PAHs降解优势菌的筛选、降解特性及动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃是环境中常见的有毒难降解有机污染物,广泛分布于水体、空气以及土壤中,并可通过生物链累积,最终对人类健康造成危害。从目前国内外研究发展趋势看,多环芳烃的生物修复是一个涉及许多环节的、复杂的系统工程。对多环芳烃生物降解诸环节进行深入研究,从理论和实际上均具有重要的意义。
     本论文首先成功分离出多环芳烃优势降解菌,利用所筛选的菌株考察混合多环芳烃分子间的竞争代谢能力、混合菌体间的相互作用关系、解析多环芳烃的传质及其降解动力学过程,获得以下研究结果:
     (1)以焦化废水底泥为菌源,经驯化培养分离出10株降解多环芳烃的菌株,其形态特征互有差异,细胞表面疏水性差异显著,具有一定的多样性。经分子生物学和生理生化特征鉴定,其中CY4为杀鲑气单胞菌(Aeromonas salmonicida),目前从多环芳烃的降解文献中未见该株菌的报道;HY7为施氏假单胞菌(Pseudomonas stutzeri)。且CY4菌和HY7菌能利用的底物较为广泛,对芘的5d去除率达到35%以上。
     (2)优势菌对混合多环芳烃降解时,分子结构越简单、溶解度越大,其竞争代谢能力越强,表明优势菌降解混合多环芳烃时,不同结构的多环芳烃分子间存在明显的竞争代谢;同时,在混合多环芳烃降解时,会使其中某个多环芳烃的代谢速率比单一降解时加快,说明多环芳烃分子间存在协同代谢。实验结果表明,按照顺序芴、菲、蒽、荧蒽、芘,竞争代谢能力逐渐减小,HY7菌对混合蒽菲芘中的蒽、芘降解率分别比单一碳源时的降解率提高了12.7%、5.5%。
     (3)混合菌种降解多环芳烃时,菌种间也存在着相互影响。受试的三种菌株HY3菌、HY6菌和HY7菌均有降解多环芳烃的能力,混合时相互可产生抑制、协同等作用,其中HY7菌在降解体系中是一个强势的菌株,HY3菌和HY6菌的存在能提高HY7菌的降解作用。
     (4) GC-MS结果表明,多环芳烃转化产物一般是含有多酚羟基和羰基或羧基的化合物。降解前期酚类化合物含量较多,后期羧酸性化合物含量较多。转化产物对母体环进一步降解一般表现出促进作用。外加蒽的转化产物混合物,156h蒽的累积降解率可提高3.07-6.10%,外加菲的转化产物混合物使菲60h内累积降解率可提高13.14-30.35%。
     (5)多环芳烃降解过程涉及到多个环节:多环芳烃的溶解、吸附、“溶入”细胞壁、跨过细胞膜进入细胞内部、胞内酶氧化等。实验结果表明,传质过程各环节对整个降解速率的影响很大。菌体对多环芳烃的吸附速率远远大于其降解速率,造成降解时多环芳烃在菌体表面和内部的富集。多环芳烃的表观降解速率远大于其溶解速率,因此,多环芳烃降解过程中,溶解过程是降解过程中的限速步。
     (6)论文考察了降解过程中,菌体对多环芳烃分子的捕获富集特征。整个降解过程中,细胞表面、细胞壁中、细胞内部对芘均有富集迹象,从芘的分布特点看,细胞表面富集的芘最多,占降解体系中芘总量的1.1~2.9%。细胞内部和细胞壁中的芘富集量相差不大,占降解体系中芘总量的0.3~0.6%。并且,芘不会在细胞表面持续累积,而是不断的传到细胞内部被降解。
     (7)多环芳烃溶解过程可用方程Ct=Cs+Ce-kAt描述,通过实验得到了几种多环芳烃溶解动力学参数Cs和kA,计算Vmax=kACs得到了最大溶解速率。加入微生物表面活性剂,蒽的溶解度可增大1.23倍,最大溶解速率可增大3.15倍;菲的溶解度可增大1.47倍,最大溶解速率增大了1.62倍;芘的溶解度增大4.50倍,其最大溶解速率增大了7.51倍。
     (8)菌体表面对多环芳烃的吸附动力学实验结果表明,菌体对菲、芘的吸附可以快速达到饱和。其吸附过程可以用拟二级动力学方程描述,通过实验得到了相应参数k2和qe值。
     上述研究结果,对于深入理解多环芳烃的生物降解过程,实现多环芳烃污染环境的生物修复过程有一定的指导意义。
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous toxic recalcitrant organic pollutants. They are widely distributed in various environmental media including atmosphere, water, sediment, soil and organism. And they have done harm to human health by biological-chains accumulation. Based on the review of related study in the worldwide, microbial degradation of PAHs is considered to be the major decomposition process for these contaminants in nature, and which is a complicated systematic project concerning many aspects. Thus, the further study on bioremediation aspects of PAHs is of theoretical and realistic significance.
