氧化亚铜的制备及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术是一项新型废水处理及净化技术,与其他传统的水处理技术相比具有降解完全、高效、价廉、稳定和可以利用太阳光等优点,因而具有良好的应用前景。利用太阳光处理污水而最常用的是TiO2,然而该种物质需要紫外活化,有诸多弊端,因而用可见光作为光能源处理污水一直是科学家所追求的目标。1998年,Ikeda等人首次宣布用Cu2O作光催化剂可在阳光-下将水分解成氢气和氧气,预示着Cu2O在可见光下具有很好的光催化性能。块体Cu2O量子效率较低,产生的光生电子一空穴对容易复合。当粒度从微米级变为纳米级时,复合率降低,可提高量子效率。本实验的目的是要用简单的方法制备出粒径较小,且形貌均一的纳米级氧化亚铜,并探讨纳米级氧化亚铜的光催化活性。
     实验选择亚硫酸钠还原硫酸铜的方法来制备Cu2O,操作方便,产物纯净。本文首次在溶液中加入缓冲溶液,调解溶液的pH值。通过多次的试验发现溶液的合适pH值为5.0左右,所以选用HAc-NaAc缓冲体系。采用化学分析、扫描电子显微镜、X-射线衍射等测试手段对样品进行了表征,确定了在水热条件下制备氧化亚铜的最佳反应条件。
     通过水热法制备的Cu2O单因素实验和正交实验结果发现影响制备氧化亚铜的主要因素有反应时间、反应温度、缓冲剂的用量和反应物的配比,得出水热制备氧化亚铜的最佳实验条件为:反应温度353K、反应时间4h、缓冲剂的用量为反应溶液的2倍、填充度为8.0。得到产品的颜色为紫红色,产物较纯净,颗粒在200nm左右,近似为球形。氧化亚铜的产率为92%,用氧化还原法滴定测得氧化亚铜的含量为98.67%。
     而后,我们利用制得的Cu2O粉末进行光催化性能研究,并将降解得主要对象定为甲基橙作为有机指示剂,自制纳米Cu2O粉末在可见光照射下能够对甲基橙溶液起到很好的降解作用。通过实验得到Cu2O降解甲基橙溶液的适宜运行参数为:催化剂质量浓度为1.3 g/L~1.7g/L,pH值为8~12,甲基橙溶液初始浓度为20mg/L~60 mg/L,反应时间70min,温度0℃~35℃。对于初始浓度为40mg/L的甲基橙溶液,在日光灯的照射下,(溶液pH值为8,催化剂含量为1.5g/L)反应70 min脱色率可达92.1%,避光暗处则脱色率可达69.1%。
     实验表明H2O2的加入能够对甲基橙溶液的降解起到很好的促进作用,但H2O2的浓度不宜过高,适当的浓度范围应控制在1%以内。使用超声搅拌可以在反应初期提高甲基橙溶液的降解效率,但由于温度升高的缘故,使得最终的降解率下降。将自制纳米Cu2O回收再利用,其对甲基橙溶液的脱色效果随回收次数的增加呈下降趋势,但回收后的纳米Cu2O对甲基橙仍然有较好的脱色效果,回收7次后,对40 mg/L的甲基橙溶液脱色率可达50 %。
     最后,本文对甲基橙的光催化降解机理和动力学进行研究,经计算多数条件下甲基橙的降解反应属于二级反应,但随着条件的变化,反应级数及动力学方程都会发生变化。
Photocatalysis is emerging as a promising technology for wastewater treatment and water purification. The advantages of this technique over the traditional waste water treatment include complete mineralizaion, high degradation efficiency, low cost, good stability, and the potential to utilize sunlight as UV source. TiO2, as a kind of photocatalyst, can be used to degrade organic contamination with dramatic effects. However, there is also some shortcoming, this kind of matter needs the ultraviolet activation, thus using the visible light as the light energy to processing sewage always is a goal which the scientist pursues. In 1998, Ikeda et al firstly showed that Cu2O could decompose H2O to H2 and O2 in the sunlight. It predicts that Cu2O may be employed as a promising catalyst under visible light. As we know, the quantum efficiency of bulk Cu2O is quite low while increase as thescale of Cu2O transform from micrometer to nanoscale.The aim we pray is to synthesize small-scale nano Cu2O with uniform morphologies by simple method, and then discuss the activities of photocatalysis of nanoCu2O.
