微生物修复菲污染机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菲是含三个苯环的典型低分子量多环芳烃(PAHs),是环境中检出率较高的持久性有机污染物(POPs);菲极易从水中分配到生物体、沉积物及有机质中,通过食物链进入人体,危害人类健康。因此研究菲在环境中的迁移转化过程能为菲和其它PAHs污染的修复提供理论依据。本研究从驯化污泥中筛选、分离出六株菲高效降解菌株并对其进行了初步鉴定。论文研究了菲在水环境、污泥及单一菌种悬浊液中的挥发、吸附、降解特性;提出了菲的降解模型并进行了验证;探讨了纯菌种降解菲的酶促动力学和抑制动力学。实验得出如下结论:
     1、菲在水环境和污泥中的挥发过程符合一级动力学方程;水的流动速度、温度的增加都将显著增大菲的挥发速率;25℃时,实验得出的挥发速率常数ka = 0.0607 h-1,总传质系数k=1.079×10-6 m/s,而理论估算出的总传质系数k = 2.240×10-6 m/s。
     2、分离出的六株菲高效降解菌株包括:多食鞘氨醇杆菌属(P-1,P-4);芽孢杆菌属(P-2);节杆菌属(P-3);贪噬菌属(P-5);考克氏菌属(P-6),除菌株P-1为革兰氏阴性菌外,其它五种菌株均为革兰氏阳性菌。
     3、驯化污泥、各菌株菌悬液对菲的吸附均符合Langmuir和Freundlich吸附等温线模式,吸附平衡时间为1 h;吸附符合二级动力学方程;污泥、菌株Sphingobacterium sp. 1、Bacillus sp.菌悬液的吸附活化能分别为6.63 kJ/mol、25.66 kJ/mol和13.38 kJ/mol;吸附过程ΔG < 0,为自发过程;焓变ΔH > 0,为吸热反应。菌株Sphingobacterium sp. 1和Bacillus sp.对萘的吸附能力比菲强,萘、菲竞争吸附符合Langmuir和Freundlich竞争吸附等温线模式。
     4、驯化污泥及各菌株对菲的降解符合一级动力学方程;15天内,菌株Sphingobacterium sp. 1、Bacillus sp.、Arthrobacter sp.、Sphingobacterium sp. 2、Variovorax sp.、Kocuria sp.对100 mg/L菲的降解率分别为100%、94.0%、68.1%、64.4%、81.3%、14.3%;葡萄糖和酵母粉的加入能促进菲的降解;温度、pH值对菲降解影响较大;菌株Sphingobacterium sp. 1可利用苯酚和萘与菲发生共降解,萘对菌株Bacillus sp.降解菲具有竞争性抑制作用,萘能促进菌株Kocuria sp.对菲的降解;补充氧气能加速菌株对菲的降解。
     5、萘对菌株Bacillus sp.降解菲存在竞争性抑制作用,抑制常数KI = 0.4240 mg/L;菲浓度对菌株Kocuria sp.降解菲存在底物抑制作用,抑制常数kS = 3.173 mg/L,最佳底物浓度[S]opt = 0.683 mg/L。
Phenanthrene, containing three benzene rings, is one of the typical PAHs with low-molecular-weight, persistent organic pollutants (POPs) and high detection rate. Phenanthrene can easily migrate into the the organism, sediment and organic matte, or accumulate in the human body through the food chain, which can endanger human health. So the research on the phenanthrene migration and transformation in the environment can provide reference for the bioremediation of pollution with phenanthrene and other PAHs. This study on selection, isolation and preliminary identification of six phenanthrene degradation strains were conducted. The characteristics of the volatilization, adsorption, biodegradation of phenanthrene by domesticated sludge and the strains were studied. The biodegradation model by strain Bacillus sp. and the enzymatic reaction and inhibition kinetics by strain Sphingobacterium sp. 1, Bacillus sp. and Arthrobacter sp. were discussed. The results of the study are as follows:
     1. The volatilization of phenanthrene in domesticated and each of the strains could be fit with the first-order kinetics model. The increase of water flow velocity and temperature promoted the volatilization rate. The volatilization rate constant ka and the total mass transfer coefficient k obtained from the experiment data and the calculated total mass transfer coefficient using the empirical formula was 2.240×10-6 m/s.