     In this paper, firstly, some predominant strains for biodegradation of PAHs were successful isolated. Then, the competitive metabolism of mixed PAHs and the interaction relationship between mixed cultures were investigated respectively. Subsequently, the mass transferring process and degradation kinetics of PAHs were studied. The main results were as follows:
     (1) Ten strains isolated were of different morphological character and of different cell surface hydrophilicity, which showed a certain microbial diversity. Based on modern molecular identification results, CY4 were identified as Aeromonas salmonicida, which was a new strain in PAHs biodegradation reports to our best known; HY7 was identified as Pseudomonas stutzeri. The two strains could utilized extensive carbon source and had a higher pyrene degradation rate over 35% after inoculated 5days.
     (2) PAHs biodegradation under the condition of mixed substrate by single strain showed that there were obviously competitive metabolism phenomenon between different kinds of PAHs, and the more simple molecular structure it was or the higher solubility it had, the stronger competitive ability it displayed. Moreover, the metabolic rate of some PAH could be enhanced compared with biodegradation under the condition of single substrate. The results showed a gradually decreased order of competitive ability according to fluorine, phenanthrene, anthracene, fluoranthene and pyrene. For HY7 strain, the anthracene biodegradation rate could be enhanced by 12.7% and the pyrene biodegradation rate could be enhanced by 5.5%.
     PAHs biodegradation by mixed strains showed that there were interactional relationship among them, and it could be synergism or inhibition. Among it, HY7 strain was a most predominant bacteria, its biodegradation could be enhanced under the existing of HY3 strain and HY6 strain.
     (3) Analysed intermediates from poly cyclic aromatic hydrocarbon biodegradation using GC/MS, it showed that the mixed intermediates including chemical species with. Dihydroxyl, carbonyl or carboxyl. It had higher content of phenolic compounds in the previous period and of carboxylic acid in the later period, it displayed promoting effect of intermediates on further biodegradation of PAHs. The removing rates of anthracene were increased 3.07-6.10% within 156h, and those of phenanthrene were 13.14-30.35% within 60h.
     (4) There were at least five steps involved in PAHs biodegradations:the dissolution of PAHs, the sorption of PAHs, dissolved into cell wall, across cell membrane into cells, oxidized by endoenzyme. The experimental results show that the steps in mass transformation had large effects on degradation rate. The adsorption rate of PAHs by strain was much larger than the degradation rate, as a result, that PAHs could exist on the cell surface, within cell wall or inside cells for some time. The apparent degradation rate of PAHs was much larger than the dissolution rate, thus, the dissolution process was the ratelimiting step of the degradation process.
     (5) In the biodegradation process, the PAHs captured by cells was investigated. Take pyrene for instance, pyrene could exist on the cell surface, within cell wall or inside cells during the biodegradation process. And it always had the most amount of pyrene on the surface of cells, which accounted forl.1~2.9%of the pyrene total amount of biodegradation system. There were little difference between the cell wall and the inside cells of pyrene content, was about 0.3~0.6% of the pyrene total amount of biodegradation system.That pyrene would't continuously accumulation on cell surface but continuously transferred into the cells and was biodegradated there.
     (6) The dissolution process could be described by a first-order model Ct=Cs+Ce-kAC, and the kinetic parameters Cs and kA could be determinated by experiment data, the maximum dissolution rate could be calculated by vmax=kACs.by adding biosurfactant, the solubility and the maximum dissolution rate of anthracene could be enhanced by 1.23 tines and by 3.15 times respectively, that of phenanthrene could be enhanced by 1.47 tines and by 1.62 times respectively, and that of pyrene could be enhanced by 4.50 tines and by 7.51 times respectively.