     Cuprous oxide can be prepared from cupric sulfate and sodium sulfite solution.The raw material, such as cupric sulfate and sodium sulfite, is easy to obtain. In this paper, the buffer solution of acetic acid and sodium acetate (HAc-NaAc) is first used to adjust the valve of pH. The sample was analyzedand characterized by using Chemistry Analysis, SEM,XRD, and DTA-TG. The optimal reaction condition of preparing cuprous oxide is confirmed in hydrothermal synthesis.
     The results of single-factor experiment and orthogonal test experiment of hydrot -hermal synthesis method showed that the main factors which influenced the prepa -ration were reaction time, reaction temperature, the dosage of reactant, and the filling factor. The optimal experiment conditions of the hydrothermal synthesis method were four hours of reaction time and 353K of reaction temperature, the dosage of the buffer reagent was two times as much as the dosage of reactive solution, and the best filling ratio was 0.80. The yield was 92%, the content was98.67%.
     the Cu2O powder was used to research on the photocalcatalysis performance, and will degrade the main object to decide as the methyl orange to take the organic indica -tor, the self-made nanometer Cu2O powder will be able to playthe very good degeneration role under the visible light illuminationto the methyl orange solution. The results of optimum parameters were as following: the mass concentration of nano-Cu2O 1.3g/L ~1.5g/L ; the initial concentration of methyl orange 20mg/L ~60 mg/L ; the reaction time 70 min; the reaction temperature 0℃~35℃. Regarding the initial density is the 40mg/L methyl orange solution,under the daylight lampilluminati -on, (the solution pH value is 8,catalyst content is 1.5g/L) responded 70 min decoloriz -ation rate mayreach 92.1%, evades the light hidden place decolorization rate to be possible to reach 69.1%.
     The experiment indicated that H2O2 can accelerate the methyl orange solution’s degeneration, but the H2O2 density scope should be controled in 1%. The supersonic stirs may enhance the methyl orange solution degeneration in the initial period , because the temperature increment, the final degeneration rate drop . Useing the self- made nanometer Cu2O recycling, it assumes the drop tendency to the methyl orange solution decolorization effect along with the recycling number of times increase. But recycled nanometer Cu2O still have the better decolorization effect to the methyl orange, after being recycled 7 times, 40 mg/L methyl orange solution decolorization rate might reach to 50%.
     Finally, the kinetics of the photocatalytic reaction of the of Methly was research -ed . According to the computation , the methyl orange degradation reaction belongs to two levels under most conditions. Under different conditions, the kinetic equati on is different.
引文
[1]郑小明,周仁贤.环境保护中的催化治理技术[M].北京:化学工业出版社,2003
    [2]雷乐成,汪大军.水处理高级氧化技术[M].北京:化学工业出版社,2001
    [3]李哓平,徐宝琨,刘国范,等.纳米TiO2光催化降解水中有机污染物的研究与发展[J].功能材料,1999,30(3):242-245
    [4] Walling C. The ferricion catalytic decomposition of hydrogen peroxide in perchloric acid solution[J]. Int J chem Kinet,1974,6(4):507-516
    [5] Feng Chen, Yinde Xie, Jincai Zhao, Gongxue Lu. Photocatalytic degradation of dyes on magnetically separated photocatalyst under visible and UV irradiaton. Chemosphere, 2001, (44), 1159-1168
    [6] W.S. Kuo, P.H.Ho. Solar photocatalytic decolorization of methyl blue in water, Chemosphere. 2001, (45), 77-83
    [7] Walter Z. Tang, Huren An. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solution. Pergamon, 1995, 31(9), 4157-4170