     2. The strains isolated from the domesticated sludge conclude: Sphingobacterium sp. (P-1, P-4), Bacillus sp. (P-2), Arthrobacter sp. (P-3), Variovorax sp. (P-5), Kocuria sp. (P-6). All of the six strains are gram-positive bacteria except for the strain P-1.
     3. The adsorption of phenanthrene on domesticated and each of the strains fitted well with Langmuir adsorption isotherm equation and Freundlich adsorption isotherm equation. The adsorption equilibrium time was 1 h. The adsorption kinetics could be expressed by second-order kinetic equation. The activation energy of the sludge, strain Sphingobacterium sp. 1, strain Bacillus sp. on the phenanthrene adsorption were 6.63 kJ/mol, 25.66 kJ/mol, 13.38 kJ/mol, respectively. The values of gibbs free energy (ΔG < 0) and enthalpy (ΔH > 0) showed that the adsorption reactions of phenanthrene were spontaneous reactions and endothermic reactions. The adsorptions of naphthalene were higher than phenanthrene on the strain Sphingobacterium sp. 1 and strain Bacillus sp.. The competitive adsorption isotherm of naphthalene and phenanthrene on strain Sphingobacterium sp. 1 fitted well with Langmuir and Freundlich competitive isotherm models.
     4. The experimental outcomes of the degradation of phenanthrene by domesticated sludge and each of the strains could be fit well with the first-order biodegradation kinetics model. The removal efficiency of the phenanthrene degradation by strains Sphingobacterium sp. 1、Bacillus sp.、Arthrobacter sp.、Sphingobacterium sp. 2、Variovorax sp.、Kocuria sp. for 100 mg/L of phenanthrene in 15 d were 100%, 94.0%, 68.1%, 64.4%, 81.3%, 14.3%, respectively. The addition of glucose and yeast powder increased the phenanthrene degradation rates. Temperature and pH value had great impacts on the degradation. Co-metabolism occurred on phenanthrene degradation by strain Sphingobacterium sp. 1 when added in phenol or Naphthalene. Naphthalene promoted the phenanthrene mineralization by strain Kocuria sp. but leaded to competitive inhibition on the phenanthrene degradation by strain Bacillus sp. replenish oxygen accelerated the phenanthrene degradation rates.
     5. competitive inhibition existed between naphthalene and phenanthrene on the degradation of phenanthrene by strain Bacillus sp. and the value of the competitive inhibition constant KI was 0.4240 mg/L. The high-phenanthrene concentration inhibited the enzymatic reaction of strain Kocuria sp. Substrate inhibition constant kS and the optimum substrate concentration [S]opt were 3.173 mg/L and 0.683 mg/L, respectively.
引文
[1]王连生,韩朔睽.有机物定量结构-结构活性相关.北京:中国环境科学出版社. 1993, 371-376
    [2]谢重阁.环境中的苯并[α]芘及其分析技术.北京:中国环境科学出版社. 1991, 12-36
    [3] Mihelcic J. R., Luthy R. G.. Degradation of polycyclic aromatic hydrocarbons compounds under various redox conditions in soil-water systems. Applied Environmental Microbiology, 1988, 54(4): 1182-1187
    [4]袁东星,杨东宁,陈猛,等,厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布.环境科学学报, 2001, 21(1): 107-112
    [5] Ananthula R., Takahiro Y., Philip H. T.. Kinetics of OH radical reaction with phenanthrene: New absolute rate measurements and comparison with other PAHs. International Journal of Chemical Kinetics, 2007, 39(11): 629-637
    [6] Cornelissen G., Orjan G.. Effects of added PAHs and precipitated humic acid coatings on phenanthrene sorption to environmental Black carbon. Environmental Pollution, 2006, 141(3): 526-531
    [7]王连生.有机污染物化学(下).北京:科学出版社,1991