     (7) The kinetics experiments of PAHs adsorption on cell surface showed that, the adsorption process of phenanthrene or pyrene could rapidly up to the adsorption equilibrium, and the adsorption process could be described by a quasi-second order kinetic equation and the kinetic parameters k2 and qe could be determinated by experiment data.
     The above experimental results, providing a further understanding on the PAHs biodegradarion process, and was meanful to realizing the bioremediation of PAHs-polluted environment.
引文
[1]M Grifoll, M Casellas, J M Bayona and A M Solanas. Isolation and characterisation of a fluorene-degrading bacterium:Identification of ring oxidation and ring fission products [J]. Appl Environ Microbiol.1992,58(9):2910-2917.
    [2]L H Keith, W A Telliard. Priority pollutants I-a perspective view[J]. Environ. Sci. Technol. 1979,13:416-423.
    [3]赵文昌,程金平,谢海斌,等.环境中多环芳烃(PAHs)的来源与监测分析方法[J].环境科学与技术,2006,29(3):105-107.
    [4]R Renner. EPA to strengthen persistent, bioaccumulative, and toxic pollutant controls-Mercury first to be targeted [J]. Environ. Sci. Technol.1999,33:62.
    [5]聂麦茜主编.有机化学[M].西安:西安建筑科技大学校内教材,2005:54-57.
    [6]赵由才.环境工程化学[M].北京:化学工业出版社,2003:151-155.
    [7]戴树桂主编.环境化学[M].北京:高等教育出版社,2002:318-321.
    [8]R N Wester, T E. Alsberg, A B.Frommelin, et al. Effect of polycyclic aromatic hydrocarbons and other mutagenic substances from a gasoline-fuelled automobil[J]. Environ. Sci. Technol. 1988,22(8):925-930.
    [9]S R Wild and K C Jones. Polynuclear aromatic hydrocarbons in the United Kingdom Environment:A preliminary source inventory and budget[J]. Environmental Pollution.1995, 88(1):91-108.
    [10]B D Mcveety, R A Hites. Atmospheric deposition of polycyclic aromatic hydrocarbons to water surface:a mass balance approach[J]. Atmospheric Environment.1988,22(3):511-536.
    [11]李杏茹,郭雪清,刘欣然,等.北京市冬季大气气溶胶中PAHs的污染特征[J].环境化学,2008,27(4):490-493.
    [12]R G M Lee, K C Jones. The influence of meteorology and air masses on daily atmospheric PCB and PAH concentrations at a UK locations [J]. Enviromnental Science and Technology. 1999,33(5):705-712.
    [13]李军,张干,祁士华.广州大气中多环芳烃分布特征、季节变化及其影响因素[J].环境科学,2004,25(3):7-13.
    [14]K C Jones, J A Stratford, K S Waterhouse. Organic contaminants in Welsh soils:polynuclear aromatic hydrocarbons [J]. Environ. Sci. Technol.1989,23(5):540-550.
    [15]L M Shbad. A P Ilnitskii. Carcinogens in the human Environment.1979, Szabvanykido,
    Budapest.
    [16]P Baumard, H Budzinski, P Garrigues, et al. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea:occurrence, bioavailability and seasonal variations[J]. Marine Environmental Research,1999,47(1):17-47.
    [17]蔡立哲,马丽,袁东星.九龙江口红树林区底栖动物体内的多环芳烃[J].海洋学报,2005,27(5):112-118.
    [18]麦碧娴,林峥,张干,等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究—多环芳烃和有机氯农药的分布及特征[J].环境科学学报,2000,20(2):192-197.
    [19]程家丽,黄启飞,魏世强,等.我国环境介质中多环芳烃的分布及其生态风险[J].环境工程学学报,2007,4(1):138-142.
    [20]于小丽,张江.多环芳烃污染与防治政策[J].油气田环境保护[J],1996,6(4):53-56.
    [21]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学学报(自然科学版),2003,24(3):40-44.
    [22]B J Eadie, W Faust, W S Gardner, et al. Polycyclic aromatic hydrocarbons in sediments and associated benthos in Lake Erie[J]. Chemosphere,1982,11(2):185-191.
    [23]沈菲,朱利中.钢铁工业区附近农田蔬菜PAHs的浓度水平及分布[J].环境科学,2007,3(28)3:669-672.
    [24]赵文昌,程金平,谢海斌,等.环境中多环芳烃(PAHs)的来源与监测分析方法[J].环境科学与技术,2006,29(3):105-107.
