基于左右手复合传输线和MEMS的新型微波器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在分析左右手复合传输线结构特性和微机电系统(Micro-Electro-Mechanical Systems,MEMS)技术基础上,设计分析了耦合蛇形线结构和横向热驱动MEMS开关。运用这两种设计,本论文主要进行了新型带通滤波器研究,带阻滤波器研究,微带平衡器研究,基于二极管开关的可调滤波器研究,MEMS开关研究,基于MEMS开关的可调滤波器研究。另外,也应用微加工工艺对具有2维左右手复合传输线结构特性的微型定向天线进行设计加工。在对各器件微型化的基础上,实现了各器件预期的功能。
     (1)分析耦合蛇形线结构与插指电容结构的参数特性,基于耦合蛇形线结构设计了带通滤波器,微带平衡器和带阻滤波器以及电可调滤波器。以耦合蛇形线结构为基础并通过微加工工艺进行加工的带通滤波器在特定频带具有左手特性,而且该滤波器具有较宽的通频带。其主体耦合蛇形线结构的长度仅为中心工作波长的1/50。为避免接地结构带来的工艺复杂性以及可能引起的干扰,研究了一种多周期无接地耦合蛇形线微带平衡器。这种平衡器利用对称结构中心轴线处的虚拟地,可以在不需物理接地的情况下实现理想接地的效果,这也克服了使用大的电容实现接地时效果不理想的缺陷。通过电磁场仿真可以明显看到在耦合蛇形线中的电磁场反向传播,而且在模型的对称中心位置有明显的电壁存在。本论文也根据耦合蛇形线结构,设计了一种对偶性结构。为考察这种结构的特性,设计了一种传输线带阻滤波器,并使用微加工工艺加工制备了样品。测试结果表明,该对偶结构与普通左右手复合传输结构不同,在低频端为右手性,而在高频端呈现左手性。作为带阻滤波器,该滤波器在左手性区域具有较宽的通频带,这提高了该滤波器的工作频带宽度。结合耦合蛇形线左右手复合传输线结构及其对偶结构的特点,本论文设计了一种新型结构。通过切换这种结构中心线与两端口的通断,可以实现一种可调滤波器。此滤波器使用二极管做为开关,通过偏置电路切换二极管的通断状态,继而切换滤波器的工作状态。使用微加工工艺加工样品后,对样品进行了测试。测试结果表明,该器件可以在带通和带阻两种状态间切换。
     (2)设计了一种新型横向热驱动MEMS开关,并将其用于可调滤波器中。MEMS开关结构主体包括一条“U”型热驱动臂和一条悬臂梁。“U”型热驱动臂的热变形通过悬臂梁放大,继而驱动悬臂梁端部的接触头。针对开关结构特点设计了加工工艺流程,对悬臂梁结构的牺牲层工艺进行了实验,最终确定使用氨水加双氧水的碱性刻蚀液刻蚀牺牲层铜,这种方式可以在刻蚀铜的时候,不对作为开关主体的镍结构造成破坏。另外以SU8胶作为隔离块,设计了驱动电路与射频微波电路隔离的射频MEMS开关。然后通过MEMS技术制备了开关样品。直流测试结果表明,该开关的消耗功率为170 mW,相对于同类开关,功率消耗较低。同时测得了开关的开启时间为12 ms,基本达到了开关的设计标准。使用所设计的射频MEMS开关,设计了一种可调滤波器。测试结果表明,使用MEMS开关可以减少射频损耗。
     (3)使用微加工工艺加工了一种基于二维左右手复合传输线结构的定向天线。这种天线以左右手复合传输线理论为基础,将高阻抗基底用于微波谐振腔,使腔体厚度显著降低。在使用微加工工艺加工该天线后,天线尺寸明显减小。对样品进行了辐射测试,结果表明,样品具有较好的方向性。
     本论文首次提出结合微加工工艺加工耦合蛇形线左右手复合传输线结构,并使用该结构设计了多种微型微波器件。本论文也设计了一种MEMS开关,并将其结合到耦合蛇形线结构中设计了一种可调滤波器。这些研究极大的缩小了器件的尺寸,使得所设计的微波器件更适于未来便携式无线电子设备应用。
Coupled meander lines and thermal driven lateral MEMS switch were designed, based on the analysis of composite left/right handed transmission line (CRLH TL) structure and Micro-Electro-Mechanical Systems (MEMS) technology. The band pass filter, band reject filter, micro strip balun, reconfigurable filter using PIN diode and reconfigurable filter based on the MEMS switch were designed by the coupled meander lines and MEMS technology. And also, a micro directional antenna which has the CRLH TL property was fabricated by MEMS technology.
     (1) The characteristic of coupled meander lines and interdigital capacitor structure were analyzed. Band pass filter, microstrip balun, band rejected filter and also electro reconfigurable filter were designed based on the coupled meander lines structure. The band pass filter was fabricated by MEMS technology, which has left handed characteristic at special frequency, so it has a wide pass band. And also the size of the filter is small. The length of the main structure is about 1/50 of the working wavelength. To avoid the complexity of the metal via, a multi periods coupled meander lines micro balun without connecting ground was designed. It has a virtual ground at the axis of symmetry which was shown in simulation results, so a real ground is not needed. It was also be shown in the simulation results that the electromagnetic field transmits backward in special frequency. Besides these devices, a dual structure of the coupled meander lines was designed and was used in a band rejected filter. The sample was measured after fabricated by MEMS technology. The measurement and simulation results showed that the filter shows left handed characteristic at high frequency which is different with normal coupled meander lines. On the other hand, the left handed region is wide this is the same with normal coupled meander lines. A novel structure developed from coupled meander lines and its dual structure was studied, and was used as the main structure of a reconfigurable filter. The reconfigurable filter using diode as the switch can work as band pass filter and also band reject filter when the diode state is switched. After fabricating by MEMS technology the sample was measured. The measurement result is similar with the simulation results.
