李花粉,夏立江等.不同基因型水稻吸镉差异及其与根表铁氧化物胶膜的关系.环境科学学报, 2000, 20(5): 592-596.
    [102]张西科,尹君,刘文菊,等.根系氧化力不同的水稻品种磷、锌营养状况的研究[J].植物营养与肥料学报, 2002, 8(1): 54-57.
    [103]史锟,张福锁,刘学军等.不同时期施铁对水稻根表铁胶膜中铁Cd含量及其根系Cd含量的影响.农业环境科学学报, 2004, 23(1): 6-12。
    [104]曾祥忠,吕世华,刘文菊等.根表铁、锰氧化物胶膜对水稻铁、锰和磷、锌营养的影响[J].西南农业学报, 2001, 4: 34-38.
    [105]吕世华,张西科,张福锁等.根表铁、锰氧化物胶膜在磷不同浓度下水稻磷吸收的影响.西南农业大学学报, 1999, 12: 7-12
    [106] Hu Zhengyi, Zhu Yongguan, Li Min, et al. Sulfur (S)–induced Enhancement of Iron Plaque Formation in the Rhizosphere Reduces Arsenic Accumulation in Rice (Oryza sativa L.) Seedlings. Environmental Pollution, 2007, 147: 387-393.
    [107] Azzonia R, et al. Iron, sulphur and phosphorus cycling in the rhizosphere sediments of a eutrophic Ruppia cirrhosa meadow 9Valle Smarlacca, Italy). Journal of Sea Research, 2001, 45(1): 15-26.
    [108] Kimura M. The physiology of rice plants and their rhizosphere microorganisms. In: Soil management for sustainable rice production in the tropics. IBSRAM Monograph No. 2, Bangkok, Thailand, 1991, pp63-81.
    [109] Kimura M. Physiology of rice plants and their rhizosphere microorganism. Proc. First Intern. Symp. On Paddy Soil Fertility, Thailand, 1988, pp. 157-171.
    [110]木村真人.水稻根圈研究[J].日本土壤肥料学杂志,1984,55: 197-198.
    [111]宋茂山,白克智,崔郁英等水稻等植物幼苗地上部向根系供氧气的呼吸部位.植物学报. 1965, 13(4): 375-381.
    [112]吴九根,唐建军.水稻对缺氧胁迫响应及耐性鉴定.生态学杂志, 1995, 64(2): 13-16.
    [113] Wind T, Conrad R. Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiology Ecology, 1995, 18(4): 257-266.
    [114] Wind T. Sulfate-reducing bacteria in rice field soil and on rice roots. Systematic and Applied Microbiology. 1999, 22(2): 269-276.
    [115] Dent, D. Acid Sulphate Soils: A baseline for research and development. In: International Institute for land Reclamation and Improvement. Wageningen, The Netherlands. 1986, pp. 25-26.
    [116]丁昌璞,于天仁.水稻土中氧化还原过程的研究IV红壤性水稻土中铁、锰的活性.土壤学报, 1958, 6(2): 99-107.
    [117]曲东,张一平, Schnell S等.水稻土中铁氧化物的厌氧还原及其对微生物过程的影响.土壤学报, 2003, 40(6): 858-863.
    [118]衣纯真,李花粉,张福锁.水稻根表及其自由空间的铁氧化物对吸收镉的影响[J].北京农业大学学报. 1994 ,20(4): 375-379
    [119]李花粉,张福锁,毛达如.小麦根表铁氧化物及植物铁载体对植物吸收镉的影响[J].中国环境科学, 1997, 17(5): 433-436
    [120]李花粉,郑志宇,张福锁等.铁对小麦吸收不同形态镉的影响[J].生态学报, 1999, 19 (2): 170-173.
    [121]刘文菊,张西科,张福锁.根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响[J].土壤学报, 1999, 36(4): 463-469.
    [122]刘文菊,张西科,张福锁.根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响[J].生态学报, 2000, 20(3): 448-451.
    [123] Hu Zhengyi, Hanekalus Silvia, Cao Zhihong, et al. Chemical Behavior of Soil Sulfur in the Rhizosphere and Its Ecological Significance. Landbauforschung V?lkenrode Special issue, 2005, 283: 53-60.
    [124]南京农业大学主编.土壤农业化学分析(第二版).北京:农业出版社,1994, 66-67, 160-161, 168-170.
    [125]李进民.邻菲哆琳分光光度法测定铁的4种还原剂的比较.大同职业技术学院学报. 2004, 18(6): 72-73.
    [126] Shuman L M, Separating Soil Iron- and Manganese-oxide Fractions for Microelement Analysis. Soil Sci, Soc. Amer J, 1982, 46: 1099-1102.
    [127] Armstrong W. The oxidising activity of roots in water-logged soils. Physiol. Plant., 1967, 20: 920-926.
    [128]史锟,徐虹,田艳芬.根表铁胶膜对镉污染土壤水稻吸镉量的影响.垦殖与稻作, 2003, 3: 33-35.
    [129]刘文菊,朱永官.湿地植物根表的铁锰氧化物膜.生态学报, 2005, 25(2): 358-363.
    [130] Salt D E, Kramaer U. Mechanisms of metal hyperaccumulation in plants. In: Raskin, H., Ensley, B.D. (Eds.), Phytoremediation of Toxic Metals: Using Plants to Clear up the Environment. Wiley, New York, 2000, pp. 231-246.