    [8] Pistikopoulos P., Wortham H. M., Gomes L., et al.. Mechanisms of formation of particulate polycyclic aromatic hydrocarbons in relation to the particle size distribution; effects on meso-scale transport. Atmospheric Environment, 1990, 24A(10): 2573-2584
    [9] Yinjie J. T., Shelly D. C., Jody W. D., et al.. Depth-related in?uences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA. Marine Pollution Bulletin, 2006, 52(11): 1431-1440
    [10]沈德中.污染环境的生物修复.北京:化学工业出版社, 2002, 118-124
    [11] Jin D., Jiang X., Jing X., et al.. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene. Journal of Hazardous Materials, 2007, 144(1-2): 215-221
    [12]孙大志.地下环境中多环芳烃(菲)水文地球化学行为及归趋模拟研究: [博士学位论文].吉林:吉林大学, 2004
    [13] Coates J. D., Woodward J., Allen J., et al.. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Applied Environmental Microbiology, 1997, 63(9): 3589-3593
    [14] Jude A. O., Paul T. W.. Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. The Journal of Supercritical Fluids, 2007, 39(3): 399-408
    [15] Annalisa N., Maria D. R. P., Paola Di L., et al.. Mechanochemical approach to remove phenanthrene from a contaminated soil. Chemosphere, 2006, 65(9): 1583-1590
    [16] Lawrence A. L., Jeanne D. G., Bruce J. B., et al.. The influence of sediment resuspension on the degradation of phenanthrene in flow-through microcosms. Marine Environmental Research, 2006, 61(2): 202-223
    [17] Yu Y. Frank H.. Phenanthrene degradation in subcritical water. Analytica Chimica Acta, 2006, 555(2): 364-369
    [18] James E. B., Douglas G. C.. Degradation and mineralization of the polycyclic aromatichydrocarbons compounds, acenaphthene and naphthalene in intertidal marine sediments. Applied Environmental Microbiology, 1985, 50(1): 81-90
    [19] Rene P. S.,philips M. G., Dieter M.. Imboden. Environmental Organic Chemistry. United states: John Wiley & Sons, 2003
    [20]金相灿,程振华,徐南妮,等.有机化合物污染化学-有毒有机物污染化学.北京:清华大学出版社, 1990
    [21]乌锡康.华东理工大学, 2005,有机化合物环境数据见表V2.1. JLC环境技术交流中心, http://www.cnjlc.com
    [22]沈德康.菲的利用.化学世界, 1963, 9: 397-399
    [23]刘祖愉,王俊丽,姚润生,等.菲氧化制联苯二甲酸的方法及研究进展.煤化工, 2007, 133(6): 60-62
    [24] Pillai P. K. C., Tripathi A. K..菲的热成像性质.感光材料, 1985, 2: 36-39
    [25]姚蒙正,曲勇.菲的综合利用.炼焦化学, 1975, 5: 31-36
    [26] Samantha E. Gad. Phenanthrene. Encyclopedia of Toxicology, 2005, 392-394
    [27] Xu S. Y., Chen Y. X., Wu W. X., et al.. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Science of the Total Environment, 2006, 363(1-3): 206-215
    [28]王淑红,王新红,陈荣,等.荧蒽、菲、芘对菲律宾蛤仔(Ruditapes philippinarum)超氧化物歧化酶的影响.厦门大学学报(自然科学版), 2000, 39(4): 504-508
    [29]马丽.萘和菲对松前水稻(Matsumae)营养生长期生长发育影响的初步研究,东北师范大学,2008, 5
    [30]吴玲玲,明玺,陈玲,等.长江口水域菲含量及对斑马鱼组织结构的影响.环境科学与技术, 2007, 30(7): 13-15
    [31] Park J. Y., Kim S. J., Lee Y. J., et al.. EK-Fenton process for removal of phenanthrene in a two-dimensional soil system. Engineering Geology, 2005, 77(3-4): 217-224
    [32]吴迪,王建龙,皮运正,等.菲的臭氧不完全氧化及其影响.中国环境科学, 2006, 26(suppl.): 48-51
    [33]潘海祥,傅家谟,盛国英,等.在TiO2催化剂上菲的光催化氧化反应研究.环境科学研究, 2000, 13(6): 37-39
    [34]胡明,刘旭光,王志忠.菲的电解还原.燃料化学学报, 1994, 22(2): 219-223
    [35] Chung M. K., Martin T. K. Tsui K. C.. Cheung. Removal of aqueous phenanthrene by brown seaweed Sargassum hemiphyllum: Sorption-kinetic and equilibrium studies. Separation and Purification Technology, 2007, 54(3): 355-362
    [36] Pierre L., Alain S., Jacques B., et al.. Evaluation of matrices for the sorption and biodegradation of phenanthrene. Water Research, 2006, 40(12): 2397-2404
    [37] Simone M., Paul C. M. N.. Kinetics of phenanthrene desorption from activated carbons to water. Chemosphere, 2008, 71(11): 2044-2049