     (2) A novel lateral thermal drive MEMS switch was designed, and was used in the reconfigurable filter. The switch is composed by a“U”shape beam and a cantilever beam. The cantilever beam is driven by the“U”shape beam which is placed vertically to the previous one. The Switch is based on the magnification of the thermal deformation of the“U”shape beam. The fabrication process was designed according the structure of the switch, especially the etching solution for removing the sacrifice layer. To design a switch that the DC circuit is isolated with RF circuits, SU8 was selected as the connecting part of the two circuits. The measurement results showed that the power consumption of the switch is about 170 mW and the switching time is about 12 ms. After the switch was fabricated, it was used in the reconfigurable filter. The simulation and measurement results showed that the reconfigurable filter can reduce the power leakage.
     (3) A micro metamaterial directional antenna was fabricated by MEMS technology. A high resistance substrate based on CRLH TL theory was used as the substrate of the antenna. This can reduce the thickness of the antenna. After fabricated by MEMS technology, the sample was measured; the measurement and simulation results showed that the antenna has a good directional emitting characteristic.
     Coupled meander lines CRLH TL structure and the fabrication methods by MEMS technology were proposed in this paper. Several microwave devices were designed and fabricated. A thermal drived MEMS switch was also designed and was used in the reconfigurable filter. These designs reduced the device size and make the device more suitable for the portable wireless electro system.
引文
[1] V.G. Veselago, Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities. Soviet Physics Uspekhi, 1968,10(4): 5-13.
    [2] C.G. Parazzoli, R. B. Greegor, K. Li, et al. Experimental Verification and Simulation of Negative Index of Refraction Using Snell’s Law. Phys. Rev. Lett., 2003, 90(10): 107401.1-107401.4.
    [3]徐耿钊,张伟华,朱星,奇妙的左手材料,物理,2004,33(11): 801-808.
    [4] J.B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett., 2000, 85(18): 3966-3969.
    [5]马中团,鲁拥华,王沛等,左手性材料研究进展,物理,2004,33(7): 497-502.
    [6] J.B. Pendry, A.J. Holden, D.J. Robbins, et al. Low frequency plasmons in thin-wire structure. J. Phys.: Condensed Matter, 1998, 10: 4785-4809.
    [7] J.B. Pendry, A.J. Holden, W.J. Stewart, et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters: 1996, 76(25): 4773-4776.
    [8] R. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science, 2001,292: 77-79.
    [9] D.R. Smith, W.J. Padilla, D.C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 2000, 84(18): 4184-4187.
    [10] M. Bayindir, K. Aydin, E. Ozbay, et al. Transmission properties of composite metamaterials in free space, Appl. Phys. Lett., 2002, 81(1): 120-122.
    [11] P.G. Balmaz, O.J. Martin, Efficient isotropic magnetic resonators, Appl. Phys. Lett., 2002, 81(5): 939-941.
    [12] J. Pacheco, J.T. Grzegorczyk, et al. Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media, Phys. Rev. Lett., 2002, 89(25): 257401.1-257401.4.
    [13] R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials, IEEE transactions on antenna and propagation, 2003, 51(7): 1516-1529.
    [14] H. Chen, L. Ran, J. Huangfu, et al. Metamaterial exhibiting left-handed properties over multiple frequency bands, J. Appl. Phys., 2004, 96(9): 5338-5340.
    [15] L. Ran, J.H. fu, H. Chen, et al. Microwave solid-state left-handed material with a broad bandwidth and an ultra low loss, Phys. Rev. B, 2004, 70(7): 073102.1-073102.3.
    [16] R. Marques, F. Median, R. Idrrisi, Role of bianisotropy in negative permeability and left-handedmetamaterials, Phys. Rev. B, 2002, 65: 144440.1-144440.6.
    [17] V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, et al. Planar electromagnetic metamaterial with a fish scale structure, Phys. Rev. E, 2005, 72(5): 056613.1-056613.4.
    [18] A. Grbic, G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens, Phys. Rev. Lett., 2004, 92(11): 1117403.1-1117403.4.
    [19] A. Sanada, C. Caloz, T. Itoh, Planar distributed structures with negative refractive index, IEEE Trans. Microwave Theory Tech., 2004, 52(4): 1252-1263.
    [20] D. Sievenpiper, L. Zhang, F.J. Broas, et al. High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theory Tech., 1999, 47(11): 2059-2074.
    [21] I. Lin, C. Caloz, T. Itoh, A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines, IEEE-MTT Int. Symp. Dig., 2003, 1: 325-328.
    [22] I. Lin, M. DeVincentis, C. Caloz, et al. Arbitrary dual-band components using composite right/left-handed transmission lines, IEEE Trans. Microwave Theory Tech., 2004, 52(4): 1142-1149.
    [23] C. Caloz, T. Itoh, A novel mixed conventional microstrip and composite right/left-handed backwardwave directional coupler with broadband and tight coupling characteristics, IEEE Microwave Wireless Compon. Lett., 2004, 14(1): 31-33.
    [24] R. Mongia, I. Bahl, P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech, 1999.
    [25] C. Caloz, A. Sanada, T. Itoh, A novel composite right/left handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth, IEEE Trans. Microwave Theory Tech., 2004, 52(3): 980-992.
    [26] A. Sanada, C. Caloz, T. Itoh, Zeroth order resonance in composite right/left-handed transmission line resonators, Proc. Asia Pacific Microwave Conf., Seoul, Korea, 2003, 3: 1588-1592.
    [27] H. Okabe, C. Caloz, T. Itoh, A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section, IEEE Trans. Microwave Theory Tech., 2004, 52(3): 1142-1149.