    [25]Y K Li, B P Jiang, K.N. Yuan. Conventional Analysis of Soils Chemistry[M]. Beijing: Scientific Press,1983,74.
    [26]S Viamajala, B M Peyton, L A Richards, et al. Solubilization, solution equilibria, and biodegradation of PAHs under thermophilic conditions. Chemosphere,2007,66:1094-1106.
    [27]吉云秀,邵秘华.多环芳烃的污染及其生物修复[J].交通环保,2003,24(5):33-36.
    [28]R Bartha. Biotechnology of petroleum pollutant biodegradation[J]. Microbial Ecology,1986, 12:155-172.
    [29]C E Cemiglia. Biodegradation of polycyclic aromatic hydrocarbon[J]. Biodegradation,1992,3: 351-368.
    [30]B. E. Andersson, L. Welinder, P. A. Olsson, et al. Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids[J]. Bioresource Technology,2000, 73(1):29-36.
    [31]D Miincnerova, J Augustin. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons:A review[J]. Bioresource Technology,1994,48(2):97-106.
    [32]Z I Finkelstein, B P Baskunov, E L Golovlev, et al. Fluorine transformation by bacteria of the genus Rhodococcus[J]. Microbiology,2003,72(6):660-665.
    [33]聂麦茜,张志杰,王晓昌,等.两株假单胞菌对蒽菲芘的降解作用[J].环境科学学报,2002,22(5):630-633.
    [34]李全霞,范丙全,龚明波,等.降解芘的分枝杆菌M11的分离鉴定和降解特性[J].环境科学,2008,29(3):763-768.
    [35]H Feitkenhauer, R Muller, H Markl. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70℃ by Thermus and Bacillus spp[J]. Biodegradation,2003,14:367-372.
    [36]M P Shiaris, J J Cooney. Replica plating method for estimating phenanthrene-utilizing and phenanthrene-come-tabolizing microorganisms[J]. Appl Environ Microbiol,1983,45:706-710.
    [37]M C Saagua, L Baeta-Hall, A M Anselmo. Microbiological characterization of a coke oven contaminated site and evaluation of its potential for bioremediation[J]. World Journal of Microbiology and Biotechnology,2002,18:841-845.
    [38]J S Seo, Y S Keum, Y Hu, et al. Degradation of phenanthrene by Burkholderia sp. C3:initial 1,2-and 3,4-dioxygenation and meta-and ortho-cleavage of naphthalene-1,2-diol[J]. Biodegradation,2007,18(1):123-131.
    [39]A Saito, T Iwabuchi, S Harayama. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7[J]. Chemosphere,1999,38(6):1331-1337.
    [40]P A West, G C Okpokwasili, P R Brayton, et al. Numerical taxonomy of phenanthrene-degrading bacteria isolated from Chesapeake Bay[J]. Appl Environ Microbiol, 1984,48(5):988-993.
    [41]A R Jeremy, J J A Pedro, L S Jerald. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates:Implications for phytoremediation, Environmental Pollution,2005, 136(3):477-484.
    [42]张兰英,刘娜,孙立波,等.现代环境微生物技术[M].北京:清华大学出版社,2005:132-140.
    [43]O Cho, KY Choi, GJ Zylstra, et al. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation[J]. Biochemical and Biophysical Research Communications,2005,327(3):656-662.
    [44]D Dean-Ross, J D Moody, J P Freeman, et al. Metabolism of anthracene by a Rhodococcus species[J]. FEMS Microbiology Letters,2001, (204):205~211
    [45]H P Doddamani, H Z Ninnekar. Biodegradation of phenanthrene by a Bacillus species[J]. Current Microbiology,2000,41:11-14.
    [46]V Leonardia, V Sasekb, M Petruccioli, et al. Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils[J]. International Biodeterioration& Biodegradation,2007,60(3):165-170.
    [47]Y Liang, D R Gardner, C D Miller, et al. Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium sp. Strain KMS[J]. Appl. Environmental Microbiology.2006,72(12):7821-7828.
    [48]马沛,钟建江.微生物降解多环芳烃(PAHs)的研究进展[J].生物加工过程,2003,1(1):42-46.
    [49]杨柳燕,肖琳.环境微生物技术[M].北京:科学出版社,2003:181-182.
    [50]C E Cerniglia and M A Heitkamp. Microbial degradation of poycyclic aromatic hydrocarbons in aquatic environment. In:Baranasi, Bota Taton(ed). Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. FL, CRC Press Inc,1989,41-68.