    [8] Hinda Lachheb, Eric Puzenat, Ammar Houas, Mohamed Ksibi, ElimameElaloui, Chantal Guillard, Jean-Marie Herrmann. Photocatalytic degradation ofvarious types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red,Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Enviromen-Tal, 2002, (39), 75-90
    [9] Chun Hu, Yuchao Tang, Jimmy C.Yu, Po Keung Wong. Photocatalyticdegradation of cationic blue X-GRL adsorbed on TiO2/SiO2 pHotocatalyst. AppliedCatalysis B: Environmental, 2003, (40), 131–140
    [10] Zhenshi Suna, Yingxu Chena, Qiang Ke a, Ye Yanga, Jun Yuan b. Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry,2002, (149), 169–174
    [11] Kambala Venkata Subba Rao,Bernadette Lavédrine, Pierre Boule, Influenceof metallic species on TiO2 for the pHotocatalytic degradation of dyes and dye intermediates, Journal of PHotochemistry and PHotobiology A: Chemistry , 2003, (154), 189-193
    [12]Cristian Lizama, Juanita Freer, Jaime Baeza, Héctor D. Mansilla. OptimizedpHotodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catalysis Today, 2002, (76), 235–246
    [13] M. Saquib, M. Muneer. TiO2-mediated pHotocatalytic degradation of a tripHenyl-methane dye (gentian violet), in aqueous suspensions, Dyes and Pigments, 2003, (56),37–49
    [14] FAN Jinfu, YATES J. Mechanism of pHotooxidation of trichloroethylene on TiO2:detection of intermediates by infrared spectroscopy. J Am Chem Soc., 1996, (118),4686-4692
    [15] KU Y, LEU R M, LEE K C. Decomposition of 2-chloropHenol in aqueous solutionby UV irradiation with the presence of titanium dioxide. Wat Res, 1996, 30(11), 2569-2578
    [16] STANFFORD U, GRAY K A. Gray, KAMAT P V. Photocatalytic degradation of 4-ChloropHenol: the effects of verified TiO2 concentration and light wave length. JCatal, 1997, (167),25-32
    [17]司民真,杨正安,武荣国.TiO2光催化降解甲基橙.陕西师范大学学报(自然科学版),2001,29(专辑),173-174
    [18]王伯勇,魏丰华,刘娅琳,崔高峰,杜高英,王清,王亚娟,买光昕.TiO2、ZnO和CdS的光催化甲基橙脱色比较.工业水处理,2002,22(4),40-42
    [19]武正簧.二氧化钛薄膜光催化降解甲基橙.过程工程学报,2002,2(2),183-185
    [20] Cunningham J, Srijaranal S. JPPAC,1988, 43:329~335
    [21] Zhao J C, Octa H, Hidaka H. JPPAC,1992,69: 251~256
    [22]李庆霖,席蝉娟,金振声.多相光催化的一个新分支一气固相光催化及其在环境治理方面的应用.太阳能学报,1994, 15(3): 279~282
    [23]戴遐明,陈永华,李庆丰,等.半导体氧化物超细粉末对Cr 6+的光催化还原作用研究.环境科学,1996, 17 (6): 34~36
    [24]王俭.载钦多孔玻璃光催化苯酚废水.环境工程,1993, 12 (6): 16~17
    [25]魏宏斌,徐迪民,徐建伟.水溶液中腐植酸的二氧化钦膜光催化氧化研究.环境科学学报,1998, 18 (2): 161~166
    [26]李田,严煦世,张杰.城市自来水中有机污染物的光催化氧化处理.中国给水排水,1993, 9 (6):12~15
    [27]Matsunaga,T., R.Tomoda, T.Nakajima, and H.Wake. Photoelectrochemical sterilization of microbial cells by semiconductor powder. FEMS Microbiol .Lett.1985. 29: 211~214.
    [28]Matsunaga,T., R.Tomoda, T Nakajima, N.Nakamura, and T.Komine. Continuous sterilizeation system that uses photosemiconductor powders. Appl.Environ. Microbiol. 1998.54: 1330~1333.
    [29] Ireland, J.,P Klostermann, E.Rice, and R.Clark. Inactivation of Escherichia coliby titanium dioxide pHotocatalytic oxidation. Appl.Environ.Microbiol. 1993.59:1668~1670.
    [30]冯庆,刘高斌,王万录.TiO2的光催化机理及在制冷设备中的消毒、杀菌作用.重庆大学学报(自然科学版),2002,25(8),58~60.
    [31] Richard J.Watts, Sungho Kong, Margaret P Orr, et al. PHotocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Wat.Res, 1995,29(1):95~100.
    [32]Sunada, Kayano, Kikuchi, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Tech. 1998, 32(5): 726.
    [33]于向阳,梁文,杜永娟等.二氧化钦光催化材料的应用进展.材料学报,2000, 14(2): 38.
    [34]杨亚丽,刘步升,杨继源,等.光化学杀菌搪瓷制品的研究阵.全军第三届预防医学学术会议论文集.2000. 85.
    [35]沈伟韧,赵文宽,贺飞,方佑龄.TiO2光催化反应及其在废水处理中的应用.化学进展,1998, 10(4): 349~361.
    [36]彭晓春,陈新庚,黄鹊,李明光.n-TiO2光催化机理及其在环境保护中的应用研究进展.环境污染治理技术与设备,2002, 3(3): 1~6.