    [28] C. Caloz, I. Lin, T. Itoh, Characteristics and potential applications of nonlinear left-handed transmission lines, Microwave and Optical Tech. Lett., 2004, 40(6): 471-473.
    [29] T. Fujishige, C. Caloz, T. Itoh, Experimental demonstration of the ENG-MNG pair resonator in a CRLH transmission line implementation, IEEE Trans. Microwave Theory Tech., 2005, 46(5):476-481.
    [30] A. Sanada, M. Kimura, I. Awai, et al. A planar zeroth order resonator antenna using left-handed transmission line, European Microwave Conf., Amsterdam, Netherlands, 2004.
    [31] L. Liu, C. Caloz, T. Itoh, Dominant mode (DM) leaky-wave antenna with backfire-to-endfire scanning capability, Electron. Lett., 2000, 38(23): 1414-1416.
    [32] S. Lim, C. Caloz, T. Itoh, Metamaterial-based electronically controlled transmission line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth, IEEE Trans. Microwave Theory Tech., 2004, 52(12): 2678-2690.
    [33] R.E. Horn, H. Jacobs, E. Freibergs, et al. Electronic modulated beam steerable silicon waveguide array antenna, IEEE Trans. Microwave Theory Tech., 1980, 28(6): 647-653.
    [34] H. Maheri, M. Tsutsumi, N. Kumagi, Experimental studies of magnetically scannable leaky-wave antennas having a corrugated ferrite slab/dielectric layer structure, IEEE Trans. Antennas Propagat., 1988, 36(7): 911-917.
    [35] L. Huang, J. Chiao, M.P. DeLisio, An electronically switchable leaky wave antenna, IEEE Trans. Antennas Propagat., 2000, 48(11): 1769-1772.
    [36] S. Lim, C. Caloz, T. Itoh, A reflecto-directive system using a composite right/left-handed (CRLH) leaky-wave antenna and heterodyne mixing, IEEE Microwave Wireless Compon. Lett., 2004, 14(4): 183-185.
    [37] C. Allen, C. Caloz, T. Itoh, Leaky-waves in a metamaterial based two-dimensional structure for a conical beam antenna application, IEEE-MTT Int. Symp. Dig., 2004, 1: 305-308.
    [38] A. K. Iyer, P.C. Kremer, G.V. Eleftheriades, Experimental and theoretical verification of focusing in large, periodically loaded transmission line negative refractive index metamaterial, Optics Express, 2003, 11(7): 696-708.
    [39] J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 2000, 85(18): 3966-3969.
    [40] C. Caloz, T. Itoh, Positive/negative refractive index anisotropic 2-D metamaterials, IEEE Microwave Wireless Compon. Lett., 2003, 13(12): 547-549.
    [41] N. Maluf, An introduction to Microelectromechanical Systems Engineering, Aetech House, Boston, 2000.
    [42] G. T.A. Kovacs, N.I. Maluf, K.E. Petersen, Bulk micromachining of silicon, Proc. IEEE, 1998, 86(8): 1536-1551.
    [43] J.M. Bustillo, R.T. Howe, R.S. Muller, Surface micromachining for microelectromechanicalsystems, Proc. IEEE, 1998, 86(8): 1552-1574.
    [44] K. Winchester, S. M.R. Spaargaren, J.M. Dell, Transferable silicon nitride cavities, Proceedings of SPIE, Bellingham, 1999, 3892: 142-151.
    [45] M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments, Proc. IEEE, 1998, 86(8): 1594-1610.
    [46] A.A Yasseen, C.H.Wu, C.A. Zorman, et al. Fabrication and testing of surface micromachined silicon carbide micromotors, Proceedings of the 12th Annual International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA, Jan., 1999: 644-649.
    [47] R.K. Burla, S. Roy, V.M. Haria, et al. High temperature testing of nickel wire bonds for SiC devices, Proceedings of SPIE, Bellingham, 1999, 3893: 324-333.
    [48] N. Rajan, M. Mehregany, C.A. Zorman, et al. Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, JMEMS, 1999, 8(3): 251-257.
    [49] J.G. Monreal, C.M. Mari, The use of polymer materials as sensitive elements in physical and chemical sensors, Sensors and Actuators, 1987, 12: 129-144.
    [50] W. Peter, S. Uwe, B. Gerd, et al.. Development of a completely encapsulated intraocular pressure sensor, Ophthalmic Res., 2000, 32: 278-284.
    [51] P.J. Chen, D.C. Rodger, M.S. Humayun, et al. Unpowered Spiral-Tube Parylene Pressure Sensor for Intraocular Pressure Sensing, Sensors and Actuators A: Physical, 2006, 127(2): 276-282.
    [52] P.J. Chen, D.C. Rodger, E. Meng, et al. Implantable Unpowered Parylene MEMS Intraocular Pressure Sensor, Proc. IEEE-EMBS MMB’06, Okinawa, Japan, May, 2006: 256-259.
    [53] Y. Saotome, A. Inoue, New amorphous alloys as micromaterials and the processing technologies, Proceedings of the 13th Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, Jan., 2000: 288-293.
    [54] D.K. Armani, C. Liu, Microfabrication technology for polycaprolactone, a biodegradable polymer, Proceedings of the 13th Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, Jan., 2000: 294-299.
    [55] C. Christensen, R.D. Reus, S. Bouwstra, Tantalum oxide thin films as protective coatings for sensors, J. Micromech. Microeng., 1999, 9(2): 113-118.
    [56] C. Christensen, R.D. Reus, S. Bouwstra, Tantalum oxide thin films as protective coatings for sensors, Proceedings of the 12th Annual International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA, Jan., 1999: 267-272.
    [57] A.E. Franke, D. Bilic, D.T. Chang, et al. Post-COMS integration of germanium microstructures, Proceedings of the 12th Annual International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA, Jan., 1999: 630-637.