    [51]K J Rockne, S E Strand. Anaerobic biodegradation of naphthalene phenathrene, and Biphenyl by a denitrifying enrichment culture [J]. Water Research,2001,35(1):291-299.
    [52]B V Chang, L C Shiung, S Y Yuan. An aerobic biodegradation of polycyclic aromatic hydrocarbon in soil[J]. Chemosphere,2002,48(7):717-724.
    [53]S Viamajala, B M Peyton, L A Richards, et al. Solubilization, solution equilibria, and biodegradation of PAH's under thermophilic conditions[J]. Chemosphere,2007,66(6): 1094-1106.
    [54]王蕊,聂麦茜,吴蔓莉,等.浓度及中间转化产物对蒽、菲生物降解特征的影响研究.山西能源与节能.2007,1:25~28.
    [55]Y H Kim, J P Freeman, J D Moody, et al. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1[J]. Applied Microbiology and Biotechnology, 2005,67:275-285.
    [56]吴蔓莉,聂麦茜,王晓昌,等.金属离子对多环芳烃酶促降解的影响作用.水处理技术,2008,8:13~16.
    [57]巩宗强,李培军,王新,等.几种芳香化合物对苯并芘在泥浆反应器中降解的影响[J].环
    境科学,2002,23(6):69-73.
    [58]N M Leys, L Bastiaens, W Verstraete, et al. Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil[J]. Applied Microbiology and Biotechnology,2005,66:726-736.
    [59]L Tian, P Ma, J J Zhong. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina[J]. Process Biochemistry.2002,37(12):1431-1437
    [60]侯树宇,张清敏,多淼,等.白腐真菌和细菌对芘的协同生物降解研究.农业环境科学学报,2005,24(2):318—321.
    [61]F J Jerome, S Chikashi, C Raul. Composting of polycyclic aromatic hydrocarbons in simulated municipal solid waste[J]. Water Environ. Res,1998,70(3):356-361.
    [62]聂麦茜,张志杰,赵桂芳,等.共基质对优势菌降解多环芳烃的作用研究.环境科学研究,2001,5:30-32.
    [63]巩宗强,李培军,王新,等.几种芳香化合物对苯并芘在泥浆反应器中降解的影响[J].环境科学,2002,23(6):69-73.
    [64]J Sikkema, JA De Bont, B Poolman. Mechanisms of membrane toxicity of hydrocarbons[J]. Microbiol Rev,1995, (59):201-222.
    [65]I Y Jimenez, R Bartha. Solvent-augmented mineralization of pyrene by a Mycobacterium SP[J]. Appl. Environ. Microbiol,1996,62(7):2311-2316.
    [66]B Brezna, A A Khan, C E. Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp[J]. FEMS Microbiology Letters,2003, 223(2):177-183.
    [67]K H Shin, K W Kim, Y Ahn. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process[J]. Journal of Hazardous Materials, 2006,137(3):1831-1837
    [68]K A Reilley, M K Banks, A. P. Schwab. Dissipation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere[J]. J.Environ.Qual,1996,25:212-219
    [69]孙铁珩,宋玉芳,许华夏,等.植物法修复PAHs和矿物油污染土壤的调控研究.应用生态学报,1999,10(2):225-229.
    [1]唐玉斌,毛莉,吕锡武,等.一株蒽降解菌的分离鉴定及其降解特性研究[J].环境与技术,2007,30(9):11-13.
    [2]J R van der Meer, W M de Vos, S Harayama, et al. Molecular mechanisms of genetic adaptation to xenobiotic compounds [J]. Microbiol Mol Biol Rev.1992,56(4):677-694.
    [3]S K Samanta, O V Singh, R K Jain. Polycyclic aromatic hydrocarbons:environmental pollution and bioremediation[J]. Trends Biotechnol,2002,20(6):243-248.
    [4]X Li, P Li, X Lin, et al. Biodegradation of aged polycyclic aromatic hydrocarbons(PAHs) by microbial consortia in soil and slurry phases[J]. Journal of Hazardous Materials,2008, 150(1):21-26.
    [5]M C Saagua, L Baeta-Hall, A M Anselmo. Microbiological characterization of a coke oven contaminated site and evaluation of its potential for bioremediation[J]. World Journal of Microbiology and Biotechnology,2002,18:841-845.
