圆锥共形微带天线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共形微带天线具有不额外占用空间和对飞行姿态影响小等优点,其在航空、制导等领域具有很大的吸引力,所以对共形微带天线的研究具有重要的工程价值和国防意义。本文首先采用FDTD方法对平面微带贴片天线进行了分析和设计,在此基础上对球坐标系下的FDTD差分格式和吸收边界条件进行了研究,并将之成功地应用于圆锥共形微带天线阵的分析和设计。
Conformal antennas have so many advantages, such as occupying no excess space and influencing the flying pose faintly. They have big attraction in the fields of aviation, guidance and so on. At first, planar microstrip patch antenna is analyzed and designed using FDTD, and then finite difference and absorbing boundary conditions in general curve coordinate system are applied to analyze and design conical conformal microstrip patch antenna array.
引文
[1] C.A.巴拉尼斯.天线理论——分析与设计.第1版.北京:电子工业出版社,1988
    [2] 钟顺时.微带天线理论与应用.第1版.西安:西安电子科技大学出版社,1991
    [3] 张钧,刘克诚,张贤铎,赫崇骏.微带天线理论与工程.第1版.北京:国防工业出版社,1988
    [4] I.J.鲍尔,P.布哈蒂亚.微带天线.第1版.北京:电子工业出版社,1984
    [5] Ramesh. Garg, Prakash. Bhartia, Inder. Bahl, Apisak. Ittipiboon. Microstrip Antenna Design Handbook. 1st ed. Boston: Artech House, 2001
    [6] 王常清,祝西里.电磁场计算中的时域有限差分法.第1版.北京:北京大学出版社,1994
    [7] 高本庆.时域有限差分法.第1版.北京:国防工业出版社,1995
    [8] 王秉中.计算电磁学.第1版.北京:科学出版社,2002
    [9] 葛德彪,闫玉波.电磁波时域有限差分方法.第1版.西安:西安电子科技大学出版社,2002
    [10] Allen Taflove, Susan C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 2nd ed. Boston: Artech House, 2000
    [11] K.S.Yee. Numerical solution for initial boundary value problems involving Maxwell's equation isotropic media. IEEE Trans. Antennas Propagation, May 1966, pp:302-307
    [12] A. Taflove, M.E. Brodwin. Numerical solution of steady-state electromagnetic scattering problems using the Time-dependent Maxwell' s equations. IEEE Trans. Microwave Theory Tech, Aug 1975, pp:623-630
    [13] Zhang X, Kenneth. K. Mei. TD-FD approach to the calculation of the frequency dependent characteristics of microstrip discontinuities. IEEE Trans. Microwave Theory Tech, Dec 1988, pp:1775-1787
    [14] B. Engquist, A. Majda. Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation, 1977 31(139):629-651
    
    
    [15] G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans. Electromagnetic Compatibility, 1981,23(4):377-382
    [16] R.L. Higdon. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equations. Mathematics of Computation, 1986,47(176):437-459
    [17] R.L. Higdon. Numerical absorbing boundary conditions for wave equation. Mathematics of Computation, 1987,49(179):65-90
    [18] K.K. Mei, J. Y. Fang. Superabsorption: a method to improve absorbing boundary conditions. IEEE Trans. Antenna Propagation, 1992,40(9): 1001-1010
    [19] J.P. Berenger. Perfectly matched layer for the FDTD solution of wave-structure interaction problems. IEEE Trans. Antenna Propagation, 1996,44(1):110-117
    [20] D. S. Katz, E. T. Thiele, A. Taflove. Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes. IEEE Microwave and Wave Letter, 1994,4(8):268-270
    [21] R. Mittra, U. Pekel. A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves. IEEE Microwave and Guided Wave Letter, 1995,5(3):84-86
    [22] G.C. Liang, Y.W. Liu, K.K. Mei. Full-wave analysis of coplanar waveguide and slotline using the Time-Domain Finite-Difference method. IEEE Trans. MTT, Dec 1989, pp:1949-1957
    [23] D.M. Sheen, S.M. Ali, M.D. Abouzahra, J.A. Kong. Application of the three-dimensional Finite-Difference Time-Domain method to analysis of planar microstrip circuits. IEEE Trans. MTT, July 1990, pp:849-857
    [24] A.P. Zhao, A.V. Raisanen,. Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits. IEEE Trans. MTT, Sep 1996, pp:1535-1539
    [25] Z. Bi, K.L. Wu, J. Litva, Fast Finite-Difference Time-Domain analysis of resonators using digital filtering and spectrum estimation techniques. IEEE Trans. MTT, Aug 1992, pp:1611-1619
    [26] J.Y. Fang, D. Xeu, Numerical errors in the computation of impedances by FDTD method and ways to eliminate them. IEEE Microwave and Guided wave letter, Jan 1995, pp:6-8
    
    
    [27] K.S. Yee, D. Ingham, K. Shlager. Time-domain extrapolation to the far field based on FDTD calculations. IEEE Trans. Antennas Propagation, Mar 1991, pp: 410-413
    [28] R. J. Luebbers, D. Ryan, J. Beggs. A two-dimensional time-domain near-zone to far-zone transformation. IEEE Trans. Antennas Propagation, July 1992, pp: 848-851
    [29] M.J. Barth, R.R. Mcleod, R.W. Ziolkowski. A near-and far-field projection algorithm for Finite-Difference Time-Domain codes. Journal of Electromagnetic Waves, Apr 1992, pp: 5-18
    [30] K. Demarest, Z. Huang, R. Plumb. An FDTD near-to far-zone transformation for scatterers buried in stratified grounds. IEEE Trans. Antennas Propagation, Aug 1996, pp: 1150-1157
    [31] M.A. Fusco, M.V. Smith, L.W. Gordon. A three-dimension FDTD algorithm in curvilinear coordinates. IEEE Trans. Antenna and Propagation, Oct 1991, pp: 1463-1471
    [32] M.Fusco. FDTD algorithm in curvilinear coordinates. IEEE Trans. Antenna and Propagation, Jan 1990, pp: 76-89
    [33] J.R. Descardeci, A.J. Giarola. Microstrip antenna on a conical surface. IEEE Trans. Antennas Propagation, Apr 1992, pp: 460-463
    [34] 翟孟云,严育林.阵列天线理论导论.第1版.北京:国防工业出版社,1980
    [35] 汪茂光,吕善伟,刘瑞祥.阵列天线分析与综合.第1版.成都:电子科技 大学出版社,1989
    [36] K. L. Wong. Design of nonplanar microstrip antennas and transmission line. lst ed. New York: John Wiley & Sons, 1999