    [58] B. Li, B. Xiong, L. Jiang, et al. Applications of germanium to low temperature micro-machining, Proceedings of the 12th Annual International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA, Jan., 1999: 638-643.
    [59] B. Li, B. Xiong, L. Jiang, et al. Germanium as a versatile material for low-temperature micromachining, JMEMS, 1999, 8(4): 366-372.
    [60] T. Shibata, Y. Kitamoto, K. Unno, et al. Micromachining of diamond film for MEMS applications, JMEMS, 2000, 9(1): 47-51.
    [61] J.W. Chang, M.J. Lee, G.P. Li, et al. Reconfigurable scan-beam single-arm spiral antenna integrated with rf-mems switches, IEEE Transaction on Antennas and Propagation, 2006, 54(2): 455-463.
    [62] E.W. Becker, W. Ehrfeld, P. Hagman, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA) process. Microelectronic Engineering, 1986(4): 35-56.
    [63] L.T. Romankiw, A path: from electroplating through lithographic masks in electronics to LIGA in MEMS, Electrochimica Acia, 1997, 42(20): 2985-3005.
    [64] Y. Hirata, LIGA process - micromachining technique using synchrotron radiation lithography - and some industrial applications, Nucl. Instrum. Meth. B, 2003,208: 21-26.
    [65] L. Singleton, Manufacturing aspects of LIGA technologies, J. Photopolymer Sci. Tech., 2003, 16(3): 413-421.
    [66]陈迪,赵旭, LIGA技术及其应用,高技术通讯, 1996, 6(9): 60-62.
    [67] H. Guckel, LIGA and LIGA-like processing with high energy photons, Microsystem. Technologies, 1996, 2(3): 153-156.
    [68] H. Lorenz, M. Despont, P. Vettiger, et al. Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist, Microsystem Technologies, 1998, 4: 143-146.
    [69] K. Hesch, J. Arnold, U. Dasbach, Combination of excimer laser micromachining and replication processes suited for large scale production. Applied Surface Science, 1995, 86: 251-258.
    [70] C.M. Cheng, R.H. Chen, Experimental investigation of fabrication properties of electroformed Ni-based micro mould inserts. Microelectronic Engineering, 2004, 75: 423-432.
    [71] R.Huber, J. Conrad, L Schmitt, et al. Fabrication of multilevel silicon structures by anisotropic deep silicon etching, Microelectronic Engineering, 2003, 67-68: 410-416.
    [72] D. Chen, F. Yang, M. Tang, et al. DEM microfabrication technique and its applications in bioscience and microfluidic systems. Proceedings of SPIE, 2001, 4601: 205-209.
    [73]陈迪,张大成,丁桂甫等, DEM技术研究,微细加工技术, 1998, 4: 1-6.
    [74] A.J. Franz, K.F Jensen, M.A. Schmidt, Palladium based micromembranes for hydrogen separation and hydrogenation/dehydrogenation reactions, Proceedings of the 12th Annual International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA, Jan., 1999: 382-387.
    [75] K.Chun, G. Hashiguchi, H. Toshiyoshi, et al. An array of hollow microcapillaries for the controlled injection of genetic materials into animal/plant cells, Proceedings of the 12th Annual International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA, Jan., 1999: 406-411.
    [76] X.Q. Wang, A. Desai, Y.C. Tai, et al. Polymer-based electrospray chips for mass spectrometry, Proceedings of the 12th Annual International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA, Jan., 1999: 523-528.
    [77] C. Rusu, R.V. Oever, M.D. Boer,et al. Micromachined pipettes integrated into a flow channel for single DNA molecule study by optical trapping, Proceedings of SPIE, Bellingham, 2000, 3912: 41-49.
    [78] W. Brenner, G.Haddad, H. Rennhofer, et al. New types of silicon torsion microspring and their characterisation, Proceedings of SPIE, Bellingham, 2000,4019: 462-470.
    [79] E.E. Hui, R.T. Howe, M.S. Rodgers, Single-step assembly of complex 3-D microstructures, Proceedings of the 13th Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, Jan., 2000: 602-607.
    [80] Z. J. Yao, S. Chen, S. Eshelman,et al. Micromachined low-loss microwave switches, IEEE/ASME J. Microelectromech. Syst., 1999, 8: 129-134.
    [81] C. Goldsmith, J. Randall, S. Eshelman, et al. Characteristics of micromachined switches at microwave frequencies, IEEE-MTT Int. Symp. Dig., 1996, 2: 1141-1144.
    [82] C. Goldsmith, Z. Yao, S. Eshelman, et al. Performance of low-loss RF-MEMS capacitive switches, IEEE Microwave Guided Wave Lett., 1998, 8(8): 269-271.
    [83] Z.J. Yao, S. Chen, S. Eshelman, et al. Micromachined low-loss microwave switches, IEEE J. Microelectromech. Systems, 2009, 8(2): 129-134.
    [84] S. Pacheco, C.T. Nguyen, L.P. Katehi, Micromechanical electrostatic K-band switches, IEEE-MTTInt. Symp. Dig., 1998, 3: 1569-1572.
    [85] S.P. Pacheco, L.P. Katehi, Microelectromechanical K-band switching circuits, 29th European Microwave Conference, Munich, Germany, October 1999: 45-48.
    [86] S. Pacheco, C.T. Nguyen, L.P. Katehi, Design of low actuation voltage RF-MEMS switch, IEEE MTT-S International Microwave Symposium Digest, 2000, 1: 165-168.
    [87] D. Peroulis, S. Pacheco, L.P. Katehi, MEMS devices for high isolation switching and tunable filtering, IEEE MTT -S International Microwave Symposium Digest, 2000, 2: 1217-1220.
    [88] J.B. Muldavin, G.M. Rebeiz, High isolation MEMS shunt switches; Part 1: Modeling, IEEE Trans. Microwave Theory Tech., 2000, 48(6): 1045-1052.