    [131] Lasat M M, Pence N S, Garvin D F, et al. Molecular physiology of zinc transport in the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot., 2000, 51: 71-79.
    [132] Cohen C K, Fox T C, Garvin D F, Kochian L V. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol., 1998, 116: 1063-1072.
    [133] Liu W J, Zhu Y G, Smith F A, et al. Do Phosphorus Nutrition and Iron Plaque Alter Arsenate (As) Uptake by Rice Seedlings in Hydroponic Culture? New Phytologis,2004,162: 481-488.
    [134] Shuman L M. Adsorption of Zn by Fe and Al hydrous oxides as influenced by aging and pH. Soil Sci. Soc. Am. J., 1977, 41: 703-706.
    [135] Howeler R H. Iron-induced oranging disease of rice in relation to physico-chemical changes in a flooded oxisol. Soil Sci. Soc. Amer. Proc., 1973, 37: 898-903.
    [136] Mench M J, Fargues S. Metal uptake by iron-efficient and inefficient oats. Plant Soil, 1994, 165: 227-233.
    [137] R?mheld V. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil, 1991, 130: 127-134.
    [138] Keltjens W G, van Beusichem M L. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil, 1998, 203: 119-126.
    [139] Ye Z H, Baker A J M, Wong M H. Heavy metal tolerance uptake and accumulation in population of Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steudel. In: Proceedings of the fourth International Conference on Wetland Systems for Water Pollution Control, 6–10 November, Guangzhou, P.R. China, 1994, pp. 297-306.
    [140] Kuo S. Concurrent sorption of phosphate, and Zinc, cadmium, or cadmium by a hydrous ferric oxide. Soil Sci. Soc. Am. J., 1986, 50: 1412-1419.
    [141] Hu Z Y, Haneklaus S, Wang S P, et al. Comparison of mineralization and distribution of soil sulfur fractions in the rhizosphere of oilseed rape and of rice. Communications of Soil Science and Plant Analysis, 2003, 4(15/16): 2234-2257.
    [142] Flessa H, Fischer W R. Plant-induced changes in the redox potentials of rice rhizospheres. Plant Soil, 1992, 143: 55-60.
    [143] Shuman L M, Wang J. Effect of rice variety on zinc, cadmium, iron, and manganese content in rhizospere and non-rhizosphere soil fractions. Commun. Soil Sci. Plant Anal., 1997, 28(1&2): 23-36.
    [144] Lafferty B J, Loeppert R H. Methyl arsenic adsorption and desorption behavior on iron oxides. Environmental Science and Technology, 2005, 39(7): 2120-2127.
    [145] Ballatori N. Transport of toxic metals by molecular mimicry. Environmental Health Perspectives, 2002, 110: 689-694.
    [146]姚建武,刘国坚,周修冲.不同硫肥品种的水稻肥效试验研究.土壤与环境, 1999, 8(3): 224-226.
    [147]高菊生,秦道珠.长期施用含SO42-肥料对水稻农艺性状及产量影响.中国农学通报, 2009, 25(7): 137-140.
    [148]樊军,郝明德.旱地长期定位施肥土壤剖面中有效硫累积及其影响因素.植物营养与肥料学报, 2002, 8(1): 86-90.
    [149]陈铭,刘更另,谢开云等.含硫及含氯化肥对作物生长发育的影响与农田生态学效应.热带亚热带土壤科学, 1996, 5(1): 1-6.
    [150]罗奇祥,刘光荣,陶其骧等.不同种植制度中作物施硫效应研究.安徽农业大学学报, 2000, 27(z1): 100-105.
    [151] Hu Zhengyi, et al. Comparison of mineralization and distribution of soil sulfur fractions in the rhizosphere of oilseed rape and of rice. Commun. of Soil Sci. and Plant Anal., 2003, 34 (15/16): 2243-2257.
    [152] Crowder A A, St-Cyr L. Iron oxide plaque on wetland roots. Trends Soil Sci., 1991, 1: 315-329.
    [153]鲁如坤主编.土壤农业化学分析法.北京:中国农业科技出版社, 1999.
    [154] Otte M L, Rozema J, Koster L, et al. Iron Plaque on Roots of Aster Tripolium L. : Interaction with Zinc Uptake. New Phytol., 1989,Ⅲ: 309-317.
    [155] Hansel C M , La Force M J , Fendorf S, et al. Spatial and temporal association of As and Fe species on aquatic plant roots. Environ. Sci.Technol., 2002, 36 (9): 1988-1994.
    [156] Salardini A A, Sparrow L A, Holloway R J. Effects of potassium and zinc fertilizers, gypsum and leaching on cadmium in the seed of poppies (Papaver somniferum L.). In Plant Nutrition– from Genetic Engineering to Field Practice. Ed. N J Barrow. 795-798. Kluwer Academic Publishers, Dordrecht, the Netherlands,1993.
    [157]刘侯俊,胡向白,张俊伶等.水稻根表铁膜吸附镉及植株吸收镉的动态[J].应用生态学报, 2007, 18(2): 425-430.
    [158] Hoins U, Charlet L, Sticher H. Ligand effect on the adsorption of heavy metals: The sulfate-cadmium-goethite case[J]. Water Air Soil Poll., 1993, 68: 241-255.