    [38] Pierre L., Saada A., Berthelin J., et al.. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria. Journal of Hazardous Materials, 2008, 151(2-3): 339-347
    [39] Hrissi K. Karapanagioti. Removal of phenanthrene from saltwater solutions using activated carbon. Desalination, 2007, 210(1-3): 274-280
    [40] Paula T. S. S., Valdinete L. S., Benício B. N., et al.. Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils. Journal of Hazardous Materials, 2009
    [41] Paula T. S. S., Valdinete L. S., Benício B. N., et al.. Phenanthrene and pyrene oxidation in contaminated soils using Fenton's reagent. Journal of Hazardous Materials, 2009, 16(2-3): 967-973
    [42] Hong Y. W., Yuan D. X., Lin Q. M., et al.. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin, 2008, 56(8): 1400-1405
    [43] Lee S. H., Lee W. S., Lee C. H., et al.. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials, 2008, 153(1-2): 892-898
    [44] Wu N. Y., Huang H. L., Zhang S. Z., et al.. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Environmental Pollution, 2009, 157(5): 1613-1618
    [45] Sardar A. C., Muhammad I. K., Tang X. J., et al.. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). Journal of Hazardous Materials, 2009, 166(2-3): 1226-1231
    [46] Kiyohara H., Nagao K., Nomi R.. Degradation of phenanthrene through o-phthalate by a Aeromonas sp. Agricultural and Biological Chemistry, 1976, 40: 1075-1082
    [47] Stingley R. L., Khan A. A., Cerniglia C. E.. Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochemical and Biophysical Research Communications, 2004, 322(1): 133-146
    [48] Somnath M., Tapan K. D.. Kinetics of phenanthrene degradation by Staphylococcus sp. strain PN/Y involving 2-hydroxy-1-naphthoic acid in a novel metabolic pathway. Process Biochemistry, 2008, 43(9): 1004-1008
    [49] Saito A., Iwabuchi T., Harayama S.. A novel phenanthrene dioxygenase from Nocardioides sp. Strain KP7: expression in Escherichia Coli. Journal of Bacteriology, 2000, 182(8): 2134-2141
    [50] Andrew D. L., Gareth L. J.. The phn genes of Burkholderia sp. Strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. Journal of Bacteriology, 1999, 181(2): 531-540
    [51] Balashova N. V., Kosheleva I. A., Golovchenko N P, et al.. Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochemistry, 1999, 35(3-4): 291-296
    [52] Huang X., Tian Y., Luo Y. R., et al.. Modified sublimation to isolate phenanthrene-degrading bacteria of the genera Sphingomonas and Burkholderia from Xiamen oil port. Marine Pollution Bulletin, 2008, 57(6-12): 538-543
    [53] Zhao H. P., Wang L., Ren J. R., et al.. Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5. Journal of Hazardous Materials, 2008, 152(3): 1293-1300
    [54] Tao X. Q., Lu G. N., Dang Z., et al.. A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry, 2007, 42(3): 401-408
    [55] Tatyana A., Anna S., Danka G., et al.. Effect of Triton X-100 and rhamnolipid PS-17 on the mineralization of phenanthrene by Pseudomonas sp. cells. International Biodeterioration & Biodegradation, 2008, 62(4): 415-420
    [56] Tian L., Ma P., Zhong J. J.. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochemistry, 2002, 37: 1431-1437
    [57] Prabhu Y., Phale P. S.. Biodegradation of phenanthrene by Pseudomonas sp.strain PP2: Novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Applied Microbiology Biotechnology, 2003, 61(4): 342-351
    [58] Zhao H. P., Wu Q. S., Wang L., et al.. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. Journal of Hazardous Materials, 2009, 164(2-3): 863-869