    [37]Goswami D Y . A review of engineering developments of aqueous pHase solar photocatalytic detoxification and disinfection processes. Journal of Solar Energy Engineering, 1997, 119(3): 101~107.
    [38]Kanno S, Arato T, Kato A et al. Decomposition of CFC113 over TiO2-Basedcatalysts. Bull. Chem. Soc. Jpn., 1996, 69(2), 129~135.
    [39]Kanno S, Arato T, Kato A, et al. PHotocatalytic degradation of1,1-Difluor- oethane.Bull. Chem. Soc. Jpn., 1996, (2): 129~135.
    [40]Miyake M, Yoneyama H, Tamura H. The correlation between photo-electrochemical cell reactions and photocatalytic reactions on illuminated ruble. Bu11.Chem.Soc.Jpn.,1997, 50(6): 1492~1496.
    [41]戴遐明,陈永华,李庆丰等.半导体氧化物超细粉末对Cr (VI)的光催化还原作用研究.环境科学,1996, 17(6), 34~36.
    [42]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous at TiO2 powder. J.Am.Chem.Soc., 1997, 99(1): 303~304.
    [43]Serpone N, Borgarello E, Barben M, et al. A decade of heterogeneous photocatalysis in ourlaboratory: pure and applied studies in procuction andenvironmental detoxification. J.PHotochem., 1987, 36(3): 373~388.
    [44]詹雪艳,宋丹丹,曾胜年,王莉娟,赵艳霞.TiO2光催化氧化去除有机污染物的研究进展.化学研究与应用,2002, 14(4): 387~466.
    [45]Heller A, Abstract of the First International Conference on TiO2 PHotocatalyticPurification and Treatment of Water and Air, London, Ontario, Canada, 1992, 17.
    [46]Berry R J, Mueller M R. PHotocatalytic decomposition of crude oil slicks usingTiO2 on a floating substrate. Microchemical Journal, 1994, 50: 28~32.
    [47]方佑龄,赵文宽,尹少华等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷.应用化学,1997, 14(2), 81~83.
    [48]赵文宽,方佑龄,董庆华.太阳能光催化降解水面石油的研究.武汉大学学报(自然科学学版),2000, 46(2):133~136.
    [49]方佑龄,赵文宽,赵国华等.用浸涂法制备飘浮负载型TiO2薄膜光催化降解辛烷,环境化学,1997, 16(5), 413~417.
    [50]张维昊,徐小清,邱昌强.水环境中微囊藻毒素研究进展.环境科学研究.2001,14(2): 57~61.
    [51]G.S.ShepHard, S.Staockenstrom, D.De Villiers, et al. Photocatalytic degradation of cyanobacterial microcystin toxins in water. Toxicon. 36(12): 1895~1901.
    [52]Lain Liu, Linda A. Lawton, Ben Cornish, Peter K.J.Robertson. Mechanistic and toxicity studies of the photocatalytic oxidation of microsystin-LR. Journal of photochemistry and photobiology A:Chemistry. 2002,148: 349~354.
    [53]黄艳娥,TiO2光催化剂固定化技术,河北理工学院学报,2001,23(2),74~77
    [54]蔡乃才,王亚平,曹银良,负载型Pt-TiO2光催化剂的研究,催化学报,1999,20(2),177~180
    [55]高铁,钱朝勇,TiO2光催化氧化水中有机污染物进展,工业水处理,2000,20(4),10~13
    [56]潘孔洲,TiO2对污水中有机物的光催化矿化作用,安庆师范学院学报(自然科学版),2001,7(3),24~26
    [57]李丽洁,华兆哲,陈坚,伦世仪,白石文秀,新型光催化固定膜反应器对2,4-二硝基苯酚的的降解研究,水处理技术,1999,25(3),151~154
    [58]黄进,王斌,光催化氧化降解水中有机污染物技术综述,重庆环境科学,2001,23(5),30~34
    [59]张音波,余煜棉,刘千钧,多相光催化降解染料废水的研究进展,工业水处理,2001,21(12),1~4
    [60]李芳柏,古国榜,万洪富,多相光催化法在水处理上的应用简介,重庆环境科学,1998,20(5),18~21
    [61]余刚,杨志华,祝万鹏,染料废水物理化学脱色技术的现状与进展,环境科学,1994,15(4),75~79
    [62]刘怡,张剑辉,梁龙武,高色度印染废水脱色研究,工业水处理,1998,18(5),15~16
    [63]刘仁龙,张云怀,张丙怀,TiO2光催化氧化性能的影响因素,重庆大学学报(自然科学版),2002,25(6),92~93
    [64]魏宏斌,徐迪民,徐建伟.水溶液中腐植酸的二氧化钛膜光催化氧化研究.环境科学学报,1998, 18 (2): 161~166
    [65]李田,严煦世,张杰.城市自来水中有机污染物的光催化氧化处理.中国给水排水,1993, 9 (6):12~15
    [66]王俭.用于水处理的光催化降解法的研究进展.环境科学进展,1995,3(3):41~44
    [67] Ramirez-Ortiz J, Ogura T, Medina-Valtierra J, et al. Applied Surface Science.2001,174: 177~ 184.