    [89] J.B. Muldavin, G.M. Rebeiz, High isolation MEMS shunt switches; Part 2: Design, IEEE Trans. Microwave Theory Tech., 2000, 48(6): 1053-1056.
    [90] N.S. Barker, G.M. Rebeiz, Distributed MEMS true-time delay phase shifters and wideband switches, IEEE Trans. Microwave Theory Tech., 1998, 6(11): 1881-1890.
    [91] J.B. Muldavin, G.M. Rebeiz, Inline capacitive and DC-contact MEMS shunt switches, IEEE Microwave Wireless Comp. Lett., 2001, 11(8): 334-336.
    [92] J.Y. Park, G.H. Kim, K.W. Chung, et al. Fully integrated micromachined capacitive switches for RF applications, IEEE MTT-S International Microwave Symposium Digest, 2000, 1: 283-286.
    [93] J.Y. Park, G.H. Kim, K.W. Chung, et al. Electroplated RF-MEMS capacitive switches, IEEE International Conference Microelectromechanical Systems, 2000: 639-644.
    [94] S.C. Shen, M.Feng, Low actuation voltage RF-MEMS switches with signal frequencies from 0.25 GHz to 40 GHz, IEEE International Electronics Device Meeting, 1999: 689-692.
    [95] S.C. Shen, D. Caruth, M. Feng, Broadband low actuation voltage RF-MEMS switches, IEEE GaAs IC Symposium, 2000: 161-164.
    [96] C. Chang, P. Chang, Innovative micromachined microwave switch with very low insertion loss, Sensors and Actuators, 2000, 79(1): 71-75.
    [97] K.M. strohm, C.N. Rheinfelder, A. Schurr, et al. SIMMWIC capacitive RF switches, 29th European Microwae Conference Digest, Munich, Germany, October 1999: 411-414.
    [98] M. Ulm, Microelectromechanical capacitive RF switches on high resistivity silicon substrates, MICRO. Tec 2000, Hanover, Germany, September 2000: 93-96.
    [99] G. Ponchak, R. Simons, M. Scardelletti, et al. Finite ground coplanar waveguide shunt MEMS switches for switched line phase shifters, 30th European Microwave conference Digest, Paris,France, October 2000: 253-256.
    [100] A. Borgioli, Y. Liu, A.S. Nagra, et al. Low-loss distributed MEMS phase shifter, IEEE Microwave Guided Wave Lett., 2000, 10(1): 7-9.
    [101] J.J. Yao, M.F. Chang, A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz, International Conference on Solid- State Sensor and Actuators Digest, Stockholm, Sweden, June 1995: 384-387.
    [102] R.E. Mihialovich, M.Kim, J.B. Hacker, et al. MEM relay for reconfigurable RF circuits, IEEE Microwave Wireless Comp. Lett., 2001, 11(2): 53-55.
    [103] D. Hyman, A. Schmitz, B. Warneke, et al. GaAs compatible surface-micromachined RF-MEMS switches, Electronics Lett., 1999, 35(3): 224-225.
    [104] D. Hyman, A. Schmitz, B. Warneke, et al. Surface micro-machined RF-MEMS switches on GaAs substrates, Int. J. RF Microwave CAE, 1999, 9(4): 348-361.
    [105] P.M. Zavracky, N.E. McGruer, R.H. Morrison, Microswitches and microrelays with a view toward microwave applications, Int. J. RF Microwave CAE, 1999, 9(4): 338-347.
    [106] N.E. McGruer, P.M. Zavracky, R.Morrison, et al. RF and current handling performance of electrostatically actuated microswitches, Sensors Exposition, Cleveland, OH, September 1999.
    [107] C. Bozler, R. Drangmeister, S. Duffy, et al. MEMS microswitch arrys for reconfigurable distributed microwave components, IEEE MTT-S International Microwave Symposium Digest, Boston, MA, June 2000: 153-156.
    [108] S. Duffy, C. Bozler, S. Rabe, et al. MEMS microswitches for reconfigurable microwave circuitry, Microwave and Wireless Comp. Lett., 2001, 11(3): 106-108.
    [109] M. Sakata, Y. Komura, T. Seki, et al. Micro-machined relay which utilizes single crystal silicon electrostatic actuator, 12th IEEE International Conference on Microelectromechanical Systems, 1999: 21-24.
    [110] V. Milanovic, M. Maharbiz, A. Singh, et al. Microrelays for batch transfer integration in RF systems, 13th IEEE International Conference on Microelectromechanical Systems, January 2000: 787-792.
    [111] V. Milanovic, J. Maharbiz, K.S. Pister, Batch transfer integration of RF microrelays, IEEE Microwave Guided Wave Lett., 2000, 10(8): 313-315.
    [112] D. Hah, E. Yoon, S. Hong, et al. A low voltage actuated micromachined microwave switch using torsion springs and leverage, IEEE MTT-S International Microwave Symposium Digest, Boston,MA, June 2000: 157-160.
    [113] D. Hah, D. Yoon, S. Hong, A low- voltage actuated micromachined microwave switch using torsion springs and leverage, IEEE trans. Microwave Theory Tech., 2000, 48(12): 2540-2546.
    [114] J.C. Chiao, Y. Fu, L.Y. Lin, et al. MEMS millimeter-wave components, IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA, June 1999, 2: 463-466.
    [115] P. Blondy, D. Mercier, D. Cros, et al. Packaged mm-wave thermal MEMS switches, 31st European Microwave Conference, London, UK, September 2001, 1: 283-286.
    [116] M. Aid, RF Microswitch, LETI annual Review, France, June 2001.
    [117] P. Blondy, D. Cros, P. Guillon, et al. Low voltage high isolation MEMS switches, Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, an Arbor, MI, 2001: 47-49.
    [118] M. ruan, J. Shen, C.B. Wheeler, Latching Micromagnetic Relays, IEEE J. Microelectromech. Systems, 2001, 10(4): 511-517.