    [6]H Feitkenhauer, R Miiller, H Markl. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70℃ by Thermus and Bacillus spp[J]. Biodegradation,2003,14:367-372.
    [7]J S Seo, Y S Keum, Y Hu, et al. Degradation of phenanthrene by Burkholderia sp. C3:initial 1,2-and 3,4-dioxygenation and meta-and ortho-cleavage of naphthalene-1,2-diol[J]. Biodegradation,2007,18(1):123-131.
    [8]S Y Yuan, S H Wei, B V Chang. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture [J]. Chemosphere,2000,41(9):1463-1468.
    [9]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学,2000,19(3):24-29.
    [10]马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002,32-38,65-66,167-168.
    [11]T Castellanos, F Ascencio, Y Bashan. Cell-surface hydrophobicity and cell-surface charge of Azospirillum spp[J]. HEMS Microbiology Ecology,1997,24:159-172.
    [12]H P Zhao, L Wang, J R Ren, et al. Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5. Journal of Hazardous Materials,2008, 152(3):1293-1300.
    [13]R E Buchanan, N E Gibbons.《伯杰细菌鉴定手册》(第八版)[M],北京:科学出版社,1984.
    [14]李全霞,范丙全,龚明波,等.降解芘的分枝杆菌M11的分离鉴定和降解特性[J].环境科学,2008,29(3):763-768.
    [15]T Kustos, I Kustos, E Gonda, et al. Capillary electrophoresis study of outer membrane proteins of Pseudomonas strains upon antibiotic treatment[J]. Journal of Chromatography A,2002, 979(1-2):277-284.
    [16]N K Lim, J C Yoohk, et al. The relationship between cell surface hydrophobicity (CSH) and stress tolerance in Bifidobaterium spp[J]. Food Science and Biotechnology,1998,7:66-70.
    [17]吴伟,余晓丽,黎小正,等.芽孢杆菌与假单胞菌的疏水性及其应用[J].中国环境科学,2003,23(2):152-156.
    [18]刘艳锋,周作明,李小林,等.芘降解菌的分离纯化及其降解性能测定[J].华侨大学学报(自然科学版),2008,29(2):267-269.
    [19]邵宗泽,许晔,马迎飞,等.2株海洋石油降解细菌的降解能力[J].环境科学,2004,25(5):133-137.
    [20]A Mrozik, S Labuzek, Z Piotrowska-Seget. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiological Research, 2005,4(160)2:149-157.
    [1]李永君,赵化冰,任河山,等.萘降解细菌的分离及其降解基因的分子检测[J].生态学杂志,2006,25(7):738-742.
    [2]刘磊,李习武,刘双江,等.降解多环芳烃的菌株Gordonia sp.He4的分离鉴定及其在菲污染土壤修复过程中的动态变化[J].环境科学,2007,28(3):617-622.
    [3]A Mrozik, S Labuzek, Z Piotrowska-Seget. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation[J]. Microbiological Research, 2005,160(2):149-15.
    [4]徐虹,章军,刘陈立,等.PAHs降解菌的分离、鉴定及降解能力测定[J].海洋环境科学,2004,23(3):61-64.
    [5]马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨.哈尔滨工业大学出版社,2002,32-38,65-66,167-168.
    [6]L L Milton, V N Milos, D B Keith. Analytical chemistry of polycyclic aromatic compounds[J]. Academic Press, New York London Toronto Sydney San Francisco,1981,9-10.
    [7]S Laha, R G Luthy. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems[J]. Biotechnology and bioengineering,1992, 40(11):1367-1380.
    [8]A J Park, D K Cha, T M Holsen. Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis[J]. Water Environment Federation,1998,70:351-355.
    [9]J L Li, B H Chen. Solubilization of model polycyclic aromatic hydrocnrhons by nonionic surfactants[J]. Chemical Engineering Science,2002,57(14):2825-2835.
    [1]A R MacGillivray, M P Shiaris, Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments[J]. Appl environ microbiol,1993,59(5):1613-1618.
    [2]J S Seo, Y S Keum, Y Hu, et al. Phenanthrene degradation in Arthrobacter sp. P1-1:Initial 1,2-,3,4-And 9,10-dioxygenation, and meta-and ortho-cleavages of naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids[J]. Chemosphere,2006,65(11):2388-2394.
    [3]陶雪琴,卢桂宁,易筱筠,等.菲高效降解菌的筛选及其降解中间产物分析[J].农业环境科学学报,2006,25(1):190-195.