    [59] Tao X. Q., Lu G. N., Dang Z., et al.. A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry, 2007, 42(3): 401-408
    [60] Seo J. S., Keum Y. S., Hu Y. T., et al.. Phenanthrene degradation in Arthrobacter sp. P1-1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2- dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere, 2006, 65(11): 2388-2394
    [61] Christophe P., Claudine R., Veber A. M., et al.. Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11. Ecotoxicology and Environmental Safety, 2006, 65(2): 151-158
    [62] Sack U., Heinze T. M., Deck J., et al.. Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger. Applied and Environmental Microbiology, 1997, 63(7): 2906-2909
    [63] Macgillivray A. R, Shiaris M. P. Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Applied and Environmental Microbiology, 1993, 59(5): 1613-1618
    [64] Bezatel L., Hadar Y., Fu P. P., et al.. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 1996, 62(7): 2547-2553
    [65] Chávez G. B., Quintero R., Esparza G. F., et al.. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresource Technology, 2008, 89(2): 177-183
    [66]刘磊,李习武,刘双江,等.降解多环芳烃的菌株Gordoni sp. He4的分离鉴定及其在菲污染土壤修复过程中的动态变化.环境科学, 2007, 28(3): 617-622
    [67]陶雪琴,卢桂宁,党志,等.菲降解菌株GY2B的分离鉴定及其降解特性.中国环境科学, 2006, 26(4): 478-481
    [68]赵渝,高林,徐亚同,等.高效菲降解菌的分离鉴定及细胞表面结构研究.华东师范大学学报(自然科学版), 2008(2): 92-99
    [69]杨金水,许良华,佘跃惠,等.菲降解菌的分离鉴定及其降解性研究.海洋科学, 2007, 31(12): 24-27
    [70]盛放下,何琳燕,胡凌飞.苯并芘降解菌的分离筛选及其降解条件研究.环境科学学报, 2005, 25(6): 791-795
    [71]宋玉芳,孙铁衍,许华夏,等,表面活性剂TW-80对土壤中多环芳烃生物降解的影响.应用生态学报, 1999, 10(2): 230-232
    [72]李习武,刘志培,刘双江.新型复合生物乳化剂的性质及其在多环芳烃降解中的作用.微生物学报, 2004, 11(3): 373-377
    [73]丁克强,骆永明,孙铁衍,等.通气对石油污染土壤生物修复的影响.土壤, 2001, 4: 185-188
    [74]许华夏,宋玉芳.生物泥浆反应器中多环芳烃微生物降解调控因子研究.生态学杂志, 2001, 20(2): 23-26
    [75]陶雪琴,卢桂宁,易筱筠,等,菲高效降解菌的筛选及其降解中间产物分析.农业环境科学学报, 2006, 25(1):190-195
    [76]武凤霞.菲降解细菌的分离鉴定及其降解效果研究: [硕士学位论文].西安:西北大学, 2006
    [77]陈春云.菲降解细菌的分离鉴定及其降解效果的研究: [硕士学位论文].杭州:浙江工业大学, 2008
    [78]艾芳芳.菲降解菌Burkholderia sp. AFF的分离鉴定及特性研究: [硕士学位论文].大连:大连理工大学, 2007
    [79]周德平.菲降解细菌的分离鉴定、降解特性研究及儿茶酚2,3-双加氧酶基因的克隆与表达: [硕士学位论文.]杭州:浙江大学, 2003
    [80]夏颖.多环芳烃菲对微生物生态毒理研究、菲降解菌的分离鉴定及降解基因克隆与表达: [博士学位论文].杭州:浙江大学, 2004
    [81]周乐.多环芳烃降解菌的筛选、降解条件及其与玉米联合修复菲、芘污染土壤的研究: [硕士学位论文].南京:南京农业大学, 2006
    [82] Onruthai P., Hiroshi H., Nuttapun S., et al.. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS microbiology letters, 2000, 191(1): 115-121
    [83] Sanseverino J., Applegate B. M., King J. M., et al.. Plasmid-mediated mineralization of naphthalene, phenanthrene and anthracene. Applied Environmental Microbiology, 1993, 59(6): 1931-1937
    [84] Iwabuchi T., harayama S.. Biochemical and genetic characterization of trans-2-carboxy benzalpyruvate hydratase-aldolase from a phenanthrene-degrading Nocardioides strain. Journal of bacteriology, 1998, 180(4): 945-949
    [85] Hiroshi H., Toshio O.. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnology Biochemistry, 2003, 67(2), 225-243
    [86] Goyal A. K., Zylstra G. J.. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosterone GZ39. Applied Environmental Microbiology, 1996, 62(1): 230-236
    [87] Joanna D. M., James P. F., Daniel R. D., et al.. Degradation of phenanthrene and anthracene by cell susensions of Mycobacterium sp.strain PYR-1. Applied Environmental Microbio1ogy, 2001, 67(4): 1476-1483
    [88] Lory A. H., Kelly P. N., Derek R. L.. Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Organic geochemistry, 1999, 30(8): 937-945
    [89] Karl J. R., Stuart E. S.. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Research, 2001, 35(1): 291-299