    [119] T. Campbell, MEMS Switch Technology Approaches the“Ideal Switch”, Applied Microwave and Wireless, 2001, 13(5): 100-107.
    [120] R. Wood, R. Mahadevan, V. Dhuler, et al. MEMS microrelays, MEchatronics, 1998, 8(5): 535-547.
    [121] R.D. Streeter, C.A. Hall, V. Dhuler, et al. VHF high-power tunable RF band pass filter using microelectromechanical (MEM) microrelays, Int. J. RF Microwave CAE, 2001, 11(5): 261-275.
    [122] E.J. Kruglick, K.S. Pister, Lateral MEMS microcontact considerations, IEEE J. Microelectromech. Systems, 1999, 8(3): 264-271.
    [123] Z. Li, D. Zhang, T. Li, et al. Bulk micromachined relay with lateral contact, J. Micromech. Microeng., 2000, 10(3): 329-333.
    [124] Y. Wang, Z. Li, D.T. McCormick, et al. Low-voltage lateral-contact microrelays for RF applications, 15th IEEE International Conference on Micro-ElectroMechanical systems, January 2002: 645-648.
    [125] L. Que, J.S. Park, Y.B. Gianchandani, et al. Bent beam electrothermal actuators -Part I:Single beam and cascaded devices, IEEE J. Microelectromech. Systems, 2001, 10(2): 247-262.
    [126] J.M. Maloney, D.L. DeVoe, D.S. Schreiber, analysis and design of electrothermal actuators fabricated from single crystal silicon, ASME International Mechanical Engineering Congress and Exposition, May 2000: 233-240.
    [127] L.E. larson, R.H. Hackett, M.A. Melendes, et al. Micromachined microwave actuator (MIMAC)technology- a new tuning approach for microwave integrated circuits, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, Boston, MA, June 1991: 27-30.
    [128] J. B. Yoon, C. T.C. Nguyen, A high-Q tunable micromechanical capacitor with movable dielectric for RF applications, 2000 IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, Dec. 2000: 489-492.
    [129] C. L. Chua, D. K. Fork, K. S. Van, et al. Out-of-plane high Q inductors on low resistance silicon, Journal of Microelectromechanical Systems, 2003, 12(6): 989-995.
    [130] A. Dec, K. Suyama, A 1.9-GHz CMOS VCO with micromachined electromechanically tunablecapacitors, IEEE J. Solid-State Circuits, 2000, 35(8): 1231-1237.
    [131] F. D. Bannon, J. R. Clark, C. T.C. Nguyen, High-Q HF microelectromechanical filters, IEEE J. Solid State Circuits, 2000, 35(4): 512-526.
    [132] K. Wang, A. C. Wong, C. T.C. Nguyen, VHF free-free beam high-Q micromechanical resonators, IEEE/ASME J. Microelectromech. Syst., 2000, 9(3): 347-360.
    [133] M. A. Abdelmoneum, M. U. Demirci, C. T.C. Nguyen, Stemless wine-glass-mode disk micromechanical resonators, Proceedings 2003 IEEE MEMS Conf., Kyoto, Japan, Jan., 2003: 698-701.
    [134] J. Wang, J. E. Feygelson, T. Nguyen, et al. 1.51-GHz nanocrystalline diamond micromechanical disk resonator with material-mismatched isolating support, 2004 IEEE MEMS Conf., Maastricht, The Netherlands, Jan., 2004: 641-644.
    [135] S. S. Li, Y. W. Lin, Y. Xie, et al. Micromechanical "hollow-disk" ring resonators ,2004 IEEE MEMS Conf., Maastricht, Netherlands, Jan., 2004: 821-824.
    [136] M. L. Roukes, Nanoelectromechanical Systems, 2000 Solid-State Sensor and Actuator Workshop, June, 2000: 367-376.
    [137] J. R. Vig, Y. Kim, Noise in microelectromechanical system resonators, IEEE Trans. Utrason. Ferroelec. Freq. Contr., 1999, 46(6): 1558-1565.
    [138] G. Piazza, P. J. Stephanou, J. M. Porter, et al. Low motional resistance ring-shaped contour-mode aluminum nitride piezoelectric micromechanical resonators for UHF applications, 2005 IEEE MEMS Conf., Miami, Florida, Jan., 2005: 20-23.
    [139] A. LAI, C. CALOZ , T.ITOH, Composite right/left-handed transmission line metamaterials, IEEE Micro, 2004: 34-50.
    [140] H. KIM, A. B. KOZYREV, A. KARBASSI, et al. Linear tunable phase shifter using aleft-handed transmission line, IEEE Microwave Wireless Compon. Lett, 2005, 15(5): 366-368.
    [141] S. G. MAO, M. S. WU, Y. Z. CHUEH, et al. Modeling of symmetric composite right/left-handed coplanar wavegui- des with applications to compact bandpass filters, IEEE Trans. Microwave Theory Tech., 2005, 53(11): 3460-3466.
    [142] P. HEYDARI, M. PEDRAM, Capacitive coupling noise in high-speed VLSI circuits, IEEE Trans. Comput. Aided Design Integr. Circuits Syst., 2005, 24(3): 478-487.
    [143] X. Q. LIN, H. F. MA, D. BAO, et al. Design and analysis of super-wide bandpass filters using a novel compact meta-structure, IEEE Trans. Microwave Theory Tech., 2007, 55(4): 747-753.
    [144] C. Caloz, T. Itoh, A novel mixed conventional microstrip and composite right/left-handed backwardwave directional coupler with broadband and tight coupling characteristics, IEEE Microwave Wireless Compon. Lett., 2004, 14(1): 31-33.