    [4]C L Copper. Analysis of intermediates from polycyclic aromatic hydrocarbon biodegradation[J]. Journal of Separation Science,2003,26(18):1683-1687.
    [5]聂麦茜.多环芳烃优良菌的分离及降解特性探究[D].西安:西安建筑科技大学,2002.
    [6]雷萍,聂麦茜,温晓玫,等.优势黄杆菌对蒽、菲、芘混合物的降解特征研究.西安交通大学学报,2004(38)6:657-660
    [7]马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社, 2002,32-38,65-66,167-168.
    [8]王蕾.降解多环芳烃优良菌的筛选分离及代谢性能研究[D].西安建筑科技大学,2007,23-25.
    [9]巩宗强,李培军,王新,等.几种芳香化合物对苯并芘在泥浆反应器中降解的影响[J].环境科学,2002,23(6):69-73.
    [10]L Tian, P Ma, J J Zhong. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina[J].Process Biochemistry,2002,37:1431-1437
    [11]T Iwabuchi, Y Inomata-Yamauchi, A Katsuta, et al. Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42℃[J], Journal of Marine Biotechnology,1998,6(2):86-90.
    [12]J A Rentz, P J J Alvarez, J L Schnoor. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02[J]. Environmental Pollution,2008,151(3):669-677
    [13]O Pinyakong, H Habe, T Yoshida, et al. Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2[J]. Biochemical and Biophysical Research Communications,2003,301(2):350-357.
    [14]陈春云,岳珂,陈振明,等.微生物降解多环芳烃的研究进展[J].微生物学杂志,2007,27(6):100-103.
    [15]O Cho, K Y Choi, G J Zylstra, et al. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation[J]. Biochemical and Biophysical Research Communications,2005,327(3):656-662.
    [16]D Dean-Ross, J D Moody, J P Freeman, et al. Metabolism of anthracene by a Rhodococcus species[J]. FEMS Microbiology Letters,2001,204:205-211.
    [17]Nathaniel Keith. http://umbbd.msi.umn.edu/pyr/pyr_image_mapl.htmL. University of Minnesota.2010.
    [18]S H Chen, M D Aitken. Salicylate Stimulates the Degradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons by Pseudomonas saccharophila P15[J]. Environ. Sci. Technol,1999,33(3),435-439
    [19]Selifonov SA, Grifoll M, Eaton RW, ChaPman PJ. Oxidation of aphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase[J]. APPI. Environ. Mierobiol.1996,62:507-514.
    [20]周乐,盛下放.芘降解菌株的筛选及降解条件的研究[J].农业环境科学学报,2006,25(6): 1504-1507.
    [21]G Stucki, M Alexander. Role of dissolution rate and solubility in biodegradation of aromatic compounds[J]. Appl. Environ. Microbiol,1987,53(2):292-297.
    [1]R A Efroymson, and M Alexander. Biodegradation in soil of hydrocarbon pollutants in nonaqueous-phase liquids (NAPLs). Environ. Toxicol.1994,13:405-411.
    [2]W T Stringfellow, L Alvarez-Cohen. Evaluting the Relationship between the Sorption of PAHs to Bacterial Biomass and Biodegradation[J]. Water Research,1999,33(11):2535-2544.
    [3]W B Bill, and T L Richard. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete Laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol.,1996,62:1597-1603.
    [4]J A Field, Jone E de, and Costa G F. Biodegradation of polycyclic aromatic hydrocarbons by new isolated of White Rot Fungi. Appl. Environ. Microbiol.,1992,58:2219-2226.
    [5]虞云龙,盛国英,傅家谟.杀灭菊酯的微生物降解及酶促降解.环境科学,1997,18(2):5-9.
    [6]王蕾.降解多环芳烃优良菌的筛选分离及代谢性能研究[D].西安建筑科技大学,2007,23-25.
    [7]Xia, X. H., Yu H., Yang Z.F., Huang G. H.,2006. Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of Yellow River:Effects of high sediment content on
    biodegradation. Chemosphere 65,457-466.
    [8]Van Oss C.J.1995. Hydrophobicity of biosurfaces-origin, quantitative determination and interaction energies. Colloids and Surfaces 5,91-110.