    [90] Chang B. V., Shiung L. C., Yuan S. Y.. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 2002, 48(7): 717-724
    [91] Spormann A. M., Widdel F.. Metabolism of alkylbenzenes, alkanes and other hydrocarbons in anaerobic bacteria. Biodegradation, 2001, 11(2-3): 85-105
    [92] Chang B. V., Chang S. W., Yuan S. Y.. Anaerobic degradation of polycyclic aromatic hydrocarbon in sludge. Advances in Environmental Research, 2003, 7(3): 623-628
    [93] Takizawa N., Kaida N., Torigoe S., et al.. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatichydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. Journal of Bacteriology, 1994, 176(8): 2444-2449
    [94] Sandrine D., Christine M., Julien M., et al.. Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 2004, 70(11): 6714-6725
    [95]张俭,夏春谷.芳香烃双加氧酶的结构和功能研究.化学进展, 2004, 16(1): 116-121
    [96] Macgillivray A. R., Shiaris M. P.. Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Applied Environmental Microbiology, 1993, 59(5): 1613-1618
    [97] Lea B., Yitzhak H., Carl E. C.. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus pleurotus ostreatus. Applied Environmental Microbiology, 1997, 63(7): 2495-2501
    [98] Baldrian P., Carsten W., Gabriel J., et al. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Applied Environmental Microbiology, 2000, 66(6): 2471-2478
    [99] Daniel R. S., Ali M. S., Jeffrey S. K., et al.. Effect of wetting and drying of soil on sorption and biodegradtion of atrazine. Weed Science, 1995, 43: 298-305
    [100]张杰,刘永生,孟玲,等.多环芳烃降解菌筛选及其降解特性.应用生态学报, 2003, 10(14): 1783-1786
    [101]马沛,钟建江.微生物降解多环芳烃的研究进展.生物加工过程, 2003, 1(1): 42-46
    [102] Robert J. G., Michael F., David M. W., et al.. Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of pehnanthrene-degrading isolates. Applied Environmental Microbiology, 2000, 66(7): 2695-2702
    [103] Yael L., Peter F. S., Walter J. F.. Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Research, 1999, 33(7): 1719-1729
    [104] Liu Z., Lasa S., Luthy R. G.. Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil-water suspension. Water Science & Technology, 1991, 23(1/3): 475-485
    [105] Shonali L., Richard G. L.. Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water system. Environmental Science & Technology, 1991, 25(11): 1920-1930
    [106] Volkering F., Breure A. M., Van A. J. G., et al.. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied Environmental Microbiology, 1995, 61(5): 1699-1705
    [107]巩宗强,李培军,王新,等.污染土壤中多环芳烃的共代谢降解过程.生物学杂志, 2000, 19(6): 40-45
    [108] Arino S., Marchal R., Vandecasteele J. P.. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Applied Environmental Microbiology, 1996, 45(1-2): 162-168
    [109] Deziel E., Paquette G, Villemur R., et al.. Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons. Applied Environmental Microbiology, 1996, 62(6): 1908-1912
    [110] Harvey S., Elashvili I., Valdes J. J., et al.. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology, 1990, 8(3): 228-230
    [111]李习武,刘志培,刘双江.新型复合生物乳化剂的性质及其在多环芳烃降解中的作用.微生物学报, 2004, 11(3): 373-377
    [112] Carol R. J., Kate M. S.. Effect of nitrogen and phosphorus addition on phenanthrene biodegrdation in four soil. Biodegradation, 1999, 10(1): 43-50
    [113] Yuan S. Y., Chang J. S., Yen J. H., et al.. Biodegradation of phenanthrene in river sediment. Chemosphere, 2001, 43(3): 273-278
    [114] Leadbetter E. R., Foster J. W.. Oxidation products formed from gaseous alkane by the bacterium pseudomonas metharica. Archives of Biochemistry Biophysics, 1959, 82: 491-492