    [145] A. Sanada, C. Caloz, T. Itoh, Zeroth order resonance in composite right/left-handed transmission line resonators, Proc. Asia Pacific Microwave Conf., Seoul, Korea, 2003, 3: 1588-1592.
    [146] A. Sanada, M. Kimura, I. Awai, et al. A planar zeroth order resonator antenna using left-handed transmission line, European Microwave Conf., Amsterdam, Netherlands, 2004.
    [147] L. Liu, C. Caloz, T. Itoh, Dominant mode (DM) leaky-wave antenna with backfire-to-endfire scanning capability, Electron. Lett., 2000, 38(23): 1414-1416.
    [148] S. Lim, C. Caloz, T. Itoh, Metamaterial-based electronically controlled transmission line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth, IEEE Trans. Microwave Theory Tech., 2004, 52(12): 2678-2690.
    [149] http://www.51emc.com/emc/design/pcb/354.html
    [150]高晋占,微弱信号检测,清华大学出版社,2007年03月,第1版
    [151] X.Q. Lin, H.F. Ma, D. Bao, et. al, Design and Analysis of Super-Wide Bandpass Filters Using a Novel Compact Meta-Structure. IEEE Trans. Microwave Theory Tech, 2007, 55(4): 747-753.
    [152] A. Lai, C. Caloz, and T. Itoh, Composite right/left-handed transmission line metamaterials, IEEE Micro, 2004: 34-50.
    [153] H. Kim, A. B. Kozyrev, A. Karbassi, et al, Linear tunable phase shifter using a left-handed transmission line, IEEE Microw. Wireless Compon. Lett., 2005, 15(5): 366-368
    [154] S.-G. Mao, M.-S. Wu, Y.-Z. Chueh, et. al, Modeling of symmetric composite right/left-handed coplanar waveguides with applications to compact bandpass filters, IEEE Trans. Microw. Theory Tech., 2005, 53(11): 3460-3466.
    [155] Q. Zhu, Z. X. Zhang and S. J. Xu, Millimeter wave microstrip array design with CRLH-TL as feeding line, IEEE AP-S Int. Symp., 2004, 3: 3413-3416.
    [156] C. Liu, W. Menzel, Frequency scanned leaky-wave antenna using negative index transmission lines, 2nd Eur. Conf, Antennas propag. Dig., 2007: 1-4
    [157] C. J. Liu, W. Menzel, Broadband Via-Free Microstrip Balun Using Metamaterial Transmission Lines, IEEE Microw. And Wireless Components Letters. 2008, 18(7): 437-439
    [158] S. H. Hu, The Balun Family, Microwave Journal, 1987, 30: 227-229.
    [159] A.I. Talkinetc, Wide-band Balun Transformer, The Review Of Scientific Instrument, 1957, 28: 808-815.
    [160] R. Bawer, A Printed Circuit Balun for Use with Spiral Antennas, Microwave Theory and Techniques, 1960, 8(3): 319-325.
    [161]胡树豪,实用射频技术,电子工业出版社,北京,2004
    [162] M.A. Antoniades, G. V. Eleftheriades, A broadband Wilkinson balun using microstrip metamateial lines, IEEE Antennas Wireless Propag. Lett., 2005, 4(8): 209-212.
    [163] C.H. Tseng, C.L. Chang, Wide-band balun using composite right/left-handed transmission line, Electron. Lett., 2007, 43: 1154-1155.
    [164] M.A. Antoniades, G. V. Eleftheriades, Compact linear lead/lag metamaterial phase shifters for broadband applications, IEEE Antennas Wireless Propag. Lett., 2003, 2: 103-106.
    [165] G. V. Eleftheriades, A. K. Iyer, P. C. Kremer, Planar negative refractive index media using periodically L-C loaded transmission lines, IEEE Trans. Microwave Theory Tech., 2002, 50: 2702-2712.
    [166] R. Goto, H. Deguchi, M. Tsuji, Composite right/left-handed transmission lines based on conductor backed coplanar strips for antenna application, Eur. Microw. Conf. Dig.,Manchester, U.K., Sep., 2006: 1040-1043.
    [167] A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterial, IEEE Microw. Mag., 2004, 5(3): 34-50.
    [168] C. Caloz, Dual composite right/left-handed (D-CRLH) transmission line metamaterial, Microwave Wireless Compon. Lett., 2006, 16(11): 585-587.
    [169] C. Caloz, S. Abielmona, H. V. Nguyen, et al. Dual composite right/left-handed(D-CRLH) leaky-wave antenna with low beam squinting and tunable group velocity, Phys. Stat. sol., 2007, 244(4): 1219-1226.
    [170] Y. H. Ryu, J. H. Park, S. T. Ko, et al. Multi-Band Antenna Using Dual Composite Right/Left Handed Transmission Line, Antennas and Propagation Society International Symposium, San Diego, 2008: 1-4
    [171] A. Rennings, S. Otto, J. Mosig, et al. Extended Composite Right/Left-Handed (E-CRLH) Metamaterial and its Application as Quadband Quarter-Wavelength Transmission Line, Proceedings of Asia-Pacific Microwave Conference 2006, Yokohama, Dec., 2006: 1405-1408
    [172] X. Hu, P. Zhang, S. L. He, Dual structure of composite right/left-handed transmission line, Journal of Zhejiang University Science A, 2006, 7(10): 1777-1780.
    [173] T. Wei, H. V. Nguyen, Z. Hu, et al. Dual Composite Right/Left-Handed (DCRLH) Transmission Line in GaAs MMIC Technology, Antenna Technology: Small and Smart Antennas Metamaterials and Applications, Cambridge, March, 2007: 105-108.
    [174] C. Young-Hoon, S. Hussein, H. Jia-Sheng, Switchable Embedded Notch Structure for UWB Bandpass Filter, IEEE Microwave and Wireless Components Letters: 2008, 18(9): 590-592.