    [9]王蕾,聂麦茜*,王志盈,玉亚,徐会宁,张睿.多环芳烃降解优势菌的筛选及其对芘的降解性能研究.环境科学与技术.2010,33(1):4347
    [10]Stringfellow W. T., Lieb M. and Fournier J. M.,1991. Staphylococcus aureus growth and Type 5 capsular polysaccharide production in synthetic media. Appl. Environ. Microbiol.57, 618-621.
    [11]Sutherland I. W.,1988. Bacteria surface polysaccharides:structure and function. Int. Rev. Cytol. 113,187-231.
    [12]Luis A Syavedra-Soto, Wei-Nung, Tze-Khai Lin, Chung-Lin Ho, and Hwai-Shen Liu,2006. Alkane Utilization by Rhodococcus Strain NTU-1 Alone and in its Natural Association with Bacillus fusiformis L-1 and Ochrobactrum sp. Biotechnol. Prog.22,1368-1373.
    [13]王蕊.2007.蒽菲芘及其中间转化物的生物竞争代谢动力学特征研究[D].西安建筑科技大学.26-27
    [14]D S Jones, C G Adair, W M Mawhinney, et al. Standardisation and comparison of methods employed for microbial cell surface hydrophobicity and charge determination[J]. International Journal of Pharmaceutics,1996,131(1):83-89.
    [15]P Goswami, H D Singh. Different Modes of Hydrocarbon Uptake by Two Pseudomonas Species[J]. Biotechnology and bioengineering,2004,37(1):1-11.
    [16]R A Al-Tahhan, T R Sandrin, A A Bodour, et al. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa:effect on cell surface properties andinteraction with hydrophobic substrates[J]. Applied and Environmental Microbiology,2000, 66(8):3262-3268.
    [17]赵晴,张甲耀,陈兰洲,等.疏水性石油烃降解菌细胞表面疏水性及降解特性[J].环境科学,2005,26(5):132-136.
    [1]R S Wodzinski, J E Coyle. Physical state of phenanthrene for utilization by bacteria[J]. Applied and Environmental Microbiology,1974,27(6):1081-1084.
    [2]R A Efroymson, and M Alexander. Biodegradation in soil of hydrocarbon pollutants in nonaqueous-phase liquids (NAPLs) [J]. Environ. Toxicol,1994,13:405-411.
    [3]任春艳.降解多环芳烃优良菌的筛选分离及代谢性能研究[D].西安,西安建筑科技大学,2009.
    [4]S Viamajala, B M Peyton, L A Richards, et al. Solubilization, solution equilibria, and biodegradation of PAHs under thermophilic conditions[J]. Chemosphere,2007, 66(6):1094-1106.
    [5]苏丹,李培军,王鑫,许华夏,等.3株细菌对土壤中芘和苯并芘的降解及其动力学[J].环境科学,2007,28(4):913-917.
    [6]王晓蓉.环境化学[M].南京:南京大学出版社,1997.
    [7]李莉,浦晓磊,徐镜波,等.酵母菌吸附Hg2+的动力学及吸附平衡研究[J].安徽农业科学,2009,37(33):16727-16728,16732.
    [8]D Muncnerova, J Augustin. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons:a review[J]. Bioresource Technology,1994,48(2):97-106.
    [9]PJ Collins, M J J Kotterman, J A Field, et al. Oxidation of anthracene and benzo[a]pyrene by Laccases from Trametes Versicolor[J]. Applied and Environmental Microbiology,1996, 62(12):4563-4567.
    [10]B W Bogan, R T Lamar. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete Laevis HHB-1625 and its extracellular ligninolytic enzymes[J]. Applied and Environmental Microbiology,1996,62(5):1597-1603.
    [11]聂麦茜.多环芳烃优良菌的分离及降解特性探究[D].西安建筑科技大学博士论文,西安, 西安建筑科技大学,2002.
    [12]V B Manilal, M Alexander. Factors affecting the microbial degradation of phenanthrene in soil[J]. Applied Microbiology and Biotechnology,1991,35(3):401-405.
    [13]J J Ortega-Calvo, I Birman, M Alexander. Effects of varying the rate of partitioning of phenanthrene in nonaqueous-phase liquids (NAPLs) on biodegradation in soil slurries[J]. Envion. Sci. Technol,1995,29:2222-2225.
    [14]F Volkering, A M Breure, J G Andel. Effects of microorganisms on the bioavailability and biodegradation of crystalline naphthalene[J]. Applied Microbiology and Biotechnology,1993, 40(4):535-540.