    [68] De Jongh P E, anmaclkelbergh D V, Kelly J J. J. Elect. Soc., 2000,147(2):486~489
    [69] Dong Y, Li Y, Wang C. J. Col.&Interf: Sci., 2001, 243: 85~89.
    [70] Borgohain K, Murase N, Mahamuni S. J. App. PHys., 2002, 92 (3): 1292~1297.
    [71]天津化工研究院等.无机盐工业手册(下册).北京:化学工业出版社,1981:521~522
    [72]毛铭华,涂桃枝.中国发明专利,CN 1032151 1989.04.05
    [73]崔舜,曾庆学.电解法制备氧化亚铜粉末的研究.涂料工业,1998,28(9):19-21
    [74]张萍,刘恒,李大成.亚硫酸钠还原法制备超细氧化亚铜粉末.四川有色金属,1998,(2):16~18
    [75] Xu Zhang,Yi Xie,Fen Xun,Xiaohui Liu,Di Xu. Shape-controlled synthesis of submicro-sized cuprous oxide octahedral [J]. Inorganic Chemistry Communications, 2003,(6):1390-1392.
    [76]Yajie Dong,Yadong Li. Preparation of cuprous oxide particles of different cryst alinity [J]. J.Colloid and Interface Science, 2001,243:85-89.
    [77] Naboichenlo S, Cbed A B, Ermakeova II, et al Preparation and properties of copper oxide. Tsyetn met, 1987, (9);30
    [78]赵斌,胡黎明.超细铜粉的水合肼还原法制备及其稳定性研究.华东理工大学学报.1997,23(3):372~376
    [79]柏振海,罗兵辉,金晓鸿.氧化亚铜粉末的制备.[J]矿冶工程,2001,21(4):67~69
    [80]刘亦凡,于慧荣,祝昌翠,等.均分散氧化亚铜溶胶的制备.物理化学学报,1993,9(1):107~110
    [81]为政博史.铜粉末的制造方法.日本,B22F9/24,JP昭63. 1988. 8.2
    [82]王文中,王广厚.还原法制备氧化亚铜纳米线的方法.CN:1384055,2002
    [83]曾庆学,崔舜.添加剂对氧化亚铜产品质量的影响.无机盐工业,2000,32(1):35~37
    [84]崔舜,曾庆学.船底防污涂料用氧化亚铜制备的研究.无机盐工业,1999,31(1):6~8
    [85]AmyL.Linsebigler, Guangquan Lu, John T.Yates, Photocatalysis on Ti02 surfaces:Principles Mechanisms and selected Results[J], Chem.Rev., 1995, 95(3), 735-758
    [86]韩兆慧,赵化侨.半导体多相光催化应用研究进展,化学进展,1999 ,1~10
    [87]Gratzel M, Heterogeneous Photochemical Electron Transfer. CRC Press: Boca Raton, FL, 1989
    [88]Serpone N, Pelizzetti E, Eds. Photocatalysis; Fundamentals and Applications. John Wiley& Sons, New York, 1989
    [89]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [90]张志馄,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [91]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.
    [92]GB 602-88化学试剂杂质测定用标准溶液的制备.
    [93]GB603-88化学试剂实验方法中所用制剂及制品的制备.
    [94]GB 601-88化学试剂滴定分析(容量分析)用标准溶液的制备.
    [95]王怡中,符雁,汤鸿霄,甲基橙溶液多相光催化降解研究,环境科学,1998,19(1),1~4
    [96]王怡中,符雁,汤鸿霄,平板构型太阳光催化反应系统中甲基橙降解脱色研究,环境科学学报,1999,19(2),142~146