    [115] Bouchez M., Blanchet D., Vandecasteele J. P.. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Applied Microbiology & Biotechnology, 1995, 43(1): 156-164
    [116] Albert L. J., Ravendra N.. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[α]pyrene. International Biodeterioation & Biodegradation, 2000, 45(1-2): 57-88
    [117] Jerome J. P.. Microbial cooxidation involving hydrocarbons. Microbiological review, 1979, 43(1): 59-72
    [118] Samanta S. K., Chakraborti A. K., Jain R. K.. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Environmental Microbiology, 1999, 53(1): 98-107
    [119]国家环保局.水和废水监测分析方法.中国环境科学出版社,第四版, 1989
    [120]李玉瑛.土-水系统石油污染物挥发和生物降解过程研究: [博士学位论文].青岛:中国海洋大学, 2005
    [121] Liss P. S., Slater P. G.. Flux of gases across the air-sea interface. Nature, 1974, 247: 181-184
    [122]連文琪.有机物于不同环境条件下挥发特性之探讨: [硕士学位论文].台湾:国立中央大学, 2003
    [123] Jian P., Jatinder K. B., Nihar B.. Effect of turbulence on volatilization of selected organic compounds from water. Water Environmental Research, 1995, 67(1): 101-107
    [124]王雪莲.三氯乙烯的好氧共代谢与挥发模型研究: [博士学位论文].北京:中国地质大学(北京), 2006
    [125] Chao H. P., Lee J. F., Lee C. K., et al.. An alternative method for predicting organic solute volatilization rates under gas and liquid turbulence. Chemosphere, 2005, 59(5): 711-720
    [126] James H. S., David C. B. J., Daniel L. H.. Prediction of the volatilization rates of high-volatility chemicals from natural water bodies. Environmental Science & Technology, 1980, 14(11): 1332-1337
    [127] James H. S., David C. B. J., Daniel L. H.. Volatilization rates of intermediate and low volatility chemicals from water. Chemosphere, 1981, 10(3): 281-299
    [128] Thomas R. G. Volatilization from water. In: Lyman W. J., Reehl W. F., Rosenblatt D. H., eds. Handbook of Chemical Property Estimation Methods. Washington, D. C.: American Chemical Society, 1990
    [129] Zhiyong D., James L. M., Richard L.. Modeling streamflow-driven gas-liquid transfer rate. Environmental Engineering Science, 2009, 26(1): 156-162
    [130] David R. L.. CRC Handbook of Chemistry and Physics. United States: CRC Press, 2006
    [131]王连生.环境化学进展.北京:化学工业出版社, 1995
    [132] Ho Y. S., McKay G.. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 2000, 34 (3): 735-742
    [133] Gerard C., Paul C. M. N., John R. P., et al.. Temperature dependence of slow adsorption and desorption kinetics on organic compounds in sediments. Environmental Science & Technology, 1997, 31(2): 454-460
    [134] Kazuyuki C., Motoyuki S., Kunitaro K.. Adsorption rate on molecular sieving carbon by chromatography. AIChE Journal, 1978, 24(2): 237-246
    [135] Martin D. J., Walter J. W. J.. Rapid prediction of long-term rates of contaminant desorption from soils and sediments. Environmental Science & Technology, 2001, 35(2): 427-433
    [136] Sybille K., Hermann R., Peter G.. Desorption kinetics of phenanthrene in aquifer material lacks hysteresis. Environmental Science & Technology, 2004, 38(15): 4169-4175
    [137] Wang G. H., Peter G.. Activation energies of phenanthrene desorption from carbonaceous materials: column studies. Journal of Hydrology, 2009, 369(3-4): 234-240
    [138] Oliver B., Christian T., Joachim H., et al.. Decontamination of polyaromatic hydrocarbons from soil by steam stripping: mathematical modeling of the mass transfer and energy requirement. Environmental Science & Technology, 2003, 37(21): 5001-5007
    [139] Philippe B., Alain S., Philippe B.. A nonlinear parametric model for phenanthrene sorption. Journal Colloid Interface Science, 2006, 299(1): 14-21