    [175] R. W. DeGrasse, Low-loss gyromagnetic coupling through single-crystal garnets, Journal of Applied Physics, 1958, 30: 155-156.
    [176] P. S. Carter, Magnetically tunable micro-wave filters using single-crystal garnet resonators, Microwave Theory and Techniques, 1961, 9(3): 252-260.
    [177] R. Blau, Yig filters in the 50-500 Mc range, Proc. IEEE, 1964, 52(9): 1074-1075.
    [178] P. S. Carter, Side-wall-coupled, strip-transmission-line magnetically tunable filters employing ferrimagnetic yig resonators, IEEE Trans. on Microwave Theory and Techniques, 1965, 13(3): 306-315.
    [179] A. E. Williams, Four-cavity elliptic waveguide filter, Microwave symposium digest, 1970, 70(1): 90-93.
    [180] A. R. Kaurs, A tunable bandpass ring filter for rectangular dielectric waveguide integrated circuits, IEEE Trans. Microwave Theory and Techniques, 1976, 24(11): 875-876.
    [181] A. Presser, High-speed, varactor-tunable microwave filter element, Microwave symposium digest, 1979, 79(1): 416-418.
    [182] A. E. Atia, A. E.Williams, New type of bandpass filters for satellite transponders, COMSAT Technical Review, 1971, 1(1): 21-43.
    [183] A. E. Atia, A. E. Williams, Narrow bandpass waveguide filters, IEEE Trans. On Microwave Theory and Tech., 1972, 20: 258-265.
    [184] C. B. Hofman, A. R. Baron, Wideband ESM receiving systems Part I, Microwave Journal, 1980, 23(9): 24-34.
    [185] W. J. Keane, YIG filters aid wide open receivers, Microwave J., 1980, 17(8): 50-56.
    [186] I. C. Hunter, J. D. Rhodes, Electronically Tunable Microwave Bandpass Filters, IEEE Trans. Microwave Theory Tech., 1982, 30(9): 1354-1360.
    [187] I. C. Hunter, J. D. Rhodes, Varactor tuned microwave bandstop filters, Microwave symposium digest, 1982, 82(1): 399-401.
    [188] W. W. Peng, I. C. Hunter, A New Class of Low-Loss High-Linearity Electronically Reconfigurable Microwave Filter, IEEE Trans. on Microwave Theory and Techniques, 2008, 56(8): 1945-1953.
    [189] M. F. Karim, A. Q. Liu, A. Alphones, et al. A Novel Reconfigurable Filter Using Periodic Structures, Microwave symposium digest, 2006: 943-946.
    [190] C. K. Liao, C. Y. Chang, J. Lin, A Reconfigurable Filter Based on Doublet Configuration, Microwave Symposium, 2007: 1607-1610.
    [191] M. A. Carles, L. G. Ignacio, B. B. Zabdiel, Characterizing a Tune All Bandstop Filter, 2009 IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, Guadalajara, Mexico, Feb., 2009: 55-58.
    [192] C. Lugo, J. Hadrick, J. Papapolymerou, Dual-Mode Reconfigurable Filter for 3-D Systemon-Package (SOP) Integration, 2005 Electronic Components and Technology Conference,2005: 532-535.
    [193] C. Lugo, J. Papapolymerou, Dual-Mode Reconfigurable Filter With Asymmetrical Transmission Zeros and Center Frequency Control. IEEE Microwave and wireless components letters, 2006, 16(9): 499-501.
    [194] Y. H. Chun, J. S. Hong, Electronically Reconfigurable Dual-Mode Microstrip Open-Loop Resonator Filter ,IEEE Microwave and wireless components letters, 2008, 18(7): 449-451.
    [195] M. F. Karim, A. Q. Liu, A. Alphones, et al. A Reconfigurable Micromachined Switching Filter Using Periodic Structures, IEEE Trans. on Microwave Theory and Techniques, 2007, 55(6): 1154-1162.
    [196] G. M. Rebeiz, RF-MEMS: Theory, Design and Technology. Hoboken, NJ: Wiley, 2003: 126-128.
    [197] N. H.John, M. L.Rodney, H. S.Richard, Microbatteries for self-sustained hybrid micropower supplies, Journal of Power Source, 2002, 104(I): 46-51.
    [198] B. J. Neudecker, N. J. Dudney, J. B. Bates,‘Lithium-Free’thin film battery with in situ plated Li anode, J. Electrochem. Soc., 2000, 517: 147-152.
    [199] S. C. Kelley, G. A. Deluga, W. H. Smyrl, Miniature methanol/air polymer electrolyte fuel cell, Electrochemical and Solid State letters, 2000, 3(9): 407-409.
    [200] T. Akalin, J. Danglot, et al. IEEE Trans. Ant. Prop., 2003, 51: 31-37.
    [201] L. Zhou, H.Q. Li, Y.Q. Qin, et al. Directional emissions from subwavelength metamaterial-based cavities, APPLIED PHYSICS LETTERS, 2005, 86: 100-101.
    [202] D. Sievenpiper, L. Zhang, R. Broas, et al. High-impedance electronic electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theory Tech. 1999,47: 2059-2074.
    [203] D.F. Sievenpiper, L. Angeles, University of California: Ph.D.Thesis, 1999.
    [204] D.F. Sievenpiper, E. Yablonovitch, Eliminating surface currents with metal-lodielectric photonic crystals, IEEE MIT-S Symp. Dig., 1998: 663-666.
    [205] F. Yang, Y. R. Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antennas Propagat., 2003, 51(10): 2691-2073.
    [206] Y. Qian, D. Sievenpiper, V. Radisic, et al. A novel approach for gain and bandwidth enhancement of patch antennas, IEEE RAWCON. Symp. Dig., Colorado Springs, CO., 1998: 22-24。
    [207]龚令侃,利用左手性材料实现三维亚波长谐振腔,同济大学毕业论文,2006.