    [142] Seung H. W., Jong M. P., Bruce E. R.. Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil-slurry systems. Biotechnology Bioengineering, 2001, 73(1): 12-24
    [143] Amid P. K., Li L., Jimmy E. A., et al.. Adsorption of polycyclic aromatic hydrocarbons in aged harbor sediments. Journal of Environmental Engineering, 2005, 131(3): 403-409
    [140] Hwang S., Cutright T. J.. Biodegradability of aged pyrene and phenanthrene in a natural soil. Chemosphere, 2002, 47(9): 891-899
    [141] Ping L. F., Luo Y. M., Wu L. H., et al.. Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions. Environmental Geochemistry Health, 2006, 28(1-2): 189-195
    [144] Zumriye A.. Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 2005, 40(3-4): 997-1026
    [145] Pierre L., Alain S., Jacques B., et al.. Evaluation of matrices for the sorption and biodegradation of phenanthrene. Water Research, 2006, 40(12) 2397-2404
    [146] Mülier S., Totsche K. U., K?gel K. I.. Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. European Journal Soil Science, 2007, 58(4): 918-993`
    [147]唐受印,汪大翚.废水处理工程.北京:化学工业出版社, 1998. 114-118
    [148] Vonopen B., Kordel W., Klein W.. Sorption of nonplus and polar compounds to Solis: Processes, measurement and experience with the applicability of the modined OECD-guideline. Chemosphere, 1991, 22(1): 285-304
    [149]沈培友,徐晓燕,马毅杰.无机-有机柱撑蒙脱石吸附对硝基苯酚的热力学与动力学特征研究.环境保护科学, 2005, 132(31):15-19
    [150]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复.海洋环境科学, 2000, 19(3): 24-29
    [151] Budzinski H., Raymond N., Nadalig T., et al., Aerobic biodegradation of alkylated aromatic hydrocarbons by a bacterial community. Organic Geochemistry, 1998, 28(5): 337-348
    [152] Jeremy F. A., Lewis R. B.. Use of sublimation to prepare solid microbial media with water-insoluble substrates. Applied and Environmental Microbiology, 2000, 66(1): 439-442
    [153]王亮.机油降解菌群的驯化及其活性与结构分析: [博士学位论文].上海:同济大学, 2007
    [154] Manuel A. S. A., Roman B.. Competitive sorption of cis-DCE and TCE in silica gel as a model porous mineral solid. Chemosphere, 2008, 72(11): 1807-1815
    [155] Allen S. J., Mckay G., Porter J. F.. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 2004, 280(2): 322-333
    [156] Choy K. K. H., McKay G., Porter J. F.. Sorption of acid dyes from effluents using activated carbon. Resources. Conservation and Recycling, 1999, 27(1-2): 57-71
    [157] Sheindrof C. H., Rebhun M., Sheintuch M.. A Freundlich-type multicomponent isotherm. Journal of Colloid and Interface Science, 1993, 79(1): 136-142
    [158] Ma Z., Katti A., Lin B. C., et al.. Simple wave effects in two-component nonlinear liquid chromatography: application to the measurement of competitive adsorption isotherms. The Journal of Physical Chemistry, 1990, 94(17): 6911-6922
    [159] Musa I. E., Amjad H. E., Yahya S. A.. Adsorption behavior of anionic reactive dyes on H-type activated carbon: competitive adsorption and desorption studies. Separation Science and Technology, 2007, 42(10): 2195-2220
    [160] Yongsuk H., Derick G. B.. Cell surface acid–base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio. Colloids and Surfaces B: Biointerfaces, 2006, 50(2): 112-119
    [161]董庆洁,邵仕香,李乃瑄,等.凹凸棒土复合吸附剂对磷酸根吸附行为的研究.硅酸盐通报, 2006, (2): 19-22
    [162]吴蔓莉,聂麦茜,王晓昌,等.蒽和菲的酶促降解条件及动力学特征.环境化学, 2007, 26(3): 314-317
    [163]艾芳芳,曲媛媛,周集体,等.菲降解菌株的分离鉴定及特性研究.环境科学, 2008, 29(4): 1065-1070
    [164]王建龙,文湘华.现代环境生物技术.北京:清华大学出版社. 2001
    [165]李冬梅. 1,1-二氯乙烯降解菌的筛选及其降解机理研究: [硕士学位论文].北京:中国地质大学(北京), 2006
    [166]谢修银,汪存信,王志勇. SDS抑制乙酰胆碱酯酶反应的热动力学研究.化学学报, 2006, 64(21): 